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ABSTRACT 
Humans are exposed to thousands of potentially toxic chemicals including environmental chemicals. 

Approximately 300,000 such chemicals are currently in use, unfortunately little is known about their 

potential toxicity. Determining human toxicity potential of chemicals remains a challenge due to a 

substantial resource required to assess a chemical in-vivo, and only a few thousand single chemicals in 

commercial use has been evaluated. In this study, to predict the environmental chemical toxicity, we 

developed a new hybrid neural network (HNN) deep learning model consisting of a Convolutional Neural 

Network (CNN) and multilayer perceptron (MLP) type feed forward neural network (FFNN). We 

developed several deep learning binary and multiclass categorical toxicity models on the thousands of 

datasets obtained from US NLM ChemIDplus, Toxin Target database (T3DB), and Environment 

Protection Agency (EPA). The performance of our HNN deep learning models was compared with models 

developed using other machine learning methods including Random Forest (RF), Bootstrap Aggregation 

(Bagging), and Adaptive Boosting (AdaBoost). We analyzed the machine learning model performance 

dependency on the varying features and dataset size. Compared to other methods, our HNN deep 

learning model trained on 22,000 chemicals with known acute toxicity (LD50), maintained its predictive 

ability even after reducing the descriptor size from 318 to 51. The average accuracy was 84.96% and 

84.11% and the average AUC were 0.897 and 0.887 for HNN models based on 318 and 51 descriptors 

respectively. To our knowledge this study is the first to report a large-scale prediction of environmental 

chemical toxicity. Our hybrid HNN deep learning models can be used in predicting chemical toxicity with 

high accuracy for a diverse set of chemicals, has a wide applicability in the prediction of chemical toxicity 

and its mixtures, and greatly minimize the need for costly and unethical animal-based toxicity predictions.  
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INTRODUCTION 
Humans are exposed to thousands of potentially toxic chemicals including environmental chemicals such 

as industrial wastes, food products, solvents, air pollutants, fertilizers, pesticides, insecticides, 

carcinogens, drugs, metals/metalloids, and other industrial chemicals. Factors affecting the degree of 

toxicity are route of exposure (oral, dermal, inhalation and injection), duration of exposure, dose of 

chemical, age, gender and health condition. The conventional in vivo and in vitro tests for finding the 

toxicity of large number of chemicals are expensive in terms of both time and money. In this context, in 

silico toxicity prediction for chemical substances are gaining popularity as a quicker and an inexpensive 

alternative that also eliminates the need for further animal testing which is controversial due to ethical 

concerns.  

Computational models are developed upon using different machine learning algorithms for various 

toxicity endpoints1,2. Toxicity predictions could be quantitative3, predicting the quantity of chemical 

required for the adverse outcome or qualitative, predicting binary endpoint (such as whether the chemical 

is toxic or nontoxic) or ordinary, predicting the categorical endpoint (such as high, moderate, and low). 

To predict oral acute toxicity (LD50), regression models are developed with a confined applicability 

domain to improve prediction accuracy1,4. Chavan et al. used k-Nearest Neighbor (KNN) method to 

predict the acute toxicity of chemicals with 79.17% accuracy5. Cherkasov et al. predicted the antibacterial 

activity of chemicals with 93% accuracy using the Artificial Neural Network (ANN) method for Quantitative 

Structure-Activity Relationship (QSAR) model6. Zhang et al. reported 70% accuracy on binary models for 

predicting chemical carcinogenicity using ensemble of Support Vector Machine (SVM), Random Forest 

(RF), and Extreme Gradient Boosting (XGBoost) machine learning methods7. Tanabe et al. reported an 

average accuracy of 70% using SVM modeling and improved the accuracy to 80% by developing models 

on the chemical subgroups based on their structure8. Li et al. developed multiclassification models using 

SVM, RF, decision tree, k Nearest Neighbor (kNN), and Naïve Bayes for predicting the categorical toxicity 

of chemicals with overall accuracy ranging from 42% to 83% and from 25.1% to 89.9% for external 

validation set I and II respectively9.   

Deep neural network (DNN) architecture is the ANN with more than one hidden layer, has been 

successfully applied in many areas including speech recognition10  and image recognition11.  

Convolutional Neural Network (CNN) is a class of deep neural network more suitable for image 

processing tasks such as visual data recognition12.  The strength of DNN has been demonstrated in 

toxicity prediction by Mayr et al, the winning team of the Tox21 challenge13  by achieving AUCs between 

0.79 to 0.94 for different cell-based assay training data set. Dahl et al, the winning team of the QSAR 

competition sponsored by Merck also used DNN for compound activity prediction14. Beside the 

competitions, deep learning has also been used in the image-based toxicity prediction15,16, drug-induced 



liver injury prediction17. Deep learning based multiclass model developed by Xu et al. predicted with 

accuracy of 95.5% and 96.3% on test sets I and II respectively2. DNN performs better with larger 

datasets18. The more dimensions or diversification in the model is desired, larger the dataset is required 

for training otherwise results in overfitting. The success of deep learning proves that it has a great 

potential in the field of toxicity prediction if significantly large dataset can be obtained to train the model. 

Thus, need of a highly reliable model to predict toxicity for a diverse chemical can be contented with the 

application of deep learning methods.  

