On-Demand Transformation of Carbon Dioxide into Polymers enabled by comb shaped metallic oligomer catalyst

Han Cao¹², Ruoyu Zhang¹², Zhenzhen Zhou¹², Shunjie Liu¹², Youhua Tao¹², Fosong Wang¹², and Xianhong Wang¹²*

¹ Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
² University of Science and Technology of China, Hefei, 230026, China

e-mail: xhwang@ciac.ac.cn

Abstract:

Quantitative transformation of CO₂ can greatly elevate the sustainability impact of CO₂ chemical utilization, but it is formidable due to the sluggish kinetics requiring overwhelmingly excess usage of CO₂. Here, we report an on demand CO₂ transformation by a switch polymerization method, that is, all reactants including CO₂ are fully converted without any by-product, generating tailor-made poly(ether carbonate) polyols (CO₂-polyols) whose composition and chain length exactly correspond to the feed of CO₂, epoxide and diacid. This is the first time for CO₂ as a countable monomer which is in most cases obscurely considered as “pressure condition”. Studies on the kinetics rate law and the activation parameters of key intermediates disclose that it is the multisite cooperativity from metallic oligomer catalyst that facilitates quantitative insertion of CO₂ into polymer backbone without adverse backbiting throughout the polymerization. Hence, this work not only introduces the conception of quantitative CO₂ transformation, but engineers exquisite CO₂-based polymer which is rarely achieved.

Keywords: quantitative, CO₂ transformation, CO₂-polyol, oligomer catalyst, precise catalysis

Introduction

Chemical conversion of CO₂ offers a promising avenue to valorize the waste “greenhouse” gas and deviate the reliance of chemical synthesis on fossil fuel feedstocks, thus creating a more sustainable carbon economy.¹² However, the common high pressure reaction condition results in low CO₂ conversion, leading to either the discharge of troublesome CO₂ to the atmosphere, or the cumbersome energy input CO₂ recycle. To date, only few reactions can theoretically consume CO₂ in quantitative yield, such as catalytically irrelevant mineral carbonation³ and amines to absorb CO₂ and generate carbamate.⁴ But quantitative CO₂ transformation is scarcely reported in sophisticated CO₂ catalysis such as various CO₂ reduction reactions to afford fuels and bulk chemicals,⁵,⁶ and non-redox coupling reactions for cyclic carbonate and polymer production.⁷,⁹ The product yield or the conversion of economically valuable reactants is at the center of these research fields while CO₂ conversion is neglected and hardly studied on a mole basis. In this context, we are wondering whether CO₂ could be quantitatively consumed in these advanced CO₂ chemical transformations.
Technically, quantitative transformation of CO$_2$ can be simply achieved by just feeding less. Taking the cycloaddition reaction as example, ambient pressure CO$_2$ can be fully reacted with largely excess epoxide, which obviously puts the cart before horse as the great surplus of carbon-containing compounds.10 Meanwhile, the increased conversion in CO$_2$ reaction can also diminish otherwise well-controlled selectivity and thus form undesired product distribution.11 Energy required in product separation leads to extra CO$_2$ production. Therefore, simple full consumption of CO$_2$ without strict criteria is not the objective here. Instead, what we desire to establish is a comprehensive scenario which lets all reactants serve their proper purpose. That is, an on demand CO$_2$ transformation is proposed which is different from both the lavish high-pressure reaction, and also the pursuit of absolute ambient pressure reaction (Fig. 1). The term “on demand” here refers to: 1) complete conversion of every involved reactants and 2) only one product formed. Such scenario of “make the best use of everything” renders CO$_2$ catalysis in line with the principles of green chemistry to a larger extent.12

