
   
 

   
 

A bag of tricks for automated de novo design of molecules with the desired 
properties: application to EGFR inhibitor discovery 

  
Maria Korshunova1,2*, Niles Huang3, Stephen Capuzzi4, Dmytro S. Radchenko5,6, Olena Savych5, 

Yuriy S. Moroz6,7, Carrow I. Wells,8 Timothy M. Willson8,  
Alexander Tropsha4, Olexandr Isayev1,2* 

 

1 Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, 
Pennsylvania 

2  Computational Biology Department, School of Computer Science, Carnegie Mellon University, 
Pittsburgh, Pennsylvania 

3 Department of Biochemistry, University of Oxford, Oxford, United Kingdom 
4 Laboratory for Molecular Modeling, UNC Eshelman School of Pharmacy, University of North Carolina 

at Chapel Hill, Chapel Hill, North Carolina 
5 Enamine Ltd, 78 Chervonotkatska Street, 02094, Ukraine 

6 Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine 
7 Chemspace LLC, Chervonotkatska Street 85, Suite 1, Kyiv 02094, Ukraine 

8 Structual Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at 
Chapel Hill, Chapel Hill, North Carolina 

* Correspondence: mariewelt@cmu.edu (M.K.); olexandr@olexandrisayev.com (O.I.) 
 
 

 
Abstract 

Deep generative neural networks have been used increasingly in computational chemistry for de 
novo design of molecules with desired properties. Many deep learning approaches employ 
reinforcement learning for optimizing the target properties of the generated molecules. However, 
the success of this approach is often hampered by the problem of sparse rewards as the majority 
of the generated molecules are expectedly predicted as inactives. We propose several technical 
innovations to address this problem and improve the balance between exploration and exploitation 
modes in reinforcement learning. In a proof-of-concept study, we demonstrate the application of 
the deep generative recurrent neural network enhanced by several novel technical tricks to 
designing experimentally validated potent inhibitors of the epidermal growth factor (EGFR). The 
proposed technical solutions are expected to substantially improve the success rate of finding novel 
bioactive compounds for specific biological targets using generative and reinforcement learning 
approaches.  
 
  



   
 

   
 

Deep and reinforcement learning in drug discovery. The development and application 
of deep generative models for de novo design of molecules with the desired properties have 
emerged as an important modern research direction in Computer-Assisted Drug Discovery 
(CADD).1–4 Deep generative models can be classified by the types of molecular representation 
employed in model development. The most commonly used types are SMILES strings5 and 
molecular graphs. Multiple models for generating SMILES strings6–9 and molecular graphs10–14 
corresponding to synthetically feasible novel molecues have been proposed. Many of such models 
use reinforcement learning (RL)7,15,16 techniques for optimizing properties of the generated 
molecules. For example, Olivecrona et al.6  and Blaschke et al.17 proposed the REINVENT 
algorithm and memory-assisted reinforcement learning, respectively, and demonstrated how these 
approaches could maximize the predicted activity of generated molecules against the 5-
hydroxytryptamine receptor type 1A (HTR1A) and the dopamine type 2 receptor (DRD2). Another 
recent example is the RationaleRL algorithm proposed by Jin et al.18 The authors used RationaleRL 
to maximize the predicted activity of inhibitors against glycogen synthase kinase-3 beta (GSK3β) 
and c-Jun N-terminal kinase-3 (JNK3). Unfortunately, the aforementioned studies included no 
experimental validation of the proposed computational hits. Notably, Zhavoronkov et al19 not only 
proposed a novel generative tensorial reinforcement learning algorithm, but also used their method 
to design potent DDR1 kinase inhibitors, and performed experimental validation of virtual hits.  

Most theoretical works on de novo molecular design employ a series of benchmark tasks 
such as maximization of properties that can be assessed for every molecule, such as LogP20, 
QED21, or the benchmark collection proposed in GuacaMol.22  Such tasks employ objective 
metrics obtained directly from a molecule's SMILES5 or underlying molecular graph through a 
scoring function. These scoring functions return continuous values that can be used to assign a 
reward to generated molecules. For example, the Quantitative Estimate of Druglikeness score 
(QED) has values between 0 and 1.0, with 0 being least drug-like and 1.0 being most drug-like. In 
such a case, every generated molecule would receive a continuous score: the bigger score values 
will correspond to bigger reward values, and vice versa. Moreover, a naïve generative model pre-
trained on a dataset of drug-like compounds such as ChEMBL23 would produce molecules with 
relatively high QED values. In this case, optimization of the generative model via reinforcement 
learning will proceed efficiently as every generated molecule would get a score. Indeed, the 
efficient optimization of the QED score has been demonstrated many times in the literature.10,20,24  