To harness the potential of deep learning method in the field of toxicity prediction, in this study, we have 

developed various DNN based hybrid neural network (HNN) models consisting of a CNN and a feed-

forward neural network (FFNN) for toxicity prediction. We constructed hybrid HNN models with a large 

chemical domain coverage based on the input training data set obtained from ChemIDplus, Toxin and 

Toxin Target Database (T3DB), and Environmental Protection Agency (EPA). We have developed 

models on the dataset of various sizes and tested the effect of increasing the dataset size with varying 

descriptors. The performance of the deep learning HNN model was compared with other machine 

learning algorithms including Random Forest (RF), Bootstrap Aggregation (Bagging), and Adaptive 

Boosting (AdaBoost). The effects of dataset size and class imbalance on the prediction capability of the 

deep learning model were studied. The HNN model developed on the ChemIDplus data presented the 

best predictive performance in comparison to the models developed on a smaller dataset. The HNN 

models can be used in predicting chemical toxicity with high accuracy for a diverse set of chemicals. This 

will greatly minimize the need for costly and unethical animal-based toxicity predictions.  

 

MATERIALS AND METHODS 
Training and Test Data set and Feature attributes calculations.  HNN models were developed on 

various types of data set collected from different number of samples, attributes, and sources. We obtained 

datasets from the following sources: i) ChemIDplus, ii) Toxin and Toxin Target database (T3DB), iii) 

Environmental Protection Agency (EPA) and iv) Tox21 Challenge. Separate models were developed on 

these datasets and their prediction capability was assessed. The T3DB, and National Toxicology 

Program (NTP) data sets were used as external validation set to test the predictive ability of the models. 

 

1) ChemIDplus Data Set   

CAS registry numbers (CASRN) were obtained from the ChemIDplus database at 

ftp://ftp.nlm.nih.gov/nlmdata/.chemidlease/. These CASRN were used to retrieve the LD50 data from the 

ChemIDplus available online using openStream() method of URL class in the Java’s java.net package. 

Total of 386,620 chemicals with CASRN were retrieved. Only 92,322 chemicals annotated with LD50 

ftp://ftp.nlm.nih.gov/nlmdata/.chemidlease/


values, SMILES and other physico-chemical properties were used. The structconvert utility in 

Schrodinger software was used to convert the SMILES of the 92,322 chemicals to 2D structures in .sdf 

format. We filtered the chemicals further by removing metal containing compounds and obtained a final 

set of 59,373 chemicals. 3D minimization application in Schrodinger’s Canvas module was used to 

convert the 2D structures to .sdf file containing 3D structures. We calculated 51 physicochemical property 

descriptors for 59,373 chemicals using QikProp application in the Schrodinger suite.  
 

Data set 1a) IP/IV/Subcutaneous/Oral- All animals:  Out of 59,373 chemicals, 55,856 chemicals were 

annotated with LD50 values obtained for all animals treated via IP, IV, subcutaneous and oral route of 

exposure. We annotated 26,923 as nontoxic and 28,933 as toxic chemicals based on the toxic-nontoxic 

cutoff set at LD50 value of 500 mg/kg. Randomly selected 5,000 chemicals were used as a test set while 

the remaining chemicals were used as a training set during each prediction.  
 

Data set 1b) Oral- Rat/Mouse: Out of 59,373 chemicals, 22,808 chemicals with LD50 values were 

obtained by filtering rat and mouse species via oral route of exposure. We calculated 31 ADMET 

(absorption, distribution, metabolism, excretion and toxicity) properties for the 22,792 chemicals using 

ADMETlab platform19. Additionally, 12 physicochemical properties, 224 topological properties and 155 

MACCS fingerprints were calculated using the Canvas application of Schrodinger suite. Total of 318 

descriptors and 155 fingerprints were calculated for 22,792 chemicals. We then annotated 16,311 

chemicals as non-toxic and 6,481 as toxic. Randomly selected 4,500 chemicals were used as the test 

set while the remaining chemicals as the training set for each prediction. We used the Toxin and Toxin 

Target database (T3DB) data set of 636 rat and mouse oral dataset as an external test set to validate 

the model based on the ChemIDplus dataset.  
 

2)  National Toxicology Program Data set 

We used the predictive toxicity models project data set provided by the National Toxicology Program20  

as external validation set. This dataset consisted of LD50 values for rat acute oral toxicity and were 

classified as toxic if LD50 values were >500 mg/kg. We calculated 51 property descriptors using QikProp.   
 

NTP data as external validation set for ChemIDplus Oral Rat/Mouse data: The duplicate chemicals in 

NTP data that also existed in the Oral dataset from ChemIDplus (described in section 1b) were removed 

and the final list of 1703 chemicals was obtained as the external validation set. The 1703 chemicals were 

used as external validation set for the models built on Oral ChemIDplus training set with 51 QikProp 

descriptors.    

 



NTP as external validation set for ChemIDplus IP/IV/Sub/Oral data: The duplicate chemicals in NTP data 

that also existed in the IP/IV/Sub/Oral dataset from ChemIDplus (described in section 1a) were removed 

and the final list of 1648 chemicals was obtained as the external validation set. The 1648 chemicals were 

used as the external validation set for the models built on IP/IV/Sub/Oral ChemIDplus training set with 

51 QikProp descriptors. 
 

3) Toxin and Toxin Target database (T3DB) data set.   

The toxins data with 3,673 chemicals was curated from the T3DB database21. 778 chemicals matched in 

the 62 descriptors file from our local dataset (Supplementary Table S1).  
 

3a) Oral data: 687 chemicals with 62 descriptors were separated as Oral data.  

3b) IP/IV/Sub/Oral data: 752 chemicals were separated as IP/IV/Subcutaneous/Oral data. 
 