In this work, we successfully fulfill the on demand CO$_2$ transformation by virtue of the catalytic chain-transfer polymerization of CO$_2$ and propylene oxide (PO). The reaction that generates cutting-edge CO$_2$-derived product the poly(ether carbonate) polyol,$^{13-15}$ provides a platform for our proposal from three perspectives: for reaction formula, n CO$_2$ molecules are fixed as carbonate linkage via ring-opening copolymerization (ROCOP) with equivalent POs, and ring-opening polymerization (ROP) of remained m POs form ether linkage; for mechanism, the insertion of CO$_2$ is fast and zero-order dependent in rate law,$^{16-18}$ for reaction system, the soft ether linkage and the nature of formed low-molar-mass polymer allow the full conversion without the restriction from viscosity. Notwithstanding the theoretical viability, such “on demand” CO$_2$ transformation via polyol route is challenging from catalyst. State-of-the-art CO$_2$/epoxide ROCOP catalysts, either stringently afford carbonate linkage which gives rise to solidified medium limiting full conversion,$^{19-21}$ or only exhibit activity at harsh condition inducing high proportion of CO$_2$ in the gas phase and side-reaction.$^{22-24}$ To address this issue, we adopt a comb shaped metallic oligomer catalyst CAT 1 comprising multiple functionalized Al(III) porphyrin complexes at the side chain. Owing to the unique multimetallic synergistic catalysis, CAT 1 exhibits fast and comparable ROCOP and ROP rate with unprecedented selectivity, which quantitatively converts PO and CO$_2$ into CO$_2$-polyols as the sole and only target in a switch catalysis manner (Fig. 2). This proof-of-concept study offers a fresh perspective on precisely handling CO$_2$ in reactions and also a more convincing blueprint of sophisticated CO$_2$ catalysis as a potential toolbox for future carbon reduction.
Figure 2. On demand CO₂ transformation realized in the chain-transfer polymerization of epoxide and CO₂ using a comb shaped metallic oligomer catalyst (CAT 1).

Results and discussion

Tentative attempt

The first objective of our approach is screening catalyst that enables to polymerize CO₂ and excess PO to polyols in full conversion without any by-product, i.e. on demand transformation. The by-product refers to cyclic propylene carbonate (cPC) which is often generated in PO/CO₂ ROCOP reaction. The first candidate is double metal cyanide (DMC) solid catalyst pertain to large-scale synthesis of poly(ether carbonate) polyols. However, literatures report that it often operates under high pressure (> 2MPa) and temperature (> 80°C) unable to assure full conversion of CO₂. Alternatives are discrete molecular ROCOP catalysts. Some of them are active at low and even ambient CO₂ pressure, but whether quantitative conversion is achievable has not been distinctly demonstrated. In our initial hypothesis, although these catalysts in priority alternatively copolymerize PO with CO₂, full monomer enchainment can be realized provided switch catalysis occurs from ROCOP to PO ROP in substoichiometric CO₂ feed. Thus, we initially test this hypothesis using Al(III) porphyrin complex (mono 1) by monitoring its whole kinetics profiles with 1.0 MPa CO₂ feed (substoichiometric) and comparing to those with excess CO₂ (3.5 MPa).

According to aliquot ¹H NMR analysis (Fig. 3a), the stoichiometry of CO₂ did not influence the rate since the conversion of PO was basically synchronous in the two reactions, however in sharp contrast, the reaction at 3.5 MPa only generated Ca. 3 wt% of cPC in invariant selectivity with time while the reaction at 1.0 MPa displayed two distinct stages. When CO₂ is sufficient, the selectivity towards cPC/polyol showed similar with that at high pressure. However, huge amount of cPC (24 wt%) was somehow generated in the end. It was calculated that the ratio of fixed CO₂ in polyols and cPC was 1/1.38 implying the big sacrifice towards selectivity only for the purpose of exhausting CO₂. A separate study using in situ infrared spectroscopy disclosed that at high CO₂ conversion the hypothesized switch catalysis did not occur (Fig. 3b-c). The major reaction was polyols depolymerizing to cPC via back-biting while the switch to ROP was the minority. As shown in Table S1, single-site Al(III) porphyrin catalysts were failed to our goal regardless of the
variation of substitution in the porphyrin ligand. Moreover, similar result was also observed using Co(III) salen catalyst (Table S1, Entry 5). Thus, initial attempts using common mononuclear catalysts were unsuccessful.

Figure 3. Monitoring quantitative CO$_2$ polymerization catalyzed by mononuclear complex (mono 1). a. PO conversion and cPC content in polyols, monitored by ex $situs$ aliquot 1H NMR analysis. Reaction conditions: PO/[mono 1]//PPNCI=2500/1/1& PO/SA=30 (molar ratio), 70 °C, 1.0 MPa/3.5 MPa CO$_2$ pressure. The details are listed in Fig. S2-S5. b and c. Reaction profiles monitored by in $situs$ IR and the resulting three-dimensional stack plot of the IR spectra. Profiles of the absorbance at Ca. 1800 cm$^{-1}$ corresponds to ν(C=O) from cPC. Profiles of the absorbance at Ca. 1745 cm$^{-1}$ corresponds to ν(C=O) from linear carbonate (PPC) and C=O from ester (formatted from SA) in polyols. Profiles of the absorbance at Ca. 1104 cm$^{-1}$ corresponds to ν(C=O) from ether (PPO) in polyols. Reaction condition: PO/[SA]/[mono 1]//PPNCI =2500/50/1/1& PO/SA =30 (molar ratio), 70 °C, 1.5 MPa. d. Chemical structure of mono 1.

