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Abstract

This study presents CIMCI, a new semi-classical method for handling fully coupled

anharmonicity in gas-phase thermodynamics that promises to be black-boxable, to be

applicable for all kinds of anharmonicity, and to scale better at higher dimensionality

than other methods for handling gas-phase molecular anharmonicity. The method

does so by using automatically and recursively stratified, simultaneous Monte Carlo

integration of multiple functions. For the small systems analyzed by this study, the

method’s anharmonic corrections match reference data better than those of other black-

box anharmonic methods, e.g. VPT2. This holds even when sampling with CIMCI

is done with primitive force fields, e.g. UFF, while the competing methods are used

with proper, comprehensive potentials, e.g. the M06-2X meta-hybrid DFT functional.

With further refinements in Monte Carlo sampling efficiency, in the quality of fast

potentials practical for Monte Carlo sampling, and in automatic detection of which

stereoisomers should be included during sampling, CIMCI has the potential to be the
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ideal anharmonic treatment for larger molecules where the large number of conformers

and the high dimensionality of coupled torsions present major difficulties for other,

existing treatments for anharmonicity.

Introduction

Accurate thermochemical data are needed to model atmospheric, industrial, and combustion

processes. Due to their influence on energy balances and reaction equilibria, significant

scientific effort has been invested in their prediction.1 Such chemical quantities depend on

contributions from both electronic states and nuclear motions. Lingering gross inaccuracies

in either can cascade into gross inaccuracies in thermodynamic quantities.

By today’s standards, electronic energies can often be calculated very accurately. This

is mainly thanks to electron correlation-including methods like Møller-Plesset perturbation

theory of second-order (MP2) and coupled-cluster (CC) methods.2 Even with modern density

functional theory (DFT) methods, barrier heights are accessible from (double-hybrid) density

functionals at an uncertainty below 8 kJ mol−1.3 Since most computational chemistry focuses

on electronic contributions to potential energy surfaces (PESs), electronic methods have

become good enough that their errors can be overshadowed by errors in nuclear contributions.

Methods to calculate nuclear contributions have not fared so well. The commonly used

harmonic oscillator (HO) model can be especially inaccurate for motions that are not small-

amplitude, linear oscillations. If a species’ nuclear motions do not conform well enough

to the expectations of the employed model, thermochemical predictions can be inaccurate,

even when using a high-performance electronic structure method for the PES.4–6 For exam-

ple, every torsion wrongly treated as a HO can influence a species’ entropy by as much as

1.8 J mol−1 K−1.4 This error can ripple onto Gibbs free energies, which determine rate con-

stants and reaction equilibria. To remedy this, various approximations to the exact solutions

of the nuclear Schrödinger Equation (SE) have been proposed. Many of these are used in hy-

brid schemes, combining spectroscopic experimental data with statistical mechanical models.
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As of writing, these schemes reach benchmark accuracy for small molecules, especially when

coupled anharmonicity has been accounted for.7–11 However, due to the “curse of dimen-

sionality”,12 detailed anharmonicity treatments are rarely practical for larger molecules. For

example, constructing a hyperrectangular grid with 10 points assigned to each dimension for

a 12-atomic system using some DFT method would require more computational time than

a multiple of the current age of the universe.13 A different avenue is to describe the motion

of the nuclei classically and apply some correction scheme, e.g. the Pitzer-Gwinn (PG) ap-

proximation,14 to correct for quantum effects.15 This way allows for the use of Monte Carlo

(MC) integration, an integration technique well-known to handle high dimensionality better

than grid-based methods.

This study presents Configuration Integral Monte Carlo Integration (CIMCI), a semi-

classical method for handling nuclear motion that combines the framework of a detailed

treatment of anharmonicity with the beneficial scaling of MC integration. The approach

converges to the exact quantum solution at higher temperatures, all the while avoiding nu-

merical issues from summing a vast amount of small, high-energy contributions. It also does

not need the excessive amount of wavefunctions ordinarily required in a quantum approach

at these temperatures. Crucial to its function is MISER,16 a generic sampling strategy for

MC integration that dramatically reduces numerical uncertainties. With slight modification,

MISER has been found to be highly suitable for CIMCI. CIMCI relies on integrating many

different functions in the same phase space simultaneously, and MISER’s method of auto-

matically biasing the otherwise uniformly random sampling of MC integration can be tuned

to accommodate for this.

The rest of the paper is presented in three parts. First, to present CIMCI in context,

there is a brief review of the strengths and limitations of common methods for treating

anharmonicity, both quantum-mechanical and semiclassical ones. Next come descriptions for

CIMCI’s physical basis and the specific implementation of its MC integration. Finally, results

obtained from CIMCI are compared to recent benchmark computations for anharmonicity
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at intermediate-to-high temperatures.

State-of-the-art

Table 1: Comparison of selected, state-of-the-art treatments for anharmonicity

Method Quantum?
Anharmonicities
from Asymme-
try?

Anharmonicities
from Torsions?

Possible Super-
position Errors?

VPT217 Yes Yes No No

VSCF18–20 Yes PES-Dependent PES-
Dependent No

Multiconformer21,22
/ Multistruc-
tural23

Method-
Dependent

Same as Base
Method Yes Vibrational

State Overlap

RRMO24 Yes Yes No No
1DHR25 /
Nx1DHR5,26,27 Yes Same as Base

Method
Uncoupled
Only No

2DHR6 Yes Same as Base
Method

Uncoupled and
Singly-coupled
Only

No

FR / QP Interpo-
lation14,28–40 (e.g.
McClurg31,33)

Only at Low
Temperature

Same as Base
Method Yes No

Path Integral
MC41–43 Yes Yes Yes No

MCPSI44,45 Only with PG Yes Yes Same as PG Ref-
erence

CIMCI Only with PG Yes Yes Same as PG Ref-
erence

Quantum Methods

Several quantum mechanics-based anharmonic nuclear Hamiltonians have been developed,

and they all have different benefits and drawbacks (summarized in 1). While some very-

accurate models have been developed for specific species,46 only generic methods will be

mentioned, i.e. methods that can be applied to all stable chemical species without needing

significant changes on a case-by-case basis.
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Vibrational perturbation theory (VPT2)17 was originally developed to deal with an-

harmonicities in asymmetric, linear molecules. It works well for treating anharmonicities

caused by asymmetry, e.g. those from bond stretches and small-amplitude bends, but it can

encounter problems with treating other kinds of anharmonicities, such as motions within

bounded and/or periodic coordinate systems, e.g. torsions and large-amplitude bends. VPT2

also has other limitations, such as needing third- and fourth-order derivatives of the PES

that make accurate treatment of PESs without analytical second derivatives very difficult,

as well as having issues with Fermi resonances, which are surprisingly common, e.g. in CO2.

Multiconformer methods21,22 and multistructural methods23 combine results from mul-

tiple optimized minima. These are usually rigid rotor harmonic oscillator (RRHO) results,

but they can be something more involved, e.g. in Zheng et al..23 Their accuracy depends on

how complete the conformer handling is, as well as on the accuracy of the model(s) used for

each individual result. With larger molecules, computational cost can quickly explode due

to the number of optimizations that need to be made, as each newly added dimension tends

to exponentially increase the amount of available conformers at a given temperature.