Binary Classification Models: Data set were annotated with toxicity classification at various LD50 cutoffs 

(250 mg/kg, 500 mg/kg, 750 mg/kg, and 1000 mg/kg) to determine the chemical toxicity and compare the 

impact of various cutoffs and resulting class imbalance on the predictive performance of the models. 
 

Multiclass Classification Models: 687 Oral data in 3a were also classified into 4 categories: a) LD50 < 50 

mg/kg, b) 50 mg/kg ≤ LD50 < 500 mg/kg, c) 500 ≤ LD50 < 1000, and d) LD50 ≥ 100 to determine the 

categorical toxicity of the chemicals.  
 

T3DB data as external validation set for ChemIDplus Oral Rat/Mouse data: The duplicate chemicals in 

T3DB data (3a) that also existed in the Oral dataset from ChemIDplus (described in section 1b) were 

removed and the final list of 636 chemicals was obtained as the external validation set. Data set were 

annotated with toxicity classification at LD50 cutoff set at 500 mg/kg. Total of 318 descriptors and 155 

fingerprints (as described for dataset in section 1b) were calculated and the data were used as external 

validation set for the models built on Oral ChemIDplus training set described in section 1b. 
 

4)  Animal Toxicity Data from EPA. 

The animal toxicity data of 980 chemicals was downloaded from EPA’s website. The lowest effect level 

(lel) dose of the chemicals was considered for determining the toxicity. Various threshold values for 

toxicity considered were 250 mg/kg, 500 mg/kg, 750 mg/kg, and 1000 mg/kg.   

 

5) Tox21 Challenge Data set. 

Tox21 Challenge dataset of 12 different assays and their corresponding 801 descriptors were obtained 

from the online resource (http://bioinf.jku.at/research/DeepTox/tox21.html) of Mayr et al., the winning 

team of the Tox21 challenge13.  



SMILES Preprocessing. 
SMILES were used as one of the key chemical attributes and is used in our hybrid deep learning model. 

Raw texts cannot be directly used as an input for the deep learning models but should be encoded as 

numbers. The entire list of SMILES strings was first fit onto the tokenizer to create a dictionary of the set 

of all the possible characters in the SMILES string and their corresponding index. We assumed that a 

dictionary D is created where, D = {'C': 1, '=': 2, '(': 3, ')': 4, '#': 5, 'N': 6, … , ' ': M }. This results in every 

character in the SMILES string being assigned a unique integer value which is the index of the character 

in the dictionary. The SMILES entry for every chemical is then converted to one-hot encoded 2-D matrix.  

As an example, acrylonitrile-d3 with SMILES string C=CC#N is one-hot encoded as: 
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A 3-D matrix of size K x L x M is obtained eventually where K is the number of chemicals, L is the 

maximum length of the SMILES string, and M is the number of all possible characters in the SMILES 

string from K chemicals (number of entries in the created dictionary). One-hot encoding means converting 

the integer value of each character in the SMILES to its equivalent binary vector of length M.  

 
The Hybrid Neural Network Model 
The Hybrid Neural Network (HNN) model is developed in python using the Keras API with Tensorflow in 

the backend. The model consists of a Convolutional Neural Network (CNN) for deep learning on the basis 

of structure attribute (SMILES) and multilayer perceptron (MLP) type feed forward neural network (FFNN) 

for learning on the basis of remaining attributes of the chemicals (Figure 1). Basic layers of a CNN include 

are convolutional layer, non-linearity layer, pooling or sub sampling layer and fully-connected layer. 

Convolution layer learns and extracts features from the input array computing dot product between the 

weights and a small region of the input matrix. The weights are represented by a matrix, called kernel or 

filter, smaller in size than the input matrix. In order to represent the real-world data, non-linearity layer 

applies one of the various available activation functions such as Rectified Linear Unit (ReLU), sigmoid 

and tanh to introduce non-linearity in the model. Activation function ReLU represented mathematically as 

max(0, x) is used in the model that replaces all the negative values with zeros. The derivative of ReLU is 

always 1 for positive input that counteracts the vanishing gradient problem during the backpropagation. 

Pooling or sub sampling reduces the dimension of the data while retaining the important information in 

the data. Max pooling is used in the model for sub sampling. Fully connected layer does the final 



classification implementing softmax activation function in case of multiclass classification and sigmoid 

activation function in case of binary classification. In fully connected layer, every neuron in the current 

layer is connected to every neuron in the previous layer. A multilayer perceptron (MLP) type feed forward 

neural network (FFNN) contains one or more hidden layers. The 3-D array of one-hot encoded SMILES 

strings was the input for the CNN 

and chemical descriptors was the 

input for the FFNN. The output of 

the pooling layer of the CNN was 

merged with the final fully 

connected layer of FFNN to 

perform the classification task.      
 

Parameter Tuning.  
We implemented Hyperparameter 

tuning to improve the performance 

of the model. Hyperopt package 

from python that uses Tree-

structured Parzen Estimator 

(TPE) method was used for 

hyperparameter optimization. 

This approach requires defining the objective function that fmin() function minimizes, the parameter space 

over which the search is performed and the number of experiments to run. The Area Under the receiver 

operating characteristic Curve (AUC) was the metric used for evaluating the performance of each model. 

Class imbalance is a common problem while modeling toxicity data and AUC is a better metric to be 

optimized than accuracy. 
 