Metallic oligomer catalyst CAT 1.

With the above results in mind, we consider that the catalyst here should enable 1) fast ROCOP and ROP processes and in $situs$ switch between them; 2) excellent protic CTA compatibility for chain-transfer; 3) permanent prevention of backbiting side-reaction. Recently, our group reported a series of metallic oligomer catalysts composed of Ca. 4-7 Al(III) porphyrin complexes at the side chain, which greatly suppressed cPC formation in the copolymerization of PO and CO$_2$ and yielded high-molar-mass poly(ether carbonate). Relatively, in the presence of 50-100 equivalent water and carboxylic acids, the published CAT 0 achieved excellent selectivity, generating CO$_2$-polylols with controllable molar mass and narrow distribution (Table S2). However, as a candidate for our task, its activity no matter for turnover frequency (TOF) or productivity needs further improvement. Like most organometallic catalysts, the molecularly well-defined active sites and tailorable structure permit an incisive mechanism-based performance optimization. In this work, several structural modifications considering the identity and number of organometallic moieties, the main chain and linker constructing the oligomer, were carried out as follows: 1) The bromide was introduced in the $meso$-position of the
porphyrin ring to modulate the Lewis acidity of the metal center.28 2) The linker between the porphyrin and the main chain was shortened to facilitate the reaction between metal-monomer and metal-chain end. 3) The number of porphyrins per chain was increased to Ca. 12 to further enlarge the multisite cooperativity (Fig. S12). Finally, CAT 1 was obtained in a four-step synthesis (Fig. S13). Its catalytic performance was distinctly outstanding. At 80 °C, TOF of 9,600 h⁻¹ was observed in CAT 1 catalyzed chain-transfer polymerization of PO and CO₂ in the presence of sebacic acid (SA), which was Ca. 40 times higher than mono 1 under the same condition (Entry 1 vs 7, Table S4). Note that for better comparison with single-site catalysts, TOF was calculated based on the substrate conversion per Al center. By raising temperature to 120 °C, TOF of 17,600 h⁻¹ was obtained within 1 h, exhibiting very competitive activity compared with the state-of-the-art organometallic CO₂ polymerization catalysts, such as Al(III) porphyrin29 and Co(III) salen11 in a bifunctional fashion, and Mg(II)/Co(II) heterodinuclear complex25. For comparison with solid catalyst, the value of productivity is also introduced, based on the production of polyols per gram of catalyst. By controlling the temperature, a productivity of 12.5 (kg polyol g⁻¹ cat.⁻¹) was achieved for 24 h (Entry 9, Table S4). As for selectivity, CAT 1 cut down the formation of cPC% below 1% at 80 °C and reduced temperature lead to even lower cPC content. Thus, compared with DMC, CAT 1 demonstrates similar or improved productivity and distinctly advanced selectivity.30,31 Hence, the cutting-edge performance of CAT 1 will support our further exploration on our unfinished work.

CAT 1 mediated quantitative CO₂ polymerization.

The results of CAT 1 mediated on demand CO₂ transformation via polyol route were shown in Table 1. For selectivity, the formation of cPC was all below 0.5 wt% indicating that the hitherto ineluctable backbiting reaction did not occur. As for conversion, final crude mixture of each run was viscous but flowable liquid rather than waxy solid as a consequence of low molar mass and carbonate ratio, facilitating the complete monomer conversion in such bulk condition. Particularly, for entry 1-12, the pressure reading of autoclave fell to minimum in the end and no CO₂ bubbles left when stirring the crude mixture. By quantitative calculation, the conversion of CO₂ all exceeded 94% (the initial CO₂ usage was recorded by mass for careful calculation). Hence, the nearly complete consumption of both monomers and the afforded polyols as the sole product demonstrated that our proposed on demand transformation was successful. Meanwhile, the above experiments with fast polymerization rate were all conducted at ppm level catalyst concentration, where the molar ratio of [Al]/[PO] was 1/50,000/ that corresponds to [CAT 1]/[PO] of Ca. 1/600,000. Such low catalyst loading minimizes the organometallic residue and further elevate the sustainability impact of this work from the perspective of green synthesis.