Problem of sparse rewards in reinforcement learning. In contrast to physical properties 
such as LogP that can be calculated directly from molecular structure, the biological activity of a 
novel compound designed to bind the desired protein target cannot be predicted from its chemical 
structure alone. A common way to predict the binding affinity of novel, untested ligands is by 
using Quantitative Structure-Activity Relationship (QSAR) models25,26 trained on historical 
experimental data for a protein target of interest using machine learning techniques. These models 
have either continuous outputs (pKd, pIC50, etc.) for regression problems or binary outputs 
(active/inactive class label) for classification problems. QSAR models could, in principle, be used 
to construct a reward function for reinforcement learning to optimize the binding affinity of 



   
 

   
 

generated molecules, as was shown, for instance, in our previous publication.7 However, unlike 
physical molecular properties like LogP that every molecule possesses, specific bioactivity is a 
target property that exists for only a small fraction of molecules, which leads to the reward 
sparseness in the generative models. This sparse rewards problem represents a serious obstacle 
for the effective use of reinforcement learning for designing molecules with high activity. Indeed, 
the low success probability often leads to the overwhelming majority of training trajectories 
resulting in a zero reward, which implies that the reinforcement learning agent or policy network 
struggles to explore the environment and learn the optimal strategy for maximizing the expected 
reward. Thus, a promising molecule with high bioactivity for a protein of interest is unlikely to be 
observed if molecules are randomly sampled from a naïve generative model. 

Training the generative network to optimize the potency of generated molecules against a 
desired protein target is an excellent example of a reinforcement learning problem with sparse 
rewards. In this study, we demonstrate that the naïve generative model produces molecules 
predicted to be inactive in most cases. Under such a scenario, the naïve generative model rarely 
observes good examples and fails to maximize the binding affinity of generated ligands. We further 
address this problem by proposing a set of heuristic approaches (a "bag of tricks") combined with 
reinforcement learning in the sparse rewards situation to increase the efficiently of optimizing the 
structures of generated molecules to have higher biological activity. Using the epidermal growth 
factor receptor (EGFR) ligands as a case study, we show that by combining a reinforcement 
learning pipeline for generative model optimization with proposed heuristics, we could overcome 
sparse reward issues and successfully rediscover known active scaffolds for EGFR using the 
feedback from the classification QSAR model only. In addition to methodological advances, we 
also performed experimental bioassay validation of the novel generated hit molecules, which 
confirmed the experimental activity of virtual hits.  
 
Major findings. We performed a series of experiments that resulted in the following chief 
observations: 

1. The generative model trained with only the policy gradient algorithm could not discover 
any active molecules for EGFR due to sparse rewards.  

2. The combination of policy gradient algorithm with proposed fine-tuning by (i) transfer 
learning, (ii) experience replay, and (iii) real-time reward shaping resulted in much better 
exploration and an increased number of generated molecules with high active class 
probabilities. 

3. Experimental testing of selected computational hits that could be obtained from a 
commercial source validated the efficiency of our novel approach for discovering novel 
bioactive molecules.  

Below, we discuss how we arrived at the above observations. Overall, the section consists of two 
main parts. In the first part, we describe our computational analysis concerning the first two 
observations. In the second part, we discuss the generation, selection, and experimental bioactivity 
testing of computational hit compounds for an important cancer biological target, epidermal 
growth factor receptor (EGFR). The most active compound featured a privileged EGFR scaffold 
found in the known active molecules. Notably, the training set was not enriched for this scaffold 



   
 

   
 

as compared to other scaffolds and this scaffold was not used selectively as part of the 
reinforcement learning procedure. 
 
Model pipeline. Neural network training is a nontrivial task as its hyperparameter values define a 
training protocol. Due to the high number of hyperparameters, the training hyperparameter space 
is vast. To complicate things further, neural network training is a computationally expensive task 
that can last hours to days. The choice of training hyperparameters thus has a significant influence 
on model quality. We sought to run a benchmark experiment to investigate how different training 
techniques interact and how they affect model quality. As a case study, we performed the 
optimization of the generative model with reinforcement learning to maximize the predicted 
probability of active class for EGFR protein. The experimental training pipeline is shown in Figure 
1.  
 

  
Figure 1: Pipeline of model training. The model was pre-trained on ChEMBL data and then trained for 20 epochs. Each 
epoch consists of three steps: policy gradient, policy experience replay, and fine-tuning. At the end of each step, 3,200 
molecules are generated, and molecules with predicted activity exceeding the probability threshold are admitted into 
the replay buffer. The replay buffer, in turn, influences training at the policy replay and fine-tuning steps. At the end of 
the training, the model generates 16,000 molecules for evaluation. We modified the number of iterations for all 3 steps 
in each epoch to understand their effects on training. We also used different libraries to initialize the replay buffer to 
understand how the replay buffer can influence model behavior. 
 

