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Abstract

In this study, a general quantitative structure-property relationship (QSPR) pro-

tocol, fragments based graph convolutional neural network (F-GCN), was developed

for atomic and inter-atomic properties predictions. We applied this novel artificial

intelligence (AI) tool in NMR chemical shifts and bond dissociation energies (BDEs)

predictions. The predicted results were comparable to experimental measurement,

while the computational cost was substantially reduced, with respect to pure density

functional theory (DFT) calculations. The two important features of F-GCN can be

summarised as: first, it could utilise different levels of molecular fragments centered at

the target chemical bonds for atomic and inter-atomic information extraction; second,

the designed architecture is also open to include additional descriptors for more accu-

rate solution of chemical environment, making itself more efficient for local properties

descriptions. And during our test, the averaged prediction error of 1H NMR chemi-

cal shifts can be as small as 0.32 ppm; and the error of C−H BDEs estimations, is

2.7 kcal/mol. Moreover, we further demonstrated the applicability of this developed

F-GCN model via several challenging structural assignments. The success of the F-

GCN in atomic and inter-atomic predictions also indicates an essential improvement

of computational chemistry with the assistance of AI tools.

Introduction

Over the past decade, artificial intelligence (AI) has become an essential component of human

life, due to its capability of performing challenging tasks. And in recent years, increasingly

more AI tools have been applied to improve the efficiency of physical and chemical re-

search; and due to them, many of the complex or computationally expensive work in atomic

simulations, kinetics, photocatalysis, adsorptions, etc, were largely facilitated.1–15 In the cur-

rent stage, with the development of high-performance graph convolutional neural networks

(GCNs), accurate yet efficient predictions of molecular properties have become feasible.16–18
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The behind reason lies in the fact that, via accurate solution of molecular graphs, the pre-

dicted properties can be accurately mapped with the chemical structures. Moreover, with

the assistance of extra quantum mechanics (QM) descriptors, which are correlated with the

atomic chemical environment, some kinds of neural networks are able to perform well on local

properties predictions.19,20 However, for molecules, the most important chemical insights are

usually reflected by the fluctuations of atomic and inter-atomic properties; unfortunately,

efficient ways of precisely solving the local environment within molecular graphs still remain

to be a challenging research gap for computational scientists. Until now, the largest hurdle

of extending the routine GCN based approaches to this kind of predictions lies in the fact

that, inside molecular graphs, it is difficult for neural network itself to actively focus on

the atomic information extraction, especially under the situation that no related descriptors

can be utilised; and thus the target atomic environment or bonding connection cannot be

differentiated effectively. To overcome this, more advanced GCN architectures are highly

needed.

In the past, many computational chemists also tend to apply quantum mechanics (QM)

methods for atomic and inter-atomic properties calculations, like NMR chemical shifts, bond

dissociation energies (BDE), vibrational frequencies, etc.21–31 And decent levels of QM the-

ory could provide comparably accurate results with respect to experimental measurement.

Unfortunately, their applications in real practice are usually limited by their high compu-

tational costs. Thus, these kinds of calculations can’t be performed in large scales. In this

study, we try to propose a novel GCN architecture, fragments based graph neural network

(F-GCN), which is able to conduct accurate atomic and inter-atomic properties predictions

with substantially less cost.

The essential feature of this proposed neural network lies in the fact that, beyond efficient

solution of the molecular graph, it could also utilise the generated fragments for refined solu-

tion of chemical environment at atomic level. To demonstrate its performance, we tested it

on NMR chemical shifts and BDEs predictions, and the obtained accuracy is at experimental
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level. To note, both the NMR chemical shift and BDE are important reference values for

challenging structural assignments, as almost all the chemical reactions are related with the

change of chemical environment, as well as the formation or breaking of chemical bonds.32–38