Other Machine Learning Algorithms 
To test performance of the HNN model, and to create an ensemble model, we developed number of other 

machine learning models based on the other machine learning algorithms such as Random Forest, 

Bootstrap Aggregation (Bagging) using Bagged Decision Tree, and Adaptive Boosting (AdaBoost).  

Ensemble Model 
To optimize performance of the model, ensemble of model predictions is considered a good option. 

Random Forest, Bagging method and Adaboost were used for making ensemble predictions to boost the 

overall performance of the HNN.  The ensemble method derived by Mayr et. al.13  for calculating 

Figure 1: Schematic diagram of the Hybrid Neural Network 
(HNN) consisting of Convolutional Neural Network (CNN) and 
Feed Forward Neural Network (FFNN).  L, length of the SMILES 
string; M, ; N, number of filters (possibly different at each layer).  



ensemble probabilities was used in making the final prediction from the ensemble model 

[Supplementary Equation S1]. 

 
Model Performance Evaluation 
All the results presented are the average of 10 simulation run repeats for ChemIDplus data, 30 simulation 

repeats for T3DB data, and Tox21 Challenge data. 20% of the data set were separated randomly each 

time as the test set, remaining data were used as the training set which is similar to 10-fold cross 

validation except that the test sets were randomly selected each time. The performance of each model 

was evaluated based on the accuracy, and the Area Under the receiver operating characteristic Curve 

(AUC). The AUC gives the probability of positive outcome being ranked before the negative outcome and 

is a better metric for evaluating a binary classifier than accuracy22,23. The models were also evaluated for 

the sensitivity, specificity and precision [Supplementary Equation S2].  

 

The overall workflow presented in this paper is shown in Supplementary Figure S1. Data from various 

databases were downloaded, processed to select them based on their route of exposure and determine 

whether they are toxic or non toxic based on the experimental data. Their molecular descriptors along 

with their SMILES strings are computed and the hybrid neural network models are developed to make 

the predictions. Other machine learning algorithms Random Forest, Bagging method and Adaboost were 

used for comparisons and ensemble predictions to improve overall performance of the HNN.  

 

RESULTS AND DISCUSSION 
 

We developed a new hybrid HNN model by combining the CNN and FFNN. To examine and compare 

performance of the HNN model, several other machine learning models were developed. To test the 

dependency and performance variations of the neural network models, we also used various training 

data set sizes, descriptors and fingerprints. We first developed various machine learning based binary 

classification models to predict chemical toxicity. To predict the degree of toxicity (categorical) of these 

chemicals, we also developed multiclass classification models and classified the chemicals into different 

categories based on their toxicity level and the results are presented in later section.   



Toxicity Prediction using Binary Classification.  
ChemIDplus Data Predictive Toxicity Analysis (Oral Toxicity: rat and mouse).  Our goal is to build 

highly generalized model with high predicting capability. Larger data size is proven to be helpful in 

improving accuracy in many scenarios of machine learning such as overfitting models with high 

variance24.  We collected the largest chemicals dataset associated with experimentally determined LD50 

from the ChemIDplus online server. The 318 descriptors and 155 MACCS fingerprints were calculated 

for 22,792 chemicals and the predictive models were developed with a toxicity threshold set at LD50 

value 500 mg/kg. For the HNN, the FFNN 

was developed based on the 318 

descriptors and two CNNs were 

developed based on the 155 fingerprints 

and SMILES string separately. 

Independently, the RF, Bag, and Ada 

models were developed based on the 

318 descriptors. The models based on 

the HNN, RF and Bag exhibit similar 

accuracy and AUC whereas the HNN 

model sensitivity to correctly identify the 

positives i.e.  the toxic chemicals, was 

significantly higher compare to other 

models (Figure 2). The ensemble model 

improved the performance of the model by providing high accuracy of 86.50% and AUC of 91.65%. 
  

The prediction accuracy achieved with a qualitative binary toxicity prediction model by Sharma et al25. 

was 93%. In their model, the training set consisted of the chemicals obtained from the T3DB database 

as positive dataset and human metabolites as negative dataset.  Such high accuracy achieved is likely 

because of different type of compounds in the toxic and non-toxic group since compounds in T3DB 

database were compositionally distinct from the metabolites as revealed by their compositional analysis. 

The toxic and non-toxic compounds in our dataset were obtained from the same source and represent 

the real-life chemicals. Thus, our model is more generalized with diverse set of chemicals in both the 

toxic and non-toxic groups. 
 

To investigate the effect of descriptors and SMILES on the performance, models were developed with 51 

Schrodinger QikProp descriptors (instead of 318 descriptors) for RF, Bagging, and Ada and HNN in 

addition to the SMILES for the CNN (but no fingerprints). With many descriptors missing such as ADMET 

Figure 2. A) Accuracy percentage, B) AUC, C) Sensitivity, 
and D) Specificity for the ChemIDplus Oral data as given by 
HNN, RF, Bagging, AdaBoost and the Ensemble methods 
with additional descriptors from ADMETlab and Canvas. 
 



properties, the accuracy and the AUC of RF, Bagging, and Ada are reduced significantly (Table 1). This 

means that the absence of 277 descriptors, play a significant role in the prediction. But the performance 

of the HNN model was not affected 

significantly. This may be due to the HNN is 

using additional SMILES as input feature that 

enriched the model to learn based on the 

structure of the compound and enabled the 

model to compensate for the missing 

descriptors in the toxicity prediction.  
 

Validation of the ChemIDplus Oral data models.   
To ensure the prediction accuracy of the models developed on the ChemIDplus dataset, performance of 

the models was evaluated by making predictions for external data that was not used to develop the 

models. The models were tested on the T3DB and NTP dataset as the external validation dataset. 
 