As described above, we used the pre-trained ChEMBL model and populated the experience 
replay buffer with generated active molecules to initialize training. The model was trained using 
different combinations of policy gradient, experience replay, and fine-tuning. At the end of each 
substep, 3,200 molecules were generated for intermediate evaluation. If experience replay and/or 
fine-tuning were used, molecules with predicted activity exceeding the probability threshold were 
admitted into the experience replay buffer. In turn, the replay buffer influences training at the 
policy replay and fine-tuning steps in the next epoch if used. At the end of the training, the model 
generated 16,000 molecules for evaluation. We first trained the model for a variable number of 
epochs and verified that the model learns significantly after 20 epochs (Figure S1). 



   
 

   
 

 
Effect of fine-tuning vs. reinforcement learning. The bar chart shown in Figure 2 

summarizes the findings for four representative conditions: 1) policy gradient only, 2) policy 
gradient and fine-tuning, 3) policy gradient and experience replay, and 4) policy gradient, 
experience replay, and fine-tuning. We assessed the extent of overfitting by recording the fraction 
of the generated trajectories that generate valid SMILES strings, which is defined as the ratio of 
valid and unique SMILES strings over the total number of the generated trajectories. We assessed 
the extent of model learning by recording the fraction of the generated trajectories resulting in 
active chemical structures, which is defined as the ratio of valid SMILES strings with predicted 
EGFR activity (with the arbitrary probability threshold of 0.75) over the number of valid and 
unique SMILES strings generated. Training without replay tricks has a near-zero “active” fraction 
and the highest “valid” fraction. This observation is consistent with the sparse rewards hypothesis. 
In the absence of rewards from active molecules, this model effectively trains on the classifier 
objective. Instead of learning to generate active molecules, the model optimizes valid fraction. 
Training with a single trick (fine-tuning or experience replay) teaches the model to generate active 
molecules, albeit at the expense of a lower valid fraction. Training with only fine-tuning results in 
a lower fraction of valid molecules. Training with both experience replay and fine-tuning yields 
the best results, with both high active fraction and high valid fraction. A more detailed summary 
with nine different training conditions is shown in Figure S2. 

 
Figure 2: Combined effects of fine-tuning and reinforcement learning. Four conditions are shown here, representing 
the four combinations of fine-tuning and experience replay. From left to right, the conditions are: 1) no experience replay 
and no fine-tuning, 2) fine-tuning only, 3) experience replay only, and 4) both experience replay and fine-tuning. Models 
were trained for 20 epochs. Conditions with fine-tuning used 20 iterations of fine-tuning; those without used 0 iterations 
of fine-tuning. All training epochs had 25 policy steps, with different ratios of experience replay and policy gradient. 
Conditions with experience replay used 10 iterations of experience replay and 15 iterations of policy gradient; those 
without used 0 iterations of experience replay and 25 iterations of policy gradient. 
 

Next, we analyzed the effect of fine-tuning steps on mode collapse.27 Mode collapse poses 
a significant challenge in generative models. Reinforcement learning teaches generative models to 
produce output with high reward; however, it does not consider the distribution of generated 
output. Thus, the model can discover a pathological local minimum in the objective function by 



   
 

   
 

converging to generate a few instances with high reward; in such cases, the model undergoes mode 
collapse. Such overfitted models explore limited regions of chemical space and are undesirable for 
library generation. 

Our experiments used the active fraction as a proxy for training progress and the valid 
fraction as a proxy for mode collapse. Two scenarios can decrease valid fraction: 1) the model 
generates a larger fraction of invalid SMILES strings (fewer valid SMILES strings), or 2) the 
model suffers from mode collapse and generates many repeats of the same SMILES string (fewer 
unique SMILES strings). The first factor is caused by the restricted chemical space of higher 
activity molecules and is specific to the reward function. The second factor is caused by the nature 
of training and can be controlled.  

Mode collapse effect. To investigate how learning affects mode collapse, we ran several 
experiments where the generative model was trained with 25 iterations of policy gradient and one 
of 0, 20, 50, 100, 200, 500, or 1,000 iterations of fine-tuning per epoch. We recorded valid fraction 
and active fraction after each epoch. The resulting trajectories are illustrated in Figure 3. Figure 
3(A) shows how active fraction, valid fraction, replay threshold, and average reward change with 
training for a different number of fine-tuning steps used in training. Figure 3(B) shows the joint 
trajectories of an active fraction and valid fraction change with training for the different number 
of fine-tuning steps.  