Accurate yet affordable predictions of these two important metrics can bring forth surprising

convenience for chemical researchers.39

Some researchers also tried to apply message passing related neural networks for these

kinds of predictions, and their models usually require extra large amount of data for training,

most of which were generated via DFT calculations.40,41 The ’intra-accuracy’ can be fully

guaranteed due to the abundant supply of training data. However, in real practice, the

actual applicability of these models are usually limited in two aspects: first, the prediction

results usually don’t match well with experimental measurements, due to the sourced errors

of DFT; secondly, it is difficult for such kinds of models to perform well on few-shot learning

cases. To overcome these hurdles, the proposed F-GCN was developed on experimental data,

and its architecture was designed to be applicable on small data sets. Moreover, its original

framework was also developed to be flexible to include more decent descriptors, like DFT

calculated items, to further enhance its performance on challenging assignments.

The architecture of F-GCN is open and applicable for various kinds of researchers; and

we believe, beyond NMR chemical shifts and BDEs, it can also be extended to other atomic

or inter-atomic properties. The work presented in this study actually indicates an essential

progress of computational chemistry with the assistance of advanced AI tools.
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Methodology

The architecture of F-GCN

Graph based neural networks have become increasingly popular for accurate predictions of

molecular properties.16–18 It could efficiently build the correlation between the molecular

structures and the target property. However, to further extend such a novel tool to atomic

and inter-atomic properties predictions, some essential modifications of the original archi-

tecture are needed.
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Figure 1: The generation and encoding of the fragmentary graphs.

In this study, we developed a novel architecture to include multi-level molecular fragments

for chemical environment solution at atomic level. The generation of fragmentary graphs

was described in Figure 1, starting from the target site, a single molecule can be transformed

into fragments along its bonding structure at different levels; and then all these fragments

can be further encoded by independent GCNs.42,43 That is to say, the target bond can be

marked more pertinently. The specific schematic of this proposed F-GCN is illustrated in
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Figure 2.

Before input to GCN, all the molecules or fragments were transformed into nodes and

edges via the modified TencentAlchemyDataset within the DGL library.44,45 Each graph

is represented by nodes and edges. The features involving the nodes are associated with

atomic descriptors; while the features of edges are corresponding to the bonds or connections

among atom pairs. Within the framework of F-GCN, fully connected molecular graph is

applied for molecules representation. That is to say, inside any molecule or fragment, all the

bonding connections among every two atoms will be recorded by distance tensors at the radial

basis function (RBF) layer. Moreover, within the whole framework, several continuous-filter

convolutions layers were also applied to further optimise the inter-atomic evolution, thus

atoms’ chemical environment can be better solved. The ith atom’s representation at l+1

layer can be expressed using the equation below:

al+1
i =

N∑
j=0

alj ◦ ωl(dij) (1)

where, ωl indicates the filter-generation, which actually maps the atoms’ representations

to the corresponding filter bank; and ◦ means element-wise multiplication. To reasonably

guarantee the optimisation efficiency and control the evolution of the filter values, a Gaussian

function, gk, is applied, the form of which is presented below:

gk(dij) = exp(−α(dij − µk)2) (2)

where, µk represents a certain value of cutoff, and dij indicates the distance between the

ith and j th atom. In this study, the value of hyper parameter α was set to 0.1.16

To make the developed F-GCN better focus on local environment solution, in the readout

stage (R-S), a summation of all fragmentary contributions, along with the routine descriptors

that are generated by RDKit,46 will be further conducted by a dense neural network unit

(more details can be seen in Figure 2). It is also worth noting that, within our frame,
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some extra yet related chemical knowledge, like QM calculated descriptors,19–22,47 can also

be incorporated freely to further augment the performance of F-GCN.

Once the predicted value P is obtained, a function of squared loss with respect to

experimental measurement P ′ is used to represent the prediction accuracy.