Full SE solution methods attempt to capture the complete SE for nuclear motion, primar-

ily through variational techniques. Vibrational self-consistent field (VSCF)18 is a well-known

full SE method itself roughly equivalent to Hartree-Fock (HF) for nuclear wavefunctions, and

it has numerous variants that are roughly equivalent to various post-HF methods for nuclear

wavefunctions, including vibrational configurational interaction (VCI),18 Vibrational Møller-

Plesset perturbation theory (VMP),19 and vibrational coupled cluster (VCC).20 In theory,

these methods can treat all kinds of anharmonicity. In practice, their accuracy varies not

only based on the particular variant being used, but also based on how appropriate the

selected PES and basis set are to the system being studied. Historically, PESs based on a

local expansion around a minimum and basis sets based on HO normal modes have been the

most popular choices. This limits the types of nuclear motion that can be well-represented

by these calculations, and is e.g. the impetus behind recent work by Klinting et al.47 and by
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Carrington et al..48 Other full SE solution software, e.g. TNUM and ElVibRot,49,50 numeri-

cally evaluate kinetic energy operators and compute energy levels with Lanczos solvers. More

recently, analytical expressions of kinetic energy operators for these methods were shown to

also be possible.51 Von Horsten employs TNUM in his wave propagation code MrPropa12

and provides a reduced-dimensional approach50 as a possible means of dealing with the “curse

of dimensionality” while still working within the full SE solution space. Path integral meth-

ods41–43 are another full SE method that treats the motion of nuclei in the Feynman path

integral formalism. They are very accurate, but also enormously time-consuming because

they require an extremely high-dimensional numerical integration. As a result, they have

only been demonstrated on tri- and tetraatomic systems so far.

Inherently non-polynomial methods are a class of methods that replace HO in the RRHO

model with a different, non-polynomial model, often one that is based on an analytical solu-

tion to the SE. Their accuracy depends on how appropriate the new model is to a given sys-

tem, and their speed primarily depends on how many single-point energy (SPE) calculations

are necessary to construct their new model. Rigid rotor Morse oscillator (RRMO)24 replaces

HO with a Morse oscillator. This makes it most suitable for anharmonicities from asymme-

try, like VPT2, but unlike VPT2, it only requires third-order gradients of the PES. One-

dimensional hindered rotor (1DHR)25 and its extension superposition of one-dimensional

hindered rotations (N×1DHR)5,26,27 replace HOs with hindered rotors (HRs), but only for

torsional coordinates. While they are based on the quantum pendulum model, which has

an analytical SE solution, in practice, the HRs are constructed by numerically fitting a gen-

eral Fourier series to a series of relaxed or unrelaxed PES scans along torsional coordinates.

They are thus best suited to treating anharmonicities caused by Cartesian normal modes

being unsuitable to model torsional motions. However, because of their reliance on a series

of uncoupled PES scans, they can suffer from being unable to capture coupled torsional

motions. Examples of this misbehavior appear in hydrogen-bonded clusters52,53 and in the

transition state (TS) for hydrogen abstraction from oxygen-containing fuels by HO2.13,54–56
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Two-dimensional hindered rotor (2DHR)6 is a natural extension of 1DHR that is able to cap-

ture coupling across any two different torsional motions. This comes at the cost of needing

exponentially more SPE calculations in PES scans, and it is still not able to capture coupling

across more than two torsional motions. However, by far the most popular non-polynomial

methods, possibly even the most popular methods for modeling anharmonicity, are HO-free

rotor (FR) interpolations.14,28–40 These are based on the idea at low temperatures, HRs be-

have more like HOs, while at high temperatures, they behave more like FRs, so a decent

way of treating HRs is to use some interpolation between FR and HO quantities14,28–39 or

VPT2 quantities.40 HRs with a simple cosine potential, also known as quantum pendulum

(QP), can also be used as part of the interpolation, something incorporated by McClurg et

al.31,33 to great effect. Interpolation-based methods tend to be significantly faster than all

other methods listed so far, especially the ones that only employ HO frequencies and/or the

geometry from a single minimum to calculate their interpolation factor(s), usually by way

of estimating barrier heights for torsional motions. While the accuracy of these methods

often leaves much to be desired compared to the previously outlined methods for treating

torsional anharmonicities (and of course, they are not meant for treating non-torsional an-

harmonicities), they are still used regularly due to the speed and ease at which they can be

run in a blind-box fashion.

Semi-Classical Methods

A potentially attractive alternative to resolving anharmonic nuclear motions within quantum

mechanics is to instead resolve them within classical mechanics and then apply a corrective

approximation to recapture quantum-specific behavior that is lost in the classical picture.

The classical partition function of a system is57

Qclass =
1

h3Nσ

∫
· · ·
∫

exp

(
−H (ppp,XXX)

kBT

)
dppp dXXX (1)
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Where h is Planck’s constant, N is the number of nuclei in the system, σ is the system’s

overall symmetry number, kB is Boltzmann’s constant, T is temperature, H is the overall

Hamiltonian, and ppp and XXX are respectively the momenta and Cartesian coordinate vectors

of the system. Within the classical framework, the overall Hamiltonian can be split into a

kinetic Hamiltonian that only depends on momenta and a potential Hamiltonian that only

depends on positions. This allows the overall integral itself to be split into two separate

integrals, one over momenta and one over positions:

Qclass =
1

h3Nσ

∫
· · ·
∫

exp

(
−Hkin (ppp)

kBT

)
dppp ×

∫
· · ·
∫

exp

(
−Hpot (XXX)

kBT

)
dXXX (2)

The major benefit of the semi-classical approach is that both multidimensional integrals in

eq. 2 can be handled and solved separately. In the case of the total partition function, i.e.

where all kinetic contributions are included in the partition function, the kinetic integral has

an easy-to-calculate analytical solution:

Hkin (ppp) =
N∑
i=1

ppp2i
2mi

(3)

∫
· · ·
∫

exp

(
−Hkin (ppp)

kBT

)
dppp =

N∏
i=1

∫∫∫ +∞

−∞
exp− ppp2i

2mikBT
dpppi (4)

= (2πkBT )1.5N
N∏
i=1

m1.5N
i (5)
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Substituting eq. 5 into eq. 2, it can be seen that for the total classical partition function,

only a single term remains that is not trivial to solve:

Qclass = P · CI (6)

P :=
1

σ

(
2πkBT

h2

)1.5N N∏
i=1

m1.5
i (7)

CI :=

∫
· · ·
∫

exp

(
−Hpot (XXX)

kBT

)
dXXX (8)

CI is the system’s configuration integral, and finding it is the primary objective of semi-

classical methods of modeling anharmonic nuclear motion.

Finding the total partition function is not strictly necessary however. If the scheme seeks

only to correct some elements of RRHO, the job of calculating the configuration integral can

become much easier. Early semi-classical methods14,28,29 focused on only treating torsional

motions and kept RRHO in place for other types of motion. While this approach does

mean that a more complicated kinetic term needs to be used instead of eq. 3, they, too,

can still be found analytically for free internal rotors.58 Formulæ for HR potentials’ kinetic

and potential components are also available, such as those used by Pitzer et al. to construct

tables of thermodynamic terms for HRs.14 More recent developments that intend to capture

said tables’ values30 and/or use them more as benchmarks31,32,34 are also available, though

these were primarily designed as part of quantum methods that interpolate between HO and

FR values.