Figure 3 shows that when the model uses no fine-tuning, it fails to produce active molecules 
and maintains a high valid fraction. When the model uses fine-tuning, it learns to generate active 
molecules at the expense of a lower valid fraction. All runs with fine-tuning experienced a 
significant drop in a valid fraction in the first epoch of training. This drop may represent a transient 
phase when the model cannot generate active molecules and partially overfits to the initial 
molecules in the replay buffer. The decrease in the valid fraction is more pronounced in models 
that use more fine-tuning iterations, consistent with this proposal. Models with the fewest fine-
tuning iterations have the lowest active fraction and the lowest valid fraction. Over model training, 
the active fraction is negatively correlated with the valid fraction, suggesting that the model suffers 
mode collapse as it learns to generate active molecules. Models with higher fine-tuning iterations 
have progressively higher active fractions and valid fractions. The model appears to increase valid 
fraction for the highest numbers tested (500 and 1,000 iterations) as it learns. Although models 
with higher fine-tuning iterations initially experience a more considerable drop in valid fractions, 
they eventually have higher valid fractions than models with lower fine-tuning iterations.  

Similarly, we analyzed the effect of the different number of experience replay steps. All 
data is shown in Figures S3 and S4. Similar to the fine-tuning benchmark, the model with no 
experience replay fails to generate active molecules and maintains a high valid fraction. Inclusion 
of experience replay results in successful learning with a simultaneous decrease in valid fraction. 
Unlike the fine-tuning benchmark, however, the number of experience replay steps does not clearly 
affect model quality. In these experiments, model quality is largely determined by the presence or 
absence of experience replay steps. 

 



   
 

   
 

 
 

 
 
Figure 3: (A) Trajectory of training for different fine-tuning values. Models were trained with 25 iterations of policy 
gradient and 0, 20, 50, 100, 200, 500, or 1,000 iterations of fine-tuning per epoch. (B) Evolution of active and valid 
fractions overtraining. Models were trained with 25 iterations of policy gradient and 0, 20, 50, 100, 200, 500, or 1,000 
iterations of fine-tuning per epoch. Solid lines represent training, small dots represent data at each epoch, and large 
dots represent data from the fully-trained model. Graphs are color-coded by the number of fine-tuning iterations used 
per epoch. 
 

Experience replay buffer effect. Finally, we investigated different initializations of the 
experience replay buffer. The experience replay library is typically filled with predicted molecules 
generated by the model pretrained on the ChEMBL database, but our procedure enables us to use 
an arbitrary replay library alternatively.  Due to sparse rewards, model learning is initially dictated 
by the replay library. We generated a second replay library with molecules from the Enamine 
kinase library, which consists of 65,000 small molecules with predicted activity against kinases28. 
This library was chosen based on the expectation that general-purpose kinase inhibitors should 
contain scaffolds suitable for EGFR kinases.  

We first selected molecules with non-zero activities against EGFR, as predicted by the 
random forest ensemble. We then filtered the active molecules to remove molecules with Bemis-
Murcko scaffolds29 present in the historical EGFR data. This step ensured that the replay buffer 
molecules were dissimilar from known molecules. The final Enamine replay library had 219 
molecules (Figure S5). 



   
 

   
 

This experiment tested three different replay libraries: an empty replay library (Empty 
buffer), the replay library from the model (Generated actives), and the Enamine library selected as 
above (Enamine). Figure 4 shows the 12 most common Bemis-Murcko scaffolds29 in the generated 
libraries produced by each of the models. All scaffold calculations were done using the RDKit30 
package.  
 

 
Figure 4: The 12 most common Bemis-Murcko scaffolds for models trained from different libraries. Three replay libraries 
were tested: an empty replay library (Empty buffer), the replay library from the model (generated actives), and the 
Enamine library selected as above (Enamine). Models were trained for 20 epochs with 15 iterations of policy gradient, 
10 iterations of experience replay, and 20 iterations of fine-tuning per epoch. Scaffolds are sorted with decreasing 
counts from left to the right, then from top to bottom. The most common scaffolds had counts and percentages as 
follows: 427 out of 4,077 predicted active molecules (10.5%) for the empty buffer, 1,232 out of 3,312 (37.2%) for the 
generated actives, and 1,763 out of 4,930 (35.8%) for the Enamine library. 
 

In the generated library produced with replay buffer initialized with compounds from the 
Enamine kinase library, the main quinazoline scaffold is notably absent. The Enamine-trained 
library suffers from lower diversity, likely because the initial replay buffer selected from the 
Enamine kinase library predominantly contains thiophene-fused rings. Such bias was introduced 
by the predictive model used to select the initial replay buffer, as described in the Methods section. 
The predictive model favored compounds with thiophene-fused rings. This observation confirms 
that the initial selection of molecules in the replay library greatly influences the regions of chemical 
space that the model explores.  