A) T3DB data as external validation set 
The common chemicals present in both the T3DB and the ChemIDplus datasets were removed from the 

ChemIDplus dataset but not from the validation set so that we have significant number of chemicals to 

perform the model validation test. The training set included 22,438 rat and mouse oral toxicity data from 

ChemIDplus whereas the test set included 636 rat and mouse oral toxicity data from T3DB were used for 

the validation of the model. The models predicted with an average accuracy of 76.94%, 75.69%, 72.76%, 

74.37%, and 75.28% and the average AUC of 0.833, 0.815, 0.794, 0.808, and 0.842 for the HNN, RF, 

Bag, Ada, and Ensemble respectively (Supplementary Figure S3). These results showed that the 

models can make predictions for the external dataset with high accuracy and AUC which proves their 

predictive ability. The HNN model displayed the best average performance here in terms of accuracy, 

AUC, and sensitivity. The sensitivity of the HNN model was significantly higher than other models which 

proves the better ability of the model to correctly identify the toxic chemicals. The ensemble method 

predicted the toxicity of external validation set with an accuracy of 75.28% and AUC of 0.842. 
 

B)  NTP data as external validation set 
We next used the NTP dataset as the external validation dataset. Models were developed with 51 

QikProp descriptors. For the external validation dataset consisting of rat acute oral toxicity, the models 

predicted with an average accuracy percentage of 73.29, 75.23, 75.39, 69.82 and 75.44 for the HNN, 

RF, Bagging, AdaBoost and Ensemble respectively (Supplementary Figure S4). The average AUCs of 

the models were 0.766, 0.783, 0.779, 0.705 and 0.789. The training set is a mix of the rat and mice data 

but the validation set comprises of the rat data only. Thus, the training set is not very specific with rat 

Table 1. Accuracy % and AUC for the ChemIDplus 
oral data with 51 descriptors and 318 descriptors. 

  No of Desc HNN RF Bag Ada 
Accuracy % 318 84.96 84.94 85.62 82.53 

  51 84.11 82.07 82.05 76.24 

AUC 318 0.897 0.901 0.902 0.862 

  51 0.887 0.865 0.861 0.765 

 



LD50 values which could be the reason for decrease in the performance of these models. Taken together, 

the two external validation sets (T3DB and NTP) results demonstrate the robust toxicity predicting 

capability of these models. 
 

ChemIDplus Data Predictive Toxicity Analysis (IP/IV/Subcutaneous/Oral toxicity: all animals/birds).  

Extending the domain of the data enhances the applicability of the model. Thus, we sought to apply our 

models to a more generalized larger data set. 

The LD50 data for all animals/birds obtained 

via IP/IV/Subcutaneous/Oral route of 

exposure were selected from the ChemIDplus 

data. Molecular descriptors were calculated 

using Schrodinger QikProp tool for 55,856 

chemicals. 

The predictive performance of the model 

developed on this more generalized large 

dataset when compared to the models 

developed on oral data for rat and mouse 

only, the accuracy decreased from 84.96% 

(Figure 2) to 78.43% (Figure 3) for HNN but 

the decrease in AUC was very small (from 0.887 to 0.866) which means the model still has the similar 

ability of ranking the toxic chemicals higher than the nontoxic chemicals. The new model’s sensitivity 

increased from 0.677 to 0.784 whereas specificity decreased from 0.917 to 0.784.  
 

Validation of the ChemIDPlus IP/IV/Sub/Oral data models.  
The prediction capability of the models was evaluated on the NTP data as external validation dataset. 

For the validation set, the models predicted with AUC 0.72 (Supplementary Figure S6). The reason for 

the poor performance of the models with external validation set compare to test set, because the training 

and the test set comprises of all animals, birds data whereas the validation data comprises of rat only.  
 

T3DB dataset predictive toxicity analysis via Oral route of exposure. The T3DB toxin data were 

processed and annotated with the LD50 values. The data set obtained by chemical administration via 

only oral route of exposure were separated. This dataset includes 687 chemicals with 62 descriptors 

were computed (data 3a of Data Section in Materials and Methods).  Models were developed on these 

toxins data using 250 mg/kg, 500 mg/kg, 750 mg/kg and 1000 mg/kg LD50 values as four different cutoffs. 

The average accuracy is highest when the LD50 threshold is set at 250 mg/kg whereas, the average 

Figure 3: A) Accuracy percentage, B) AUC, C) Sensitivity, 
and D) Specificity for the ChemIDplus IP/IV/Sub/Oral data 
as given by HNN, RF, Bagging, AdaBoost and the 
Ensemble methods  
 



AUC was lowest in this category (Figure 4, and 5). This is due to higher imbalance in data when the 

LD50 threshold is 250 mg/kg (ratio of 3.37:1 for NonToxic:Toxic) in comparison to those obtained for the 

LD50 threshold value higher than 250 mg/kg (ratio of 1.41:1 to 2:05 for NonToxic:Toxic). The model lost 

its ability to accurately rank toxic substances over the nontoxic which resulted in lower AUC at 250 mg/kg 

threshold. Imbalanced dataset comprises of majority of 

samples being classified into one class while very few 

samples are classified into the other class. The model 

trained on such dataset predicts the test samples as 

belonging to the majority class more often ignoring the 

minority class. If the test set also comprises of 

imbalanced data, this results in an apparently very high 

accuracy. However, the ability of the model to rank the 

samples to be predicted as 1s ie. toxic before the 

samples to be predicted as 0s ie. non-toxic decreases 

which is demonstrated by the lower AUC (Figure 9, LD50 

threshold 250 mg/kg). 