A more recently documented approach is to still calculate the total partition function,

but to obtain the configuration integral from a numerical integration over positional space

instead of trying to use an analytical solution. The key issue with determining this numer-

ical integral is its high dimensionality. Since a non-monatomic, non-diatomic system with

N nuclei will require a numerical integration over 3N − 6 dimensions (the system has 3N

positional coordinates, but 6 of them can be integrated analytically, as explained later),

the number of dimensions over which integration is to occur can be exceedingly large even
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for smaller molecules. Grid-based numerical integration methods, e.g. rectangular or trape-

zoidal integration, cannot reasonably deal with this high dimensionality. With N points

used for a d-dimensional integration, these methods’ worst case scenario uncertainties scale

as O
(
N−

2
d

)
(for Simpson’s Rule, O

(
N−

4
d

)
). By contrast, MC integration techniques’ un-

certainties scale significantly better for higher dimensional integrals, with the most primitive

technique scaling with O
(
N−

1
2

)
. They are thus an ideal choice for numerical integration of

the configuration integral. However, on its own, this improved scaling does not eliminate the

need for a large number of sampled points in MC integration. This is because absolute un-

certainties will still start at a higher amount purely due to the volume of the to-be-integrated

space increasing faster than that of the relevant parts of the integrand. High-dimensional

integrands that do not fill up their integration volume completely, such as those of con-

figuration integrals, still require an overwhelming number of samples to obtain any kind of

reasonable integral estimate. Thankfully, this issue can be addressed with the help of various

alternate sampling strategies developed over the past few decades. These include: 1) using

specially-designed numerical sequences instead of pseudorandom numbers during sampling,

such as Sobol sequences;59 2) using importance sampling to concentrate samples in regions

that contribute the most to the integral, such as the VEGAS60,61 and Suave62 methods, and;

3) using stratified sampling to allocate the overall sampling budget to regions with higher

statistical uncertainty, such as the MISER method.16

The first detailed description of using MC integration to numerically obtain configuration

integrals was written by Kamarchik, Jasper, et al..44,45 While their method, Monte Carlo

Phase Space Integration (MCPSI), formally integrates state counts at fixed energies instead

of configuration integrals directly, it is still a good demonstration of the potentials and

pitfalls of MC integration for this application. The method was demonstrated to be able

to treat all kinds of anharmonicities in all kinds of systems, but a very large number of

samples (numbering well into the millions and billions) is still expected to be required to

achieve adequate precision for anything but the smallest systems. To remedy this, MCPSI
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employs some techniques to reduce statistical uncertainty and/or the total amount of time

spent on a calculation. To ensure that such a large amount of points can be computed

in a timely manner, SPEs needed by MCPSI are calculated with a PES fitted to many

thousand coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) SPEs, which

was shown to give reasonable results at the cost of some setup time and risks involved with

fitting and extrapolation.44 Stratified sampling is used in the form of a fixed number of

nested hyper-rectangles tuned to not split integration regions in inefficient places,45 though

this approach is still not as automatic or as tuned to the number of points in the calculation

compared to generic MC integration methods like MISER. A sanity filtering system helps

save time and weed out gross errors in the fitted PESs by generating a test energy for

each sample and setting the integral contributions of those samples with extreme energies

to 0.45 Sampling was performed in curvilinear/internal coordinates instead of Cartesian

normal mode displacement coordinates, which was shown to reduce the amount of points

necessary for a given level of precision up to 10-fold;44 however, MCPSI requires that the

necessary Jacobians be computed numerically within the already-numerical estimation of a

configuration integral.

So far, the methods discussed obtain only classical results. This is adequate for thermo-

dynamic quantities at high temperatures and when the difference between zero-point energies

(ZPEs) and PESs is not too large. However, for temperature ranges where classical mechan-

ical results are no longer close to quantum mechanical ones, or when ZPEs are large enough

to be important at all temperatures, additional treatment is necessary. Often, this will come

in the form of some type of approximation to transform classical mechanical partition func-

tions Qclass into approximations of quantum mechanical ones QQM. The most well-known of

these approximations is the PG approximation,28 which requires only classical and quantum

mechanical results from the same method, Qclass,ref and QQM,ref, to act as a reference:

QQM

Qclass
≈ QQM,ref

Qclass,ref
(9)
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Most commonly, RRHO results are what are used because they are so readily available and

give adequate results at most temperature ranges of interest.28,31,41,44 Therefore, for a system

with N frequencies ν:

QQM ≈ Qclass
QQM,HO

Qclass,HO

= Qclass exp

(
−∆EZPE

kBT

)(
kBT

2h

)N N∏
i=1

csch
(

hνi
2kBT

)
νi

(10)

However, anharmonic effects that cannot be represented in classical results, e.g. the shifting

of zero-point energies as a result of the shape of the PES, are not accounted for if RRHO

results are used. The approximation itself also relies on the assumption that the relationship

between the reference method’s quantum and classical results is similar to that of between

the given Qclass and its quantum equivalent. Situations where this does not hold true can

produce gross inaccuracies in the approximation.63
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Methods

CIMCI is a semi-classical method for obtaining anharmonic partition functions developed in

this study. It is similar in its overall approach to MCPSI, but aims to address some of its

shortcomings. It also is set up to require less manual work in its setup in order to be usable

as a black-box method, and it uses a framework that allows generic strategies for improving

MC integration to be incorporated more easily.

CIMCI’s core is the numerical estimate of a system’s configuration integral as expressed

in eq. 5 by way of MC integration across all positional coordinates of the system’s nuclei.

To do this, eq. 8 can be expanded as follows:

CI =

∫
· · ·
∫

exp

(
−U (qqq)− U (qqq0)

kBT

)
‖Jqqq‖ dqqq (11)

Where U (qqq) is the value of the PES at some nuclear coordinates qqq, and U (qqq0) is the value

of the PES at its global minimum geometry qqq0. The new term ‖Jqqq‖ is the Jacobian of the

coordinate system used to express qqq, and amounts to 1 when qqq is expressed in Cartesian

coordinates. However, CIMCI by default performs its integration in curvilinear or internal

coordinates, so ‖Jqqq‖ 6= 1. Instead, in the case of curvilinear coordinates, the Jacobian is as

follows:64

‖Jqqq‖ = sin (β)
N−1∏
i=1

r2i

N−1∏
j=2

sin (φj) (12)

Where β is the second Eulerian angle for overall rotation of the entire frame, ri is the

radial coordinate for the ith nucleus, and φj is the angular coordinate of the jth nucleus.