The library generated by the Empty buffer-trained model shows clear signs of overfitting, 
as 3 of the 12 most common scaffolds appear to be duplications of the quinazoline scaffold. The 



   
 

   
 

first active molecules greatly influence the model admitted into the replay library. When the replay 
library is initially empty, the model heavily exploits the first active molecules generated. As a 
result, the empty buffer-trained model explores a very limited region in chemical space (See Figure 
S6 for similarity distributions). 
 
Generation and selection of hit compounds. With the information obtained through 
computational analysis, we fixed the model training protocol. We trained the ChEMBL-pretrained 
model for 20 epochs, with 15 steps of policy gradient, 10 steps of experience replay, and 20 steps 
of fine-tuning by transfer learning per epoch. Every 2 epochs, we produced snapshot libraries of 
16,000 molecules. Each snapshot library included the distribution of active class probability for 
the generated molecules. Figure 5 illustrates the time-lapse of this distribution. The prominent 
peaks at 0 and 1 suggest that the model learns by increasing the fraction of highly active molecules, 
as opposed to generating molecules with progressively higher activities. This observation is likely 
because the random forest classifiers in the ensemble predictor were trained on the same dataset.  

 
Figure 5: Time-lapse distribution of activity predictions overtraining. Mean predictions are marked by vertical lines. The 
model was trained for 20 epochs with 15 steps of policy gradient, 10 steps of experience replay, and 20 steps of fine-
tuning per epoch. 1,000 batches of molecules were generated every 2 epochs, and the distribution of predicted activity 
plotted. Note that the classifier with ensemble size five generates discrete predictions of fifth fractions. 
 
Experimental Validation.  

With few notable exceptions19,31, most of the current de novo design publications are purely 
computational. However, it is important to know how many computationally predicted candidates 
are experimentally validated by in vitro (at least) assays. For this test, we established the following 
screening protocol. 

The model described in the previous section was used to generate a large library of novel 
computational hits with high active class probabilities. To enable rapid testing of the computational 
models all hit molecules were parsed through the Enamine REAL database (Release 2020q1-2, 
https://enamine.net/library-synthesis/real-compounds/real-database) of 1.36B on-demand 
commercially available molecules. The Enamine REAL (readily accessible)  database is based on 
the synthesis of ultra-large chemical libraries using two- or three-step three-component reaction 



   
 

   
 

sequences and available starting materials with pre-validated (at least 80% synthesis success rate) 
chemical reactivity32. 

Seventeen computational hit molecules were matched with Enamine REAL. All of the 
predicted active compounds were derivatives of 4-anilinoquinazoline, a chemotype that was well 
represented in Enamine REAL (Table S1). The predicted active compounds contained a few small 
substituents on the quinazoline ring (positions 5–8: F, Cl, Br, OCH3) but a wide range of 
substituents on the 4-anilino group. As a negative control, we selected five molecules predicted to 
be inactive but containing the same 4-anilinoquinazoline scaffold (Table S1). The twenty three 4-
anilinoquinazoline analogs were dissolved in DMSO and sent to Reaction Biology 
(https://www.reactionbiology.com/) for EGFR enzymatic assay screening. Two compounds in the 
predicted active series were insoluble in DMSO; therefore, biological tests were not performed. 
The 4-anilinoquinazoline analogs were initially tested in single-dose duplicate mode at a 
concentration of 1 μM and percent inhibition relative to DMSO control was determined (Table 
S1). Staurosporine was used as a reference EGFR tyrosine kinase inhibitor33,34.  

 
Table 1. Data for EGFR kinase inhibiton of compounds 1-4.  

Compound Catalog ID pIC50 Structure 
Nearest neighbor 

(NN) from the 
training set 

pChEMBL 
for NN 

1 Z1192045732 7.5 
  

7.6 

2 Z1576525970 7.4 

  
7.6 

3 Z1182636554 6.7 
  

7.3 

4 Z1823625743 5.9 

  
7.3 

     
Most active from 

ChEMBL 

~10 

 
Four 4-anilinoquinazolines from the predicted hit set showed >40% inhibition of EGFR 

enzyme activity in the 1 μM single dose assay (Table S1), while all five of the negative control 
analogs were inactive. Notably, the four active compounds contained only small substituents (Br, 
NH2, CH3) at the 4' position of the 4-anilino group (Table S1) paired with halogen substitution on 



   
 

   
 

the 5, 6, or 8 positions of quinazoline core. Surprisingly, however, the 4’-fluroanilino-6-
fluroquinazoline analog was not active. Notably, all of the analogs with large linear or branched 
substituents at the 4' position were inactive in the enzyme assay. The four active compounds from 
the single-dose assay were further tested in 10-dose IC50 mode with 3-fold serial dilution starting 
at 10 μM to determine their EGFR inhibition potency. The 4-anilinoquinazolines 1 and 2 (Table 
1) were potent EGFR inhibitors with IC50 < 100nM, comparable to the potency of staurosporine 
(Table S1). The 4-anilinoquinazolines 3 was slightly less potent with an IC50 = 210 nM. The analog 
4 was the least potent with IC50 = 1.4 μM.  