L(P, P ′) = (P − P ′)2 (3)

Actually, this proposed architecture is flexible for various kinds of applications. More

technical details can be found on https://github.com/jeah-z/BDE-FGCN.
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Figure 2: Illustration of the F-GCN’s workflow, designed for experimental BDEs predictions.
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Results and discussion

The overall performance of the F-GCN model in NMR chemical

shifts predictions
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Figure 3: Comparison between the predicted and experimental 1H NMR chemical shifts.
There are 997 1H chemical shifts in the original data set; all the experimental data were
taken from Refs.48,49

We applied F-GCN for predictions of 1H NMR chemical shifts, the results were pre-

sented in Figure 3. The prediction accuracy of F-GCN is comparable to other GCN based

approaches.41 It was worth noting that, compared to other architectures, F-GCN is devel-

oped for few-shot learning, thus it doesn’t require huge amount of data for model training.

Moreover, in our previous studies, we focused on combining QM descriptors with structural

information,19,20 to conduct this kind of predictions, and higher accuracy was obtained; how-

ever, running QM calculations is usually time expensive. With the introduction of F-GCN,

accurate predictions can be realised without the assistance of QM calculations, thus com-

putational cost can be substantially reduced, indicating an initial yet important step for

the application of AI tools in computational chemistry. The essential reason for the suc-

cess of F-GCN in atomic properties predictions can be attributed to its special architecture,

which starts processing molecules from target site, and then extends to the overall structure
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through multiple-level fragments. All these fragmentary graphs were encoded by indepen-

dent neural networks, thus the properties of the local site can be well emphasised within the

framework of F-GCN. Then with the assistance of atomic descriptors extracted by RDKit,

prediction accuracy can be further improved. We hope such a promising architecture can be

conveniently applied by more computational and experimental researchers to predict other

challenging properties in the future.

The overall performance of the F-GCN model in BDE predictions

We also tested the developed F-GCN via BDE predictions on various kinds of chemical

bonds; and its overall performance was presented in Figure 4 and Table 1. The mean

absolute errors (MAEs) for these listed bonds are all within a reasonable range; and the plot

of error distribution is close to a Gaussian function, indicating the systematic errors had been

well controlled with this proposed architecture. In real practice, F-GCN can be applied as

a useful quantitative structure–property relationships (QSPR) model to detect a molecule’s

weakest bond, and further identify the possible reactive site for experimental researchers.

Furthermore, to conduct a systematic benchmark with another popular approach on BDE

predictions, we also loaded the ALFABET model, trained by John et al on 290,664 DFT

calculated BDEs of single bonds.40 Our proposed F-GCN model shows a higher accuracy

and applicability on 2800s experimental BDEs predictions; and it was also proved to be

superior in few-shot learning. The essential reason lies in the fact that there do exist sourced

deviations between DFT calculations and experimental values, and such kinds of errors can

not be easily eliminated via purely improving the DFT methods. That said using DFT

calculated data for training is not sufficient for GCN based approaches to reach the accuracy

of experimental level; and moreover, some sourced errors of DFT calculations, like the ones

caused by relativistic effects,50 may be introduced to the model. Therefore, to make the

developed model experimentally meaningful, we propose that applying experimental data

for training is more suitable in the case of BDEs predictions.
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However, we also need to point out that, for some compounds in the test set, the larger

deviations between their predicted and experimental BDEs are mainly caused by the lower

molecular diversity of the training set. And, to overcome this, further enriching the original

data set via covering more kinds of molecular structures will be helpful.

Figure 4: (a). Comparison between the predicted and experimental BDEs of the test set;
(b). Distributions of errors between the predicted and experimental BDEs.

Table 1: The mean absolute errors (MAEs, in kcal/mol) for different kinds of predicted
BDEs with respect to experimental values.

Bondsa) F-GCNb) ALFABETc)

C-C 4.45 5.85
C-H 2.71 3.07
O-H 2.47 4.13
C-X (X=N,O) 3.58 4.33
N-H 3.01 4.03
C-S 4.16 N/A
C-X (X=F,Cl,Br) 5.87 N/A

a) The experimental BDE data were obtained from iBond 2.0 databank.51 In total, 2400s
bonds were applied to develop the F-GCN model, among them 90% were used as the
training set, and the remaining 10% as the test set; b) The MAEs of the developed F-GCN
model on the test set; c) The MAEs of the ALFABET model by John et al,40 on the test set;