 

T3DB dataset predictive toxicity analysis via 
IP/IV/Subcutaneous/Oral route of exposure. 

To study how the data obtained for chemicals administered via various route, affect the toxicity prediction, 

the toxins data from T3DB were separated to include Intraperitoneal (IP), Intravenous (IV), Subcutaneous 

and Oral route of exposure (IPIVSubOral) data (Supplementary Table S2). The models were developed 

on the data for the combined route which included 752 chemicals with 62 descriptors (data 3b of Data 

Section in Materials and Methods). The change in toxicity determination method based on the route of 

chemical administration changed the overall toxic:nontoxic ratio of data for the four LD50 threshold 

values. Here, the category with 1000 mg/kg threshold value of LD50 has the most imbalanced data with 

ratio of 3.2:1 and the accuracy is highest with 78.96%, 80.38%, 79.73%, 74.71% and 80.64% for HNN, 

RF, Bagging, Ada and Ensemble methods respectively in this category but the AUCs are lower for the 

categories with 1000 mg/kg and 250 mg/kg thresholds (Supplementary Figure S7 and S8).  The AUCs 

are higher with 0.853, 0.855, 0.856, 0.799 and 0.866 for HNN, RF, Bagging, Ada and Ensemble at 500 

mg/kg threshold and 0.861, 0.859, 0.855, 0.796 and 0.869 for HNN, RF, Bagging, Ada and Ensemble at 

750 mg/kg threshold when the data are more balanced. 
 

Figure 4: Accuracy percentage for Toxins 
LD50 data obtained via Oral route of 
exposure with cutoffs at A) 250 mg/kg, B) 
500 mg/kg, C) 750 mg/kg and D) 1000 mg/kg 
by HNN, RF, Bagging, AdaBoost and the 
Ensemble methods. 



There is no significant change in the accuracy or the AUC of the models developed with samples from 

IP, IV and subcutaneous route of chemical administration when compared to the performance of the 

models developed on the data from oral route of exposure. The accuracy and AUC were changed in the 

ratio of toxic to non-toxic samples in both the cases (Oral and IPIVSubOral). Adding additional data (non-

oral) but from different route of chemical administration did not increase the accuracy or AUC of the model 

(Supplementary Figure 8). This is because additional non-oral route of administration data is not 

contributing any robust toxicity information to the oral-route training data set.  Further, the performance 

of a model depends on the quality of data and the class proportion (i.e. ratio of the two classes: toxic and 

non-toxic). 

 
Combined T3DB and EPA Dataset  

To investigate if achieving larger dataset by 

combining data from different sources affects the 

model’s predictive ability, the toxins data from T3DB 

with LD50 values and animal toxicity data from EPA 

with lel dose values were combined to form a single 

dataset (Supplementary Table S4). Both the 

datasets were not separated based on the route of 

chemical administration.  The 778 chemicals from 

T3DB were combined with 427 chemicals from EPA 

to obtain 1054 unique chemicals. The model from 

this combined dataset exhibited highest accuracy 

percentage when the threshold value was set at 

1,000 mg/kg. The average accuracy was 88.16%, 

88.41%, 88.02%, 85.95% and 88.51% for HNN, RF, 

Bagging, AdaBoost and ensemble methods 

respectively (Figure 6). Their AUCs were lowest 

with the values of 0.751, 0.781, 0.77, 0.701 and 0.784 respectively. Very high accuracy percentage of 

greater than 88% were achieved but with low AUC on this dataset. The accuracy percentage was lowest 

for the threshold value of 250 mg/kg. The combined dataset is highly imbalanced with ratio of 8.32 to 1 

for the threshold value of 1000 mg/kg. The AUCs were high and similar in the case of datasets with 250 

mg/kg, 500 mg/kg and 750 mg/kg whose dataset ratios of Toxic:NonToxic varied from 1.44 to 2.15.  The 

Figure 5:  AUC for Toxins LD50 data obtained 
via Oral route of exposure with cutoffs at A) 250 
mg/kg, B) 500 mg/kg, C) 750 mg/kg and D) 1000 
mg/kg by HNN, RF, Bagging, AdaBoost and the 
Ensemble methods. 



dataset with 750 mg/kg threshold (nonToxic:Toxic data ratio of 2.15:1) yielded the highest average AUC 

(approximately 0.881) when the results of all the algorithms were considered (Figure 7C). The dataset’s 

average accuracy percentage was approximately 86% (Figure 6C). These models showed that optimal 

AUC can be achieved if the class is balanced (ratio 

between 1 and 2) for smaller datasets. Highly 

imbalanced data resulted in overfitting that increases 

the accuracy apparently but the model’s ability to 

rank the toxic substances before the nontoxic 

substances reduces as shown by their 

corresponding AUC. 

 
Considering the dataset with highest average AUC 

i.e. 1000 mg/kg threshold dataset in case of T3DB 

Oral data (Figure 5D) and 750 mg/kg threshold 

dataset in case of T3DB IPIVSubOral data 

(Supplementary Figure 8C), their highest average 

AUCs are 0.858 and 0.848 with an average accuracy 

of 77% (Figure 4D and Supplementary Figure 7C). 