Substituting eq. 12 into eq. 11, one obtains the following for the configuration integral in
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curvilinear coordinates:

CI =

∫ Z

Rz=0

∫ Y

Ry=0

∫ X

Rx=0

∫ 2π

γ=0

∫ π

β=0

∫ 2π

α=0

∫
(rrr,φφφ,θθθ)

exp

(
−U (rrr,φφφ,θθθ)− U (rrr0,φφφ0,θθθ0)

kBT

)
sin (β)

N−1∏
i=1

r2i

N−1∏
j=2

sin (φj) drrr dφφφ dθθθ dα dβ dγ dRx dRy dRz (13)

Where X, Y , and Z constitute the total volume in which the frame is allowed to move, Rx,

Ry, and Rz are Cartesian displacements for the entire frame, and α, β, and γ are Eulerian

angles for overall rotation of the entire frame. Rx, Ry, and Rz are traditionally anchored

to the frame’s center-of-mass, but any anchor is sufficient for CIMCI. The integrations over

Rx, Ry, Rz, α, β, and γ can be solved analytically and do not need to be part of the MC

integration. Doing so for a nonlinear system with 3 or more nuclei leads to:

CI = Vtrans8π
2

∫
(rrr,φφφ,θθθ)

exp

(
−U (rrr,φφφ,θθθ)− U (rrr0,φφφ0,θθθ0)

kBT

)N−1∏
i=1

r2i

N−1∏
j=2

sin (φj) drrr dφφφ dθθθ (14)

Where Vtrans is the volume in which the system is allowed to move. For diatomic systems,

eq. 14 is almost the same, but the 8π2 term becomes 4π instead, as there is no integration

over γ. In turn, Vtrans can be obtained for an ideal gas from the system’s temperature T and

pressure p as:

Vtrans =
kBT

p
(15)

This leaves an integration over 3N − 6 curvilinear coordinates (3N − 5 for diatomics) that

needs to be solved numerically with MC integration:

Qclass =
8π2Vtrans

σ

(
2πkBT

h2

)1.5N N∏
i=1

m1.5N
i · CMC (16)

CMC :=

∫
(rrr,φφφ,θθθ)

exp

(
−U (rrr,φφφ,θθθ)− U (rrr0,φφφ0,θθθ0)

kBT

)N−1∏
i=1

r2i

N−1∏
j=2

sin (φj) drrr dφφφ dθθθ (17)

Eqs. 14, 16, and 17 hold true for non-diatomic, linear input geometries, as positions where
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the system is not completely linear still need to be incorporated into the total partition

function. They could, however, potentially present an issue in calculating eq. 16 through

eq. 17. Due to the Jacobian (eq. 12), the integrand value for CMC for geometries close to

the input geometry will be either 0 or extremely close to 0, and geometries close to given

input geometries would tend to be the ones that contribute the most to the integral. Such

potential issues have not been analyzed in full detail for this study.

However, obtaining a numerical estimate of Qclass is not enough for most thermodynamic

quantities, as many of them depend on ∂Qclass
∂T

and/or ∂2Qclass
∂T 2 . This means that ∂CMC

∂T
and

∂2CMC
∂T 2 must also be found in addition to CMC. The derivative is standard calculus and

the result given in the Supporting Information (SI) along with the textbook formulas for

thermodynamic functions used by us.13

Ordinarily, a separate MC integration would need to be performed for each of these three

quantities, and this would need to be repeated at each temperature of interest. This would

consume a lot of extra time and computational resources. However, the computational cost

of a MC integration of any of these functions lies disproportionately in the SPE calculations

needed by all of these functions. During testing, at least 99.7% of the computational time of a

CIMCI run is spent on obtaining SPEs, and that was using the relatively fast UFF65 potential

for SPEs. However, all integrals that need to occur happen (or can happen) over the same

space and on the same system. The only difference between them is how their integrands

process SPE. In order to save on time, CIMCI evaluates every integral, i.e. eqs. 17, S-12, and

S-13 for every temperature, at the same time. The SPE of a single, randomized geometry

is passed onto all three integrands (more if more than one temperature is being looked at),

whose results are then calculated, stored, and processed individually.

To calculate the aforementioned integrals, CIMCI has been built to work with any stan-

dard MC integration technique that can be adjusted to compute and process multiple inte-

grals across the same set of random samples. Two such techniques have been tested so far:

“naïve” MC integration, which uses no special, alternate sampling technique for reducing sta-
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tistical variance, and a slightly modified version of MISER,16 which uses a sampling technique

that revolves around recursive stratification of the integration space. Use of quasi-random

number sequences, e.g. Sobol sequences,59 was not tested because it was not guaranteed that

they would reduce statistical variance for the integrals of interest for CIMCI. Importance

sampling techniques, e.g. VEGAS60,61 and Suave,62 were not tested because it was difficult to

determine how they should be modified to evaluate multiple integrals simultaneously without

sacrificing the quality of any one integral, which is vital for CIMCI. “Naïve” MC integration

obtains a numerical estimate for a definite integral F (xxx) over some ranges ωωω with a total

volume of V using N uniformly randomly sampled points:

F (xxx) =

∫
ωωω

f (xxx) dxxx

u
V

N

N∑
n=1

f (xxxn)

= V 〈f (xxx)〉 (18)

δF (xxx) =
V√
N

√∑N
n=1 (f (xxxn)− 〈f (xxx)〉)2

N − 1

=
V σN√
N

(19)

The number of samples used N can be increased to reduce the uncertainty in the final

estimate δF (xxx), but the reduction in uncertainty will be rather slow if this is the only

strategy used. MISER16 increases the reduction in uncertainty with the help of recursive

stratified sampling. With a single stratification, a single, large, definite integral over ωωω is split

up into two smaller definite integrals over ωωωA and ωωωB, resulting in the following numerical
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estimate:

F (xxx) =

∫
ωωωA

f (xxx) dxxx +

∫
ωωωB

f (xxx) dxxx

u
VA
NA

NA∑
n=1

f (xxxn) +
VB
NB

NB∑
n=1

f (xxxn)

= VA〈fA (xxx)〉+ VB〈fB (xxx)〉 (20)

δF (xxx) =

√
δFA (xxx)2 + δFB (xxx)2

=

√
V 2
Aσ

2
NA

NA
+
V 2
Bσ

2
NB

NB
(21)

The uncertainty in eq. 21 will never be greater than that in eq. 19, and, in the case of

VA = VB, it is minimized when:16

NA

NA +NB
=

σNA

σNA + σNB

(22)

MISER applies this splitting recursively and attempts to guess each σNA and σNB by allocat-

ing some of the sampling budget to pre-sampling the integration region at each recursion. It

also uses this same pre-sampling guesses for σNA and σNB to decide along which dimension

it should split the integration region into two smaller regions (MISER always only splits the

integration region along a single dimension at a time). It does so by looking at which split

would minimize the following heuristic:

σ2
NGuess

∝
(

1+α

√
σ2
NA

+ 1+α

√
σ2
NB

)1+α
(23)

Where α is an arbitrary parameter that is said to produce a good heuristic when α = 2.16

However, because CIMCI evaluates multiple integrals simultaneously while MISER only

analyzes a single set of uncertainties at each recursion, MISER needs to be slightly modified

in order to work with CIMCI. At each recursion, the pre-sampling step proceeds as normal,
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albeit with pre-sampling results collected for all integrals instead of just one. For the heuristic

step though, the modified version of MISER first determines a slightly different heuristic

based on eqs. 23 and 20. For each integral, the following heuristic is calculated for each

dimension of the integration region:

σ2
NMultiGuess

∝

(
1+α

√
σ2
NA

+ 1+α

√
σ2
NB

)1+α
VA〈fA (xxx)〉+ VB〈fB (xxx)〉

(24)

Different integrands can have vastly different magnitudes within a given integration region,

and therefore different absolute magnitudes of uncertainty. This step compensates for these

differences in absolute magnitude and makes the heuristic work off of relative uncertainties

instead of absolute ones. However, there is still more that needs to be done to make MISER

work for multiple simultaneous integrations. Each integral will still have a different shape

within the integration space. Simply assigning the average of eq. 24 across all integrands

to each dimension and then selecting to split the dimension with the lowest average can

result in splittings that are good for most integrands, but horrible for a select few. Instead,

the modified version of MISER used by CIMCI assigns the highest value of eq. 24 across

all integrands, and then it will choose to split the dimension that has the lowest heuristic

assigned to it, like with the unmodified version. In effect, MISER always chooses to split the

dimension for which the worst heuristic value is the least worst out of all worst values. This

makes sure that no MISER bisection will be outright horrible for any of the integrations being

performed. While it is not necessarily the best compromise solution under all circumstances,

it is a safe one if all integrals to be evaluated are of equal value. It also maintains MISER’s

automatic, black-boxable nature, which is a major benefit for CIMCI’s intended purpose

compared to performing a stratified sampling strategy by hand (recursive or otherwise).

Integrating over curvilinear coordinates introduces an additional challenge in the way

random geometries are generated for MC integration. Blindly generating uniform numbers

for each individual curvilinear coordinate will result in the randomly sampled geometries

18



(a) Naïve (b) MISER

Figure 1: The overlaid atomic coordinates of all one million generated geometries taken
during naïve (1a) and MISER (1b) MC integrations of HNO. H is in black, N is in blue (in
the bottom center), and O is in red. For completeness, geometries under MISER that were
used purely for pre-sampling and heuristics are also included.

biasing heavily towards ones with smaller r values and values of φ near the poles at 0 or

π radians. Coordinates are therefore randomized with a biasing that is based on what

curvilinear coordinate they are and to which nucleus are they assigned, as given in Table 2.

Table 2: Conversion of integration ranges to correct point distributions generated for curvi-
linear coordinates of the ith atom to yield uniform distribution in Cartesian coordinates.

i = 1 i = 2 i > 2

ri [a; b] b
√[

a2

b2
; 1
]

b 3

√[
a3

b3
; 1
]

φi - [a; b] cos−1 ([cos a; cos b])
θi - - [a; b]

The resulting geometry distributions have been checked for smaller molecules (up to

5 nuclei). For di- and triatomic systems, one can still easily check geometries by visual

inspection, such as in fig. 1, which shows the distribution of one million points among the

internal coordinate space of HNO. Relative to N nuclei (blue), positions for O nuclei are

shown in red, and positions for H are shown in black. In both cases, color value represents

concentration, i.e. the more geometries that were generated with a particular nucleus at a

given coordinate, the brighter/darker that nucleus’ color appears in the figure. One can see

from both subfigures that neither sampling technique shows a bias towards smaller distances

or towards poles of the angles. In addition, one can see from the abrupt changes in point

distribution in plot 1b how the automatic stratification scheme in MISER leads to meaningful
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cuts in the H–N–O bending angle space, as well as slightly less visible cuts in the H–N

bond distance space. It is worth noting that while MISER is a stratified sampling algorithm

and not an importance sampling one, the concentration of its generated geometries can end

up focusing on regions of high importance anyway. Geometries are predominantly generated

at a bending angle near 114◦, which is very near the minimum of the PES for HNO and thus

is the primary contributor to its partition function and its partition function temperature

derivatives. Unfortunately, adequate benchmark thermochemistry data for HNO, whether

experimental or high-level theoretical, could not be found owing to its instability, so the

performance of CIMCI could not be appropriately discussed or judged.

The presampling within the MISER algorithm leads to a smaller overall variance com-

pared to a naïve calculation using the same number of points. When calculating variances

for eq. 19, there is a risk of loss of precision due to floating point arithmetic. The traditional

method of calculating the variance of evaluations of some function f (xxx) involves collecting a

sum of the squares of the evaluations and subtracting the evaluations’ average value squared

from that sum. This subtraction is well-known to potentially result in catastrophic cancella-

tion.66 To avoid this, CIMCI uses the variant of the Youngs-Cramer method for evaluating

the massive sum in eq. 19 that is outlined in a review by Schubert and Gertz.66 During test

runs of CIMCI on the types of systems present in this study, the difference in σN , i.e. the

square root of the variance, between the Youngs-Cramer method and the traditional method

were usually around 7-15%: not major, but not insignificant.

Because of the blind way geometries are generated, CIMCI can sample geometries that

are very far away from the equilibrium, potentially even being geometries of chemical iso-

mers instead of those of the same species. It would be unnecessary and/or undesirable to

fully evaluate these geometries for the integration, either because their contribution to the

integral would be completely negligible or because they do not represent a configuration

that the starting species could realistically adopt at the specified temperatures. To address

this, CIMCI employs a “fast filtering” system that tests every sampled geometry before it
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is passed onto the full method to be used by a given CIMCI calculation. If any two nuclei

in a given geometry are closer than 0.3 Bohr (about 0.16 Angstrom), the geometry fails the

test immediately. Otherwise, the geometry’s bond orders are resolved with the help of a fast

method (Mayer bond orders67 with GFN1-xTB68 if the full method is classified as “expen-

sive”, i.e. DFT or slower, Pauling bond orders69 with UFF65 otherwise) and compared with

the bond orders of the input geometry. If any new bond is present in the sampled geometry

where there is none in the input geometry or vice versa, the sampled geometry fails the test

as well. Geometries are only passed on to the full method if they do not fail the test; if they

do, their contribution to all integrals is set to 0 and CIMCI moves on to another geometry.

In case the base method is the same as the method used for “fast filtering” (only possible

if the base method is UFF65), then the bond checks are still made, but CIMCI just takes

the total energy of the system from the “fast filtering” result to calculate the geometry’s

potential instead of requesting another calculation. While this “fast filtering” setup works

well for the systems analyzed in this study, this study also acknowledges that it does have

two notable pitfalls that would need to see improvement before it can be used in a black box

fashion: very high temperatures and stereoisomers. At very high temperatures, interatomic

distances that would be flagged as bond breakages can still contribute non-negligibly to a

species’ thermodynamics, so excluding their contributions to the configuration integral and

its temperature derivatives would be erroneous. As for stereoisomers, because the “fast filter-

ing” system only checks for changes in bond orders and not for changes in stereochemistry,

CIMCI can generate geometries that are stereoisomers of the inputted species and that will

pass through the “fast filtering” system without issue. When a user is only expecting the

configuration integral to be evaluated for the inputted species, this pollution by stereoisomers

can heavily distort CIMCI’s results.