To further demonstrate the high capability of F-GCN in processing the fragmentary

graphs, we presented the encoding results of a test set (see Figure 5, and more details of

the applied molecules can be found in supporting information). From Figure 5a, we can see
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that F-GCN can successfully encode all the test bonds with distinguishable values among

different levels of fragments. And moreover, in Figure 5b, we took C−C bonds for instance,

and found that F-GCN also showed high performance in recognising the specific chemical

environment of C−C bonds in various kinds of molecules. Therefore, we could reasonably

conclude that F-GCN is a powerful tool for bonds differentiation, and will also be useful for

atomic and inter-atomic properties predictions.

Figure 5: (a). Encoding of various kinds of chemical bonds by F-GCN at multi-level frag-
ments; (b). Encoding of different C−C bonds by F-GCN at multi-level fragments.

Accurate estimations of phenol O−H BDEs

Phenol based inhibitors have been proved useful for the retardation of polymer oxidation;

and theO−H bonds tend to be attacked by peroxyl radicals, thus the corresponding dis-

sociation energy is an important index to characterise the performance of the inhibitor.52

Unfortunately, there are only a few reference O−H BDE values for synthesis researchers to

use, and the experimental measurement of this kind of BDEs via kinetic analysis is usually

time-consuming. With F-GCN, accurate estimations of phenol O−H BDEs can be essentially

facilitated and fastened. In Figure 6 and 7, we presented the predicted and experimental

O−H BDEs for several classic phenol compounds; and the errors are all within a small range,

indicating that F-GCN is a reliable tool for this kind of characterisations. To note, for O−H
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or other hydrogen involved bonds, F-GCN is especially accurate; and the chemical environ-

ment of this kinds of bonds is relatively simpler, due to the fact that, hydrogen atom can

only be bound with one atom.

Figure 6: The structures of the selected molecules with phenol O−H bonds.

Figure 7: Comparison between the predicted and experimental BDEs (in kcal/mol) of the
selected phenol O−H bonds listed in Figure 6.
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Assisting in stereoselectivity analysis of functional C−H bonds

To further demonstrate the applicability of F-GCN, we tested its performance on a series of

organic compounds with more complex structures, which are used for methodology devel-

opment of site-selective C−H functionalizations.53–57 The specific reaction was described in

Figure 8.

Figure 8: The structures of the selected molecules with functional C−H and C−C bonds.

Accurate predictions of the BDEs of the target C−H and C−C bonds with affordable cost

will undoubtedly bring valuable chemical insights for synthesis researchers. We applied the

developed model to predict the BDEs of the C−H and C−C bonds, the results were shown

in Figure 8 and 9. We can see that the prediction accuracy of F-GCN is close to the level of

DFT calculation, and the corresponding computational cost is essentially reduced, indicating

the high reliability and convenience of our proposed approach for this kind of structural

assignments. With such a useful tool, the development of high throughput screening (HTS)

technology can be further prompted, as accurate estimations of various bonding energies can
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Figure 9: Comparison between the predicted and DFT calculated BDEs (in kcal/mol) of the
selected C−H and C−C bonds listed in Figure 8; all the DFT calculations were performed
at M062X/def2-TZVP within G09.

be realised in batches; and therefore, the actual feasibility of synthesis routes can be well

assessed beforehand. We hope in the future, more stereoselectivity analysis work could be

significantly facilitated with the assistance of F-GCN.

Conclusion

To sum up, with the proposed F-GCN, accurate predictions of atomic and inter-atomic prop-

erties, like NMR chemical shifts, BDEs, etc, become available. Moreover, its performance

can be further enhanced via inclusion of more advanced descriptors that are helpful to refine

the solution of atomic environment. The applicability of this novel F-GCN was also tested

by independent structural assignments. The work provided in this study actually indicates

a promising prospect for artificial intelligence (AI) technologies in chemical research. How-

ever, to note, further optimisation of the original architecture of F-GCN still remains to be

a goal; and in the near future, we hope to expand this proposed approach to other areas,

and provide more valuable chemical insights.
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