Each of the active compounds 1–4 had a 3’-halogen substituted 4-anilinoquinazoline as a 
close neighbor in the training set that was reported to have a similar EGFR inhibition potency 
(Table 1). The most potent EGFR inhibitor from ChEMBL was N-(3-bromophenyl)quinazoline-
4,7-diamine (CHEMBL420624), which had activity at sub-nanomolar concentrations. Although 
all five out of the negative control compounds were inactive in the EGFR enzyme assay, it should 
be noted that they each contain large linear or branched substituents at the 4’-position of the 
aniline. Analogs with the same or similar substitution on the aniline that were selected to be active 
in the computational model were also shown to be inactive in the EGFR assay (Table S1). 

 
Summary of the study. Herein, we proposed several new improvements to the heuristics 

used to optimize properties of molecules created by generative neural networks with reinforcement 
learning and sparse rewards. Sparse rewards are commonly observed when maximizing the 
bioactivity of generated molecules for a specific target protein. Thus, classic reinforcement 
learning algorithms such as policy gradient or Q-learning are not sufficient for such tasks. In 
contrast, our proposed tweaks, i.e., fine-tuning with transfer learning, experience replay, and real-
time reward shaping, aim to extract informative feedback from the sparse reward signal and keep 
a healthy balance between exploration and exploitation. As a result of our study, we came up with 
a list of crucial points to consider when optimizing generative models with reinforcement learning.  

1. We recommend considering the sparsity of the rewards and the desired level of balance 
between exploration and exploitation when selecting the right strategy for performing 
optimization in each case. The real-time reward shaping can be helpful in a sparse 
rewards scenario while unnecessary in cases when the reward feedback is sufficient 
(such as QED or LogP optimization).  

2. The fine-tuning by transfer learning achieves a high level of exploitation, especially 
when used with known molecules. However, it will unlikely discover any chemotypes 
beyond the ones used for training.  

3. The experience replay requires a rich and diverse pool of experience trajectories. 
Otherwise, this technique may also result in over-exploitation of replay examples. 
However, it can be a powerful tool to explore the chemical space and deal with sparse 
rewards in tandem with a policy gradient.  

The optimized protocol was subject to a blind experimental validation. Out of fifteen tested 
compounds that were predicted active, four were confirmed in an EGFR enzyme assay. Two out 
of four compounds had nanomolar EGFR inhibition activity comparable to that of staurosporine. 
The overall hit rate was ~27%. Additionally, five compounds with the same scaffold as in active 



   
 

   
 

compounds but predicted as inactive were used as a negative control. All five compounds were 
confirmed as inactive. The obtained hit rate is on par with traditional virtual screening projects 
where molecule selection is guided by an expert medicinal chemist. However, in this work, we 
show that a properly trained AI model can mimic medicinal chemists' skills in the autonomous 
generation of new chemical entities (NCEs) and selection of molecules for experimental 
validation. This is a prime example of the transfer of the decision power from human experts to 
AI. Such capabilities could be an important step toward true self-driving laboratories35 and serve 
as an example of the synergy between machine and human intelligence. 

In summary, we do not think there is a current universal recipe for optimizing the properties 
of generated molecules with reinforcement learning. Each task is unique and requires thorough 
reward function engineering and hyperparameter search. However, as we have demonstrated with 
the EGFR inhibitor design example, with the right choice of the training protocol, generative 
models can be a powerful technique for automated and inexpensive de novo molecular design that 
can be executed even with limited computational and financial resources.  

 
Methods 
In this section, we describe enhancements of deep learning and reinforcement learning approaches 
used to generate molecules with desired properties. Briefly, we employ the reinforcement learning 
pipeline introduced in our prior work7 with several novel improvements to overcome the problem 
of sparse rewards. Below we will talk about each part of the pipeline, introduce our novel tricks 
and heuristics in more detail, and discuss an EGFR case study.   

Generative model.  For the generative model, we used a deep recurrent neural network with 
an augmented memory stack described in our previous work.7 This network is trained to produce 
novel molecules in the form of SMILES strings5. The network has two modes – training mode and 
inference mode. In the training mode, the model receives a SMILES string from the training set 
and tries to reconstruct it, starting from the given prefix. The model is essentially trained as a 
multiclass classifier, where classes are represented as symbols in the SMILES string alphabet. In 
the inference mode, instead of receiving prefix from the training set, the model iteratively takes its 
output as new inputs to generate the next symbol based on the previously generated ones. The 
generation stops when the network produces a unique stop token interpreted as a command to end 
generation. The model is implemented as a part of OpenChem36 
https://github.com/Mariewelt/OpenChem – an open-source deep-learning toolkit for 
computational chemistry and drug design.  