The code for this study was written exclusively in Fortran2008 and compiled with Intel

Fortran Compiler 19.1.3 using Intel MPI Library 2019 Update 9 for parallelization. CIMCI

was developed as a job type within the AMS software suite,70 which allows the program to
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use any SPE calculation method within the suite. It is made to work off of standard methods

that are available in the AMS software package, specifically, force field (FF) methods, reactive

FF methods like ReaxFF,71 machine learning potentials, and density functional-based tight-

binding (DFTB)72 methods. Only parameterless methods were used for this study, namely

UFF65 and GFN1-xTB.68,73 DFT calculations with CIMCI were obtained with the M06-2X

functional in ADF74–80 using ADF2020’s TZ2P basis set81 and standard, linear ZORA rela-

tivistic scaling.82–84 Random numbers for geometry randomization were generated with the

random number generator (RNG) that is present in AMS; it is a xoshiro256**85,86 generator

with specially set RNG seed values to help avoid bad initializations (“zeroland” 86). In order

to avoid floating-point underflow in high-dimensional species due to the Jacobian being very

small when evaluating the integral in SI units, the code also progressively multiplies in the

kinetic pre-factor term (progressively because doing so all at once can cause an overflow

due to the pre-factor being so big). Coordinate bounds for the integration procedure can

be specified manually or left to be determined automatically; all calculations for this study

used the latter. When coordinate bounds are determined automatically, bond angles and

dihedrals are automatically detected and always set to their full ranges: 0 to π radians for

angles, 0 to 2π radians for dihedrals. Automatic bond distance bounds are based on the input

geometry and the value of the greatest temperature specified for the calculation, with the

assumption that the input geometry is at the global minimum of the PES. They range from
(input length)

(f)
to (input length) × (f), where (f) = 1 + 0.25 ×

√
g(TTT )+g(TTT )4

1+g(TTT )2
and g (TTT ) = max(TTT )

1500 K .

This value is based on observations of CIMCI integrand values with respect to (w.r.t.) bond

length of weak F–F bonds obtained from running the program on F2 at 298.15 K to 1500

K and making a conservative estimate for the temperature domains where available bond

stretch potentials are still parabolic vs. where they cease to be parabolic. The range itself is

asymmetric w.r.t. equilibrium bond lengths by design, and so the region encompassing bond

lengthening is significantly larger than that encompassing bond contraction.
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Results

In this section, CIMCI-derived thermodynamic quantities of small systems are first compared

to those of experiment and high-level computations, as well as to quantities derived by VPT2,

1DHR/N×1DHR, and McClurg-style HR corrections where appropriate. The quantities

obtained from these other methods were done so with the Gaussian16 Revision C.01 software

package.87 VPT2 results were obtained with the “freq=anharm” keyword. McClurg-style HR

results were obtained with the “freq=hinderedrotor” keyword. 1DHR and N×1DHR results

were obtained by first performing relaxed PES scans for each torsional coordinate and then

processing the results with the Tamkin Python library.88 Afterwards, the scaling behavior

and obtained numerical uncertainties of CIMCI will be discussed.

Anharmonic Contributions to Entropy

Water is maybe the most important chemical species known to mankind. Its thermochem-

istry is governed by anharmonic motion of many hydrogen-bonded water clusters, and so

water clusters tend to be the popular subject of study,89–91 mainly their structure, ener-

getics, and frequencies.92,93 Recently, however, rovibrational levels of the water monomer94

and its isotopologues95 in the ideal gas state have been measured and calculated. Of about

one million bound rovibrational states, approximately 20000 have been determined exper-

imentally. Furtenbacher et al.94 give a complete list of rovibrational energy levels up to

9724 cm−1 in their W2020 database. Being a small system with such extensive reference

data, gas-phase water serves as a good starting point for comparing the performance of

CIMCI to other anharmonic treatments.

Anharmonic effects on the thermochemistry of water are minor compared to molecules

with torsional degrees of freedom (DOFs), e.g. H2O2, which will be discussed later. The

vibrational energy level subset of the W2020 database provides an excellent experimental

benchmark to which to compare results of CIMCI and other anharmonic treatments, as it
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Figure 2: Sanharm − SHO of H2O(g) at 101 325 Pa with CIMCI at UFF ( ) and GFN1-
xTB ( ), VPT2 at UFF ( ) and M06-2X/cc-pTVZ ( ), and the W2020 measurement
compilation ( ).94 CIMCI results are averages of 5× 106 sample runs.

is certain that its quantities are not merely the result of applying experimentally obtained

force constants to a RRHO model. Fig. 2 compares the anharmonic corrections of CIMCI

done on UFF, GFN1-xTB, and M06-2X/DZP potentials to those of VPT2 with UFF, VPT2

with M06-2X/cc-pVTZ, and the W2020 database. With UFF, CIMCI is able to reproduce

a similar trend as the W2020 values and at the same magnitudes, but with a slight vertical

shifted of around −0.1 J mol−1 K−1. By contrast, VPT2 with UFF does not have this vertical

shift while also appearing to have the exact same trend at the exact same magnitudes as

CIMCI. The anharmonic correction for CIMCI with GFN1-xTB not only has a shift of about

0.1 J mol−1 K−1, but also has a much steeper trend than either the W2020 data or any of

the other two methods with UFF. VPT2 with M06-2X/cc-pVTZ, while having no vertical

shift, also displays a much steeper trend than the W2020 data, though not as steep as

CIMCI with GFN1-xTB. VPT2 with M06-2X/cc-pVTZ culminates in an entropy correction

at 1500 K that is about three times greater than it should be, while CIMCI with GFN1-xTB

gives a correction that is about six times greater than it should be. These shifts and different
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trends between different potentials and/or between using VPT2 or CIMCI demonstrate how

these methods are sensitive to the shape of the PES. VPT2 is sensitive to the shape of the

PES at the minimum being looked at, whereas CIMCI is also sensitive to its shape in areas

further away from the minimum. In the absence of significant enough anharmonicity, like in

the case of H2O, inaccuracies in the broad shape of the PES used can cause greater errors

in CIMCI than in methods that only rely on the shape at or around stationary points, such

as VPT2.

For larger molecules, anharmonicities can be quite substantive. One well-known example

for this is hydrogen peroxide (H2O2), a species with two symmetric minima separated by

hindered rotation around the H–O–O–H torsion. H2O2 is important for study because it

is used as bleaching agent and disinfectant and it plays a paramount role in atmospheric

and combustion chemistry.9 Hybrid experimental data are reported by Chase in the NIST-

JANAF Thermochemical Tables monograph96 of 1998 and later by Dorofeeva.97 These data

combine spectroscopic force constants with a RRHO treatment and data from Pitzer and

Gwinn’s tables on internal rotation.14 As a result, this source is not expected to supply

benchmark-quality information on anharmonicity. In 2013, Malyszek and Koput provided

a PES for H2O2 from CCSD(T)-F12b/aug-cc-pV5Z energies.9 They solved the SE in 9D

rovibrational coordinates with a variational approach and reported 173 energy levels up to

48 kJ mol−1 in their Supporting Information. With their reported force constants, 91 combi-

nations of HO energy levels up to 48 kJ mol−1, have been determined. It was found by this

study that above 700 K, the cutoff at 48 kJ mol−1 leads to increasing entropy underestima-

tion, from 0.3 J mol−1 K−1 at 700 K to 2.3 J mol−1 K−1 at 1000 K. This correlates with the

kink in the Malyszek curve in Figs. 3 and 4, which is why the line is switched to a dashed

one from 700 K.