Increasing the data size by adding additional animal 

toxicity data from EPA increased the accuracy of the model significantly from 77% to 86% (Figure 6C) 

for the group with highest AUCs and average AUC also increased to 0.881 (Figure 7C).  The highest 

average accuracy achieved was approximately 88% with the highly imbalanced dataset for 1000 mg/kg 

threshold (Figure 6D) due to overfitting however the AUC significantly reduced to 0.75 (Figure 7D). 

Hence, augmenting the training set with additional data can increase the accuracy while maintaining the 

AUC if the dataset does not become highly imbalanced. 

  

Figure 6. Accuracy percentage for the combined 
data (Toxins data from T3DB + Animal Toxicity 
data from EPA) with cutoffs at A) 250 mg/kg, B) 
500 mg/kg, C) 750 mg/kg and D) 1000 mg/kg by 
HNN, RF, Bagging, AdaBoost and the Ensemble 
methods. 



Tox21 Challenge Dataset. 
To assess the performance of our models, the Tox21Challenge 12 different experimental assay data 

were obtained from the National Institute of Health 

database and their 801 molecular descriptors were 

obtained from the Mayr et al13. The models were 

developed using the Tox21 challenge dataset to 

predict whether the chemicals are active or not. The 

overall performance of each model was good as can 

be seen in the Table 2. The AUC of the HNN model 

were similar and sometimes even better than the RF 

and Bagging method. The AUC of the HNN model 

was comparable to the DeepTox  [winner of the Tox21 

challenge, Mayr et al. 2016] model AUC values in 

many assays in spite of not increasing the 

performance of the models with additional data. The 

ensemble method improved the accuracy and the 

AUC most of the assay data set.  

  

  AhR AR ARE AR-
LBD 

Aromatase ATAD5 ER ER-LBD HSE MMP P53 PPAR-
gamma 

A
cc

ur
ac

y 

HNN 89.1 97.8 83.2 98.2 92.4 93.7 90.8 96.7 96.6 89.6 93.1 94.7 

RF 90.4 97.9 83.5 98.3 92.8 93.9 91.9 97.1 96.5 90.5 93.3 94.7 

Bag 89.8 97.9 83.1 98.4 92.8 94.6 91.0 96.4 96.8 91.1 93.3 94.7 

Ens 90.3 97.9 83.6 98.4 92.8 93.9 91.2 97.1 96.6 90.7 93.4 94.7 

A
U

C
 

HNN .886 .783 .775 .756 .769 .782 .751 .741 .774 .917 .828 .733 

RF .895 .718 .768 .709 .772 .759 .769 .757 .767 .919 .784 .699 

Bag .897 .741 .759 .718 .761 .749 .751 .766 .776 .908 .765 .711 

Ens .905 .767 .786 .720 .788 .781 .767 .781 .792 .928 .801 .730 

Deep
Tox 

.928 .807 .840 .879 .834 .793 .810 .814 .865 .942 .862 .861 

Figure 7. AUC for the combined data (Toxins 
data from T3DB + Animal Toxicity data from 
EPA) with cutoffs at A) 250 mg/kg, B) 500 mg/kg, 
C) 750 mg/kg and D) 1000 mg/kg by HNN, RF, 
Bagging, AdaBoost and the Ensemble methods. 

Table 2. Accuracy percentage and AUC for Tox21 challenge data with 801 descriptors & SMILES 
for 12 different assays. 



Multiclass classification of T3DB oral data. 
Degree of toxicity can vary from substance to substance and these substances can be categorized based 

on their toxicity severity level. To predict the toxicity level of substances the toxins from T3DB database 

were classified into 4 categories: a) LD50 < 50 

mg/kg, b) 50 mg/kg ≤ LD50 < 500 mg/kg, c) 500 ≤ 

LD50 < 1000, and d) LD50 ≥ 1000 

(Supplementary Table S5). Multiclass 

classification models based on HNN, RF, Bagging 

and SVM algorithms were developed on the toxin 

dataset and the classes of the test data were 

predicted. The average accuracy and the 

corresponding micro AUC are shown in Figure 8. 

In multiclass classification with imbalanced 

dataset, micro averaging of any metric is preferred 

when compared to macro averaging. Micro 

averaging involves calculating the AUC by 

converting the data in multiple classes to binary 

classes in contrast to macro averaging which 

involves averaging the AUC obtained from each class by giving them equal weight. Giving equal weights 

to each class while calculating the average produces results biased towards the majority class.  
 

Class imbalance is one of the major problems encountered with toxicity data. This problem is more 

apparent in case of multiclass classification as separating chemicals into multiple categories increases 

the possibility of highly imbalanced classes with insufficient number of samples in some classes for 

training purpose. Hence, the decrease in the accuracy of the model developed on T3DB oral data in case 

of the multiclass classification is possibly due to these minority classes with smaller training set. The 

random oversampling method, a simple and competitive method when compared with other complex 

oversampling methods26, was applied to overcome the poor performance of the model caused by 

imbalanced dataset.  100 samples were randomly selected as test set and the remaining chemicals in 

classes 1, 2 and 3 were duplicated to increase the number of samples in the training set to 100, 200, and 

100 respectively drawing them randomly with replacement.   By sampling with replacement for multiclass 

classification, not just the model accuracy but their average AUC also improved significantly (Figure 8). 

Oversampling results in more data to train on in each class and improves the performance of the models.      