Reinforcement learning. For the method for shifting the distribution of predicted target 
activity for generated molecules, we used the policy gradient algorithm37. We adapted the problem 
to a reinforcement learning setting by treating the generative model as the policy network. In this 
formulation, the generative model predicts the probability of the next action, i.e., adding a new 
character to the SMILES string prefix. The set of actions is then limited to the SMILES alphabet. 
The set of states is then limited to all strings in the SMILES alphabet with lengths up to a specific 
limit N, where N is a hyperparameter defined by the maximum length of SMILES strings from the 

https://github.com/Mariewelt/OpenChem


   
 

   
 

training dataset. According to the policy gradient algorithm, the objective function to be 
maximized is defined as the expected reward:  

L(θ) = −�𝑟𝑟(𝑠𝑠𝑁𝑁)
𝑁𝑁

𝑖𝑖=1

⋅ γ𝑖𝑖 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑠𝑠𝑖𝑖−1;θ) , 

 
where 𝑠𝑠𝑁𝑁 is the generated SMILES string, 𝑠𝑠𝑖𝑖, 𝑖𝑖 = 1, . . . ,𝑁𝑁 is the prefix of 𝑠𝑠𝑁𝑁 of length 0 < 𝑖𝑖 < 𝑁𝑁, 
𝛾𝛾 is the discount factor, 𝑝𝑝(𝑠𝑠𝑖𝑖|𝑠𝑠𝑖𝑖−1;𝜃𝜃) is the transition probability obtained from the generative 
model, and 𝑟𝑟(𝑠𝑠𝑁𝑁) is the value of the reward function for the generated SMILES string based on 
the output of the predictive model of EGFR activity.   

Exploration and exploitation trade-off. An encounter of a molecule active against a specific 
target (e.g., EGFR) is a rare event, so the generative model may very infrequently observe 
promising molecules. Such a scenario will result in over-exploration – a situation when the model 
mostly experiences low rewards for inactive molecules and receives insufficient signal to shift the 
distribution of the generated samples. At the same time, our ultimate goal is to generate novel 
active molecules. Thus, we do not want to over-exploit information about known active molecules 
from the historical data. We address this problem by complementing the classic policy gradient 
algorithm with novel heuristics detailed below to balance exploitation and exploration while 
training the model to maximize the predicted activity of the generated molecules.  

(i) Fine-tuning by transfer learning on high-reward examples. The first algorithmic advance 
we have explored was to fine-tune the model by transfer learning using generated molecules with 
high rewards as training samples. Fine-tuning means training the model by minimizing cross-
entropy loss in the same manner as during the pretraining stage. A similar idea has already been 
introduced in the literature31. Our approach differs from previous approaches through our selection 
process for fine-tuning training samples. We used generated molecules as training samples, 
whereas the previous work uses historical data with high experimental activities. Overall, fine-
tuning by transfer-learning results in high exploitation and low exploration. With sufficient rounds 
of fine-tuning, the generative model produces molecules highly similar to those used for fine-
tuning.  Thus, training on historical data results in the exploitation of already known chemical 
scaffolds instead of discovering novel scaffolds. Such an approach could be suitable for the lead 
optimization process when the goal is to optimize molecules with a prespecified scaffold. In 
contrast, fine-tuning on generated molecules with high rewards results in the exploitation of 
scaffolds produced by the generative network and highly scored by the predictive model. 
Generated scaffolds could be novel, thus increasing their potential in drug discovery applications. 

(ii) Experience replay on high-reward molecules. Another technique that we proposed 
addresses the problem of sparse rewards while maintaining balancing the exploration-exploitation 
trade-off. To perform experience replay, we save high-reward trajectories (molecules) to the replay 
buffer. We randomly draw experience samples from the replay buffer during training and let the 
generative network follow the experience trajectory through teacher forcing38. We then calculate 
the expected reward maximization loss function and apply policy gradient updates to the 
generative network parameters. The concept of using experience replay for reinforcement learning 



   
 

   
 

is not new and has previously proven to be an effective training method in the reinforcement 
learning domain.39–41 We propose using this approach to deal with rare high-reward molecules 
while avoiding over-exploitation. Like the fine-tuning scenario, we utilize generated molecules 
with high rewards as training examples (or experiences) in the experience replay. Unlike the fine-
tuning scenario, experience replay does not directly enforce specific characters in the generated 
SMILES string. Instead, it provides feedback in the form of a high reward at the end of the replay 
episode, resulting in less exploitation.  