As shown in Fig. 3, at standard conditions, anharmonicity in H2O2(g) leads to an en-

tropy increase of nearly R ln 2 in Malyszek and Koput’s results, coinciding with the two

equivalent minima. However, this effect decreases with increasing temperature as hindered
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Figure 3: Sanharm − SHO of H2O2(g) at 101 325 Pa computed with anharmonicity schemes
1DHR with Tamkin88 at UFF ( ), McClurg HR31,33 at UFF ( ), VPT217 at UFF
( ), CIMCI at UFF ( ), and the calculations of Malyszek and Koput9 ( , ).
CIMCI results are averages of 5× 107 sample runs.

rotation between the two minima becomes more possible. CIMCI on a UFF PES is able

to replicate both the trend and the magnitude of this anharmonicity reasonably well. For

Tamkin’s 1DHR results on a UFF PES, 4000 wavefunctions and energy levels were used to

solve the full quantum-mechanical SE for one-dimensional H–O–O–H torsional rotation.

At lower temperatures, they are almost identical to CIMCI’s results, though CIMCI’s are

still slightly closer to Malyszek and Koput’s results. This changes at higher temperatures

though: both CIMCI’s and Malyszek and Koput’s measured anharmonicities decrease more

than Tamkin 1DHR’s. The most likely cause would be anharmonic effects other than just

that of H–O–O–H hindered rotation, probably asymmetries within H–O–O bends. The

McClurg HR model on a UFF PES severely underestimates anharmonicity and yields en-

tropy corrections less than 2 J mol−1 K−1 at all considered temperatures. VPT2 on a UFF

PES fares even worse, consistently yielding entropy corrections of less than 1 J mol−1 K−1.

Fig. 4 shows that if a higher-level PES like M06-2X/cc-pVTZ is used for anharmonicity

calculations, VPT2 performs slightly better and correctly determines the overall order of
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Figure 4: Sanharm − SHO of H2O2(g) at 101 325 Pa computed with anharmonicity schemes
1DHR with Tamkin88 at M06-2X/cc-pVTZ ( ), McClurg HR31,33 at M06-2X/cc-pVTZ
( ), VPT217 at M06-2X/cc-pVTZ ( ), CIMCI at UFF ( ), and the calculations of
Malyszek and Koput9 ( , ). CIMCI results are averages of 5× 107 sample runs.

magnitude of anharmonicity. However, it shows a completely opposite trend in anharmonic-

ity at increasing temperature compared to the results of 1DHR at M06-2X/cc-pVTZ, CIMCI

at UFF, and Malyszek and Koput. The 1DHR results themselves are in very close agree-

ment with Malyszek and Koput’s results when a higher-level PES like M06-2X/cc-pVTZ is

used, improving upon both 1DHR with UFF and CIMCI with UFF. This agreement only

lasts until around up to 600 K, and the same, shallower decrease in anharmonic corrections

is still observed throughout. The McClurg HR model’s results remain nigh unchanged at

M06-2X/cc-pVTZ compared to UFF.

Conspicuously absent from the H2O2 studies compared to the H2O ones are CIMCI

results computed with some DFTB PES, e.g. GFN1-xTB. With every single DFTB method

tested by this study, it was found that the global minimum for H2O2 was a completely

incorrect, C2h symmetry structure. It was assumed that with a global minimum geometry

so dramatically incorrect, obtained thermochemical values would be grossly incorrect as well

for any anharmonic treatment.
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(a) UFF (b) M062-X/cc-pvtz

Figure 5: Potential energy scan for the dihedral angle of H2O2 at two levels of theory.
Computed points are shown in red, the Fourier fit in black, and the blue horizontal lines
are the energy levels from the one-dimensional SE. The bold parts of the horizontal lines
represent the population of each energy level at standard conditions.

Potential energy curves along the H–O–O–H dihedral are shown in Fig. 5 for UFF (5a)

and M06-2X/cc-pVTZ (5b). Both methods compute the rotational barrier to the same order

of magnitude, and therefore produce vibrational level populations that are similar.

Table 3 shows that the lowest-frequency HO vibrational mode (ν = 1), which is the one

that corresponds the most to H–O–O–H torsion, has a similar frequency for both methods.

By contrast, the bending modes (ν = 3, 4 for UFF, ν = 2, 3 for M06-2X/cc-pVTZ) show

very different frequencies between the two methods. This is probably why VPT2 results

differed so much between the two levels of theory. Nevertheless, anharmonicity in H2O2(g)

still stems primarily from the H–O–O–H torsional mode, and so H–O–O bends should

not be given a large weight when correcting for anharmonicity. CIMCI is able to correctly

account for this even on a UFF PES, as its complete exploration of phase space takes all

modes into account at proper magnitudes.
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Table 3: HO vibrational frequencies for H2O2 at two levels of theory. All values are in cm−1.

ν UFF M06-2X/cc-pVTZ
1 397.9 387.5
2 1417.6 1046.7
3 1789.6 1357.8
4 1914.2 1468.6
5 3732.1 3843.9
6 3750.8 3845.7

The trend of decreasing anharmonicity in molar entropy with increasing temperature

is also found for other molecules that show more complex anharmonicity than the smaller

ones treated so far in this study. For example, whereas H2O2’s anharmonicity comes from a

single, uncoupled torsion connecting two equivalent minima, NH2OH has two unequivalent

minima that are connected through a torsion and an inversion that are coupled with each

other.45 Energy levels up to 20 000 cm−1 have been experimentally determined for NH2OH

by Luckhaus, and he reports corroborating ab-initio-derived values as well.98 From these

energy levels, NH2OH entropies including anharmonic effects have been calculated, along

with entropies from the RRHO model based on the nine fundamental frequencies reported by

Luckhaus. These calculated entropies are given in the Supporting Information. The resulting

anharmonic entropy correction shows a decreasing trend with increasing temperature similar

to the one shown for H2O2 in this study. The authors of this study therefore believe that

NH2OH and NH2NH2 (which has a pair of minima connected by a similarly coupled torsion

and inversion45) are interesting targets for future investigations with CIMCI.