 

Figure 8. Accuracy percentage and AUC for the 
multiclass classification of A) Toxins Oral data and 
B) Toxins Oral data+Oversampling by HNN, RF, 
Bagging, AdaBoost and the Ensemble methods. 
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Supplementary Materials: 

 

∏ 𝑝𝑝(𝑡𝑡 = 1 |𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

∏ 𝑝𝑝(𝑡𝑡 = 1 |𝑦𝑦𝑖𝑖) + ∏ 𝑝𝑝(𝑡𝑡 = 0 |𝑦𝑦𝑖𝑖)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

 

Where, n is the number of models,𝑦𝑦𝑖𝑖 is the prediction score by the model i, 𝑝𝑝(𝑡𝑡 = 1|𝑦𝑦𝑖𝑖) is the predicted 

probability for class 1 and 𝑝𝑝(𝑡𝑡 = 0|𝑦𝑦𝑖𝑖) is the predicted probability for class 0. 

 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑦𝑦 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇
× 100 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑦𝑦(𝑡𝑡𝐴𝐴𝐴𝐴𝑆𝑆𝑝𝑝𝑡𝑡𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑡𝑡𝑆𝑆) =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁
× 100 

𝑆𝑆𝑝𝑝𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑡𝑡𝑦𝑦(𝑡𝑡𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝐴𝐴𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑡𝑡𝑆𝑆) =
𝑇𝑇𝑁𝑁

𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇
× 100 

𝑇𝑇𝐴𝐴𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
× 100 

Where, TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative.  

 

Equation S2. Equations to calculate the evaluation metrics. 

 

 

Equation S1. Equation to calculate the ensemble probability derived by Mayr et al. 

 

 



 

 

 

 

Figure S1. The overall flowchart of the data and models involved. Data from ChemIDplus, 

T3DB, EPA, NTP, and Tox21 Challenge are obtained, preprocessed, appropriate descriptors 

calculated. HNN, RF, Bagging, AdaBoost and Ensemble models are developed on data from 

ChemIDplus, T3DB, EPA, and Tox21 Challenge, toxicity predicted and the predictive 

performance of the models are evaluated using various statistical metrics. The data from NTP 

and T3DB were used as external validation set for the models developed on ChemIDplus data.   



 
 

 

 

Figure S2. Precision for the ChemIDplus Oral data as given by HNN, RF, Bagging, 
AdaBoost and the Ensemble methods with additional descriptors from ADMETlab and 
Canvas. 
 

Figure S3: A) Accuracy percentage, B) AUC, C) Sensitivity, D) Specificity and E) Precision 

for the T3DB external validation dataset by HNN, RF, Bagging, AdaBoost and the Ensemble 

to validate the models built on ChemIDplus Oral data. 



 

 

 

 

Figure S4: A) Accuracy percentage, B) AUC, C) Sensitivity, D) Specificity and E) Precision 

for the external validation dataset from NTP by HNN, RF, Bagging, AdaBoost and the 

Ensemble methods to validate the models built on ChemIDplus Oral data. 

Figure S5: Precision for the ChemIDplus IP/IV/Sub/Oral data as given by HNN, RF, Bagging, 

AdaBoost and the Ensemble methods. 

 



 
 

 

Figure S6: A) Accuracy percentage, B) AUC, C) Sensitivity, D) Specificity and E) Precision 

for the NTP external validation dataset by HNN, RF, Bagging, AdaBoost and the Ensemble 

methods to validate the models built on ChemIDplus IP/IV/Sub/Oral data. 



 
 

Figure S7: Accuracy percentage for Toxins LD50 data obtained via IP, IV, Subcutaneous 

and Oral route of exposure with cutoffs at A) 250 mg/kg, B) 500 mg/kg, C) 750 mg/kg and D) 

1000 mg/kg by HNN, RF, Bagging, AdaBoost and the Ensemble methods. 



  

 
 
  

 

 

 

Figure S8: AUC for Toxins LD50 data obtained via IP, IV, Subcutaneous and Oral route of 

exposure with cutoffs at A) 250 mg/kg, B) 500 mg/kg, C) 750 mg/kg and D) 1000 mg/kg by 

HNN, RF, Bagging, AdaBoost and the Ensemble methods. 



 

LD50 

threshold 

T3DB’s Toxins 
62 desc (778) 

Toxic Non Toxic 
<1000 632 146 

<750 404 374 

<500 363 415 

<250 285 493 

 

Table S2. Toxins data from T3DB IP/IV/Subcutaneous/Oral route of exposure. 

LD50 

threshold 

Oral IP, IV, Subcutaneous, Oral 
62 desc (687) 62 desc (752) 

Toxic Non T Toxic Non T 
<1000 285 402 573 179 

<750 262 425 345 407 

<500 225 462 307 445 

<250 157 530 238 514 

 

 

LD50 

threshold 

EPA’s Animal Toxicity 
62 desc (427) 
Toxic Non T 

<1000 418 9 

<750 418 9 

<500 412 15 

<250 404 23 

 

 

 

Table S1. Toxins data from T3DB. 

 

 

Table S3. Animal toxicity data from EPA. 

 

 



 

LD50 

threshold 

EPA’s Animal Toxicity+T3DB 
62 desc (1054) 

Toxic Non T 
<1000 941 113 

<750 720 334 

<500 687 367 

<250 623 431 

 

 

 

 
 

Table S4. Unique data after merging animal toxicity data from EPA (Table S1) and toxins data 
from T3DB (Table S3). 

Threshold (mg/kg) Class No. of Chem 
LD50<50 3 68 

50≤ LD50<500 2 157 
500≤LD50<1000 1 60 

LD50≥1000 0 402 
 

Table S5. Distribution of Toxins Oral data among the 4 classes in multiclass classification. 