(iii) Real-time reward shaping. Real-time reward shaping is one more of our proposed 
advancements to train the neural network more efficiently in a situation when molecules with high 
rewards are observed rarely. The idea behind this technique is to change the reward function over 
training dynamically. We shall explain this concept using a threshold reward function and a 
predictive model returning the active class probability as an illustrative example. A molecule is 
considered active in these settings if the returned probability exceeds some threshold, such as 0.5. 
At the beginning of the training process, very few generated molecules will have such a high 
probability; instead, there often is a cohort of molecules with probabilities slightly higher than 
zero. The real-time reward shaping technique helps the model exploit molecules with non-zero 
predicted probabilities in the absence of good examples. We introduce the probability threshold 
𝑝𝑝0 to differentiate between good and bad examples in our threshold reward function: 

𝑅𝑅(𝑠𝑠) =  �
𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝, 𝑖𝑖𝑖𝑖 𝑝𝑝(𝑠𝑠) >  𝑝𝑝0,
𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛, 𝑙𝑙𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒,  

where 𝑠𝑠 is the generated molecule, 𝑝𝑝(𝑠𝑠) is the probability of active class returned by the predictive 
model, 𝑝𝑝0 is the probability threshold, 𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝 is the reward value for good examples, and 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛 is the 
reward value for bad examples. The probability threshold 𝑝𝑝0 is initialized to a small value and 
dynamically increased during training. After several iterations of training, we generate a large 
enough batch of molecules with the current model and predict active class probabilities with the 
predictive model. The threshold 𝑝𝑝0 is increased if the big enough portion of molecules has 
predicted active class probabilities bigger than the threshold's current value. In our experiments, 
we started with 𝑝𝑝0 = 0.05 and increased it by 0.05 when at least 15% out of 3000 generated 
molecules have predicted probabilities of active class greater than 𝑝𝑝0.   

Case study. The generative model was pretrained using the ChEMBL dataset23, which 
consists of approximately 2 million bioactive molecules. Notably, every molecule from ChEMBL 
has reported experimental bioactivity for at least one protein target. The pretraining step teaches 
the generative model to fit the distribution of molecules from the training data. Once pretrained, 
the generative network is used to sample new molecules from this distribution. Thus, we can 
assume that pretraining on a dataset of bioactive molecules such as ChEMBL ensures that the 
generative model will be capable of sampling bioactive-like molecules. This feature is essential to 
us since our ultimate goal is to produce active molecules to inhibit EGFR.  

Activity data and predictive model. The predictive model was trained on historical 
experimental data of activities for EGFR extracted from ChEMBL. The EGFR training dataset 
includes bioactivities extracted from ChEMBL 25 (Target ID CHEMBL203). We considered only 



   
 

   
 

pChEMBL activities with a confidence score of 8 or greater for 'binding' or 'functional' human 
EGFR assays. Replicate compounds with bioactivity differences larger than one unit on a log scale 
were excluded. For similar replicate measurements, a single representative assay value was 
selected for inclusion in the training dataset. Activity values were binarized according to the 1μM 
cutoff. Chemical data were processed using OpenEye chemistry toolkit.42 Standardizer was used 
for structure canonicalization, JChem 18.2, 2018, ChemAxon (http://www.chemaxon.com). The 
dataset was curated according to a well-known protocol43. 

For the predictive model, we used an ensemble of five random forest (RF) classifiers. For 
features, we used 2,048-bit ECFP fingerprints as implemented in RDKit (https://www.rdkit.org/). 
We trained five random forest models on a cross-validated dataset to solve a binary classification 
problem. Each model in the ensemble returns the probability of class "active" for an input 
molecule. The resulting ensemble prediction is obtained by averaging predictions of all models in 
the ensemble.  

An interesting observation about this dataset is the presence of a privileged scaffold. 
Around 50% of active molecules contain quinazoline chemotype44,45, a known hinge binder in 
kinase inhibitors46. From the crystal structures of know EGFR inhibitors, it is known that 
hydrophobic residues surround quinazoline ring. The aniline group substituted at the 4 position of 
quinazoline ring and itself quinazoline ring of drugs like gefitinib and erlotinib are bounded by the 
hydrophobic pocket47,48. With such a 4-anilinoquinazoline prevalence, we expect to see a bias in 
the predictive model's predictions towards this specific chemotype.  

Experimental validation. Compounds that emerged as computational hits were purchased 
from Enamine (https://www.enaminestore.com/) and resuspended in 100% DMSO at 10mM 
concentration. In vitro experiments were performed at Reaction Biology 
(https://www.reactionbiology.com/) using a radioactive assay based on the transfer of 33P-labelled 
phosphate from ATP to the kinase substrate49. The HotSpotSM assay utilizes a miniaturized filter 
binding, where reaction mixtures are spotted onto filter papers. Then reaction mixture binds the 
radioisotope-labeled catalytic product. Unreacted phosphate is removed via washing of the filter 
papers. All reactions were carried out at 10 μM ATP concentrations. 
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