Scaling

MC integration is known for its ability to scale better with sample counts at higher di-

mensions than traditional, rectangular or trapezoidal integration. In theory, the absolute

uncertainty of naïve MC integration scales with O
(
N−

1
2

)
, and the scaling of MISER should

be no worse than naïve MC integration. In the case of CIMCI however, there is an extra

complication. CIMCI obtains configuration integrals and their temperature derivatives, not
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Figure 6: Relative uncertainties in PG-corrected H2O2(g) partition functions at standard
conditions with CIMCI at UFF. Naïve MC integrations are blue circles, MISER MC inte-
grations are red squares. The average relative statistical uncertainty scales for naïve inte-
gration (dotted) with sample counts x as 29x−0.38

(
R2 = 0.95

)
and for MISER (dashed) as

150x−0.66
(
R2 = 0.97

)
. Each point represents the result of a separate, independent CIMCI

run.
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Figure 7: Relative uncertainties in PG-corrected H2O2(g) first derivatives of the partition
function w.r.t. temperature at standard conditions with CIMCI at UFF. Naïve MC in-
tegrations are blue circles, MISER MC integrations are red squares. The average rela-
tive statistical uncertainty scales for naïve integration (dotted) with sample counts x as
22x−0.38

(
R2 = 0.94

)
and for MISER (dotted) as 116x−0.66

(
R2 = 0.96

)
. Each point repre-

sents the result of a separate, independent CIMCI run.
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Figure 8: Average relative uncertainties in PG-corrected H2O2(g) standard molar entropies
with CIMCI at UFF. Naïve MC integrations are blue circles, MISER MC integrations are
red squares. The average relative statistical uncertainty scales for naïve integration with
sample counts x as 0.17x−0.24

(
R2 = 0.46

)
and for MISER as 1.4x−0.57

(
R2 = 0.94

)
. Each

point represents the Bessel-corrected standard deviation in molar entropy of five separate,
independent CIMCI runs relative to the same runs’ average.
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thermodynamic values like entropy or enthalpy. This means that the scaling of uncertainties

in CIMCI-derived thermodynamic quantities is subject to propagations of uncertainty that

are not completely straightforward. Scaling in these quantities’ uncertainties may therefore

be different.

Figs. 6 and 7 show the naïve and MISER scaling behavior obtained by this study

for the relative statistical uncertainty in the PG-corrected partition function and its first

temperature derivative of H2O2(g) obtained from CIMCI done on a UFF PES. Both inte-

gration schemes show a polynomial decrease of the statistical uncertainty with increasing

sample counts, where MISER’s uncertainty decreases roughly twice as fast as the naïve in-

tegration’s. For 107 points, MISER yields statistical uncertainties of around 0.35% for the

partition function and 0.27% for the first temperature derivative, whereas the naïve scheme

yields ones of around 6.0% for the former and 4.6% for the latter.

However, the scaling behavior of uncertainties is markedly different for entropies. Fig. 8

shows the scaling behavior of standard molar entropies derived from the runs and quantities

shown in Figs. 6 and 7. Because propagation of uncertainty for entropy relies on derivatives

that CIMCI does not compute, e.g. ∂Q

∂( ∂Q∂T )
, the figure instead shows the Bessel-corrected

standard deviation of the molar entropies calculated with the five runs at each sample count

shown in Figs. 6 and 7. Compared to results for the partition function and its first tempera-

ture derivative, uncertainties in standard molar entropies seem to scale much slower, though

the polynomial regression fit is quite poor for the naïve case. The starting relative uncer-

tainties are significantly lower though. For MISER, sub-1% uncertainty is already achieved

with 104 samples, whereas more than 106 samples are required for the same level of cer-

tainty in the partition function. This represents an interesting dynamic in the performance

of CIMCI based on the way its results would be used. Depending on which thermodynamic

quantities are of interest, adequate certainty in those quantities can be achieved from vastly

more uncertain partition function results.

However, should partition function data be directly of interest, the scaling of the direct
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output of CIMCI itself still poses a problem: in order to obtain statistical uncertainties of less

than 1% for a six-dimensional integration, about 4× 106 samples are required with MISER.

That is a very large amount of samples, too many to feasibly perform the calculations on even

DFT PESs. However, generic potentials that are fast enough to be feasible with CIMCI, e.g.

force fields and DFTB methods, are often not of good enough quality to get the shape of the

PES right. During the creation of this study, one of the previously highlighted interesting

molecules, hydrazine (NH2NH2) was shown to be one such system for which both UFF and

GFN1-xTB PESs seemed to have inaccuracies that would significantly impact an application

of CIMCI. Not only that, but the number of samples necessary to reach this less than 1%

uncertainty threshold in entropy seems to increase rapidly with larger molecules. Preliminary

exploration of NH2OH with CIMCI that is outside the scope of the study, as well as sporadic

benchmarking done during the H2O analyses, seems to show that every additional atom,

i.e. every three additional dimensions, increases the number of samples necessary for this

level of precision by about a factor of 12. This would mean that for even smaller molecules

of potential interest, e.g. octane with 26 atoms, approximately 2 × 1030 samples would be

required to get full MISER CIMCI partition function results with less than 1% numerical

uncertainty. Even if one could calculate a million SPEs every second, a calculation of this size

would still take more than a million times the current age of the universe. Thankfully, there

are plenty of promising approaches which could get this number down to a more manageable

size. In a practical sense, CIMCI need not be used to treat every single dimension of the

configuration integral, only those representing types of motion that are not handled properly

by RRHO, namely, torsions involving heavy atoms. The other positional coordinates could

be solved by analytically integrating over harmonic normal mode potentials. Separating

the two could be done with the special normal mode projector-based method proposed by

Ayala and Schlegel.32 This would get a CIMCI handling of octane down to needing only

about 5× 108 samples for less than 1% uncertainty, which is still fairly large, but achievable

on human timescales with enough computational resources. Alternative MC integration
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sampling strategies, some of which were mentioned previously, are also being investigated

by the authors of this study, as well as improvements to the core MISER algorithm itself to

make it use allocated sampling budgets more efficiently.
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Conclusions

The CIMCI method presented in this study computes classical thermochemistry with an-

harmonic effects accurately and in a manner that requires no special user input other than

the global minimum geometry, the desired method for obtaining SPEs, and a user-specified

symmetry number. With the application of a correction scheme, e.g. the PG approximation,

CIMCI is able to obtain semi-classical thermodynamic quantities that match high-quality

reference data better than other popular, black-box methods that use the same potential.

For H2O2, entropies from CIMCI correspond well — i.e. within 1 J mol−1 K−1 from 298.15 K

to 700 K — to entropies computed from N -D and 1-D SEs for potential energy surfaces of

different quality. By contrast, the McClurg hindered rotor scheme and the VPT2 treatment

fail to capture even the basic trend in anharmonic corrections with temperature. CIMCI, by

covering large parts of the PES yet at a low level of theory, correctly computed the trend

and order of magnitude of anharmonic effects. The MISER scheme for recursive stratified

sampling greatly increases the efficiency of CIMCI without requiring any additional setup,

and can do so regardless of how many temperatures are being evaluated at once with CIMCI.

For H2O2, convergence with MISER was twice as fast as with the naïve scheme. As a side

effect, despite not being an importance sampling strategy, MISER was nevertheless able to

identify PES subspaces that contribute the most to a species’ classical partition function

and its temperature derivatives. This could allow MISER sampling information to also be

used to focus and target regions of a parameterisable PES that are the most important for

thermochemistry.

The current primary obstacles in CIMCI are the speed at which the many, necessary

SPE samples are obtained, the automatic exclusion of enantiomers and other undesirable

stereoisomers from the configuration integral, and the still-significant amount of samples

that are needed for low enough numerical uncertainties of larger molecules. However, there

are promising ways forward for all three of these roadblocks. While these issues do prevent

CIMCI from currently being used in the role for which it was originally imagined, with
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further study and development, CIMCI has the potential to be a black-boxable, broadly

applicable, and reasonably accurate treatment for gas-phase anharmonicity that scales well

for large molecules.
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