An equally important finding is that on demand transformation of CO₂ in turn favored the precise tuning of polyol composition. As shown in Fig. 4a, there was a good linear fit between the initial ratio of monomers and the composition of the polymer in the quantitative zone, where the carbonate ratio in polyol spaciously ranged from 6.9%-36.8%, one-to-one corresponding to initial CO₂/PO of 0.07-0.39. The threshold of quantitative zone is related to the intrinsic ROCOP/ROP selectivity of CAT 1 which is discussed later. Remarkably, this is the first time for using CO₂ as a countable monomer to produce polymers with predictable carbonate ratio in the field of CO₂ polymer chemistry. As previously reported by us, the composition of CO₂-polyols was only roughly tuned by the reaction condition since heterogeneous catalysis did not allow precise control.23,31 In comparison with another previous literature, where similar range of carbonate linkage with Table 1 here was obtained at 90 °C and 15-90 bar CO₂ pressure,14 CAT 1 produced CO₂-polyols with much lower energy input, which also coupled with the advance of purification-free towards cPC residue. Currently, CO₂-polyols with less CO₂ uptake are the drop-in solution for replacing the fully petroleum-derived polyether polyols in
the manufacturing of polyurethanes, which is a rare example for CO$_2$ catalysis already in commercial process.32 Due to the tunable composition of ether/carbonate, CO$_2$-polyol retains the traits of polyether polyol such as low viscosity and favorable glass transition temperature (T_g) as well as endows the derived polyurethane more comprehensive material property.33,34 In this unique on demand transformation, CO$_2$-consumed synthesis and CO$_2$-derived products offer mutual benefit for each other, \textit{i.e.}, a CO$_2$-polyol route can directly realize the quantitative conversion of CO$_2$, and complete conversion provides a made-to-order synthetic protocol for exquisite CO$_2$-derived polymer.

<table>
<thead>
<tr>
<th>entrya</th>
<th>CO$_2$ ini. [g]</th>
<th>CO$_2$/ POb</th>
<th>Conv. of PO [%]c</th>
<th>W_{cPC}d [%]</th>
<th>TOF [h$^{-1}]^e$</th>
<th>Carbonate [%]f</th>
<th>CO$_2$ in polyol [g]g</th>
<th>CO$_2$ fixed [%]h</th>
<th>M_nh [g/mol]</th>
<th>βh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.98</td>
<td>0.07</td>
<td>>99</td>
<td>0.2</td>
<td>2500</td>
<td>6.9</td>
<td>1.96</td>
<td>>99</td>
<td>3200</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>2.76</td>
<td>0.11</td>
<td>>99</td>
<td>0.1</td>
<td>2500</td>
<td>10.6</td>
<td>2.66</td>
<td>96.3</td>
<td>3500</td>
<td>1.10</td>
</tr>
<tr>
<td>3</td>
<td>4.05</td>
<td>0.16</td>
<td>>99</td>
<td>0.4</td>
<td>2360</td>
<td>15.6</td>
<td>3.92</td>
<td>96.8</td>
<td>3500</td>
<td>1.11</td>
</tr>
<tr>
<td>4</td>
<td>5.30</td>
<td>0.21</td>
<td>94.5</td>
<td>0.2</td>
<td>2360</td>
<td>22.0</td>
<td>5.23</td>
<td>98.7</td>
<td>3600</td>
<td>1.12</td>
</tr>
<tr>
<td>5</td>
<td>5.78</td>
<td>0.23</td>
<td>>99</td>
<td>0.1</td>
<td>2000</td>
<td>22.4</td>
<td>5.63</td>
<td>97.4</td>
<td>3600</td>
<td>1.11</td>
</tr>
<tr>
<td>6</td>
<td>6.33</td>
<td>0.25</td>
<td>98.6</td>
<td>0.2</td>
<td>1970</td>
<td>24.6</td>
<td>6.10</td>
<td>96.4</td>
<td>3600</td>
<td>1.11</td>
</tr>
<tr>
<td>7</td>
<td>7.37</td>
<td>0.29</td>
<td>>99</td>
<td>0.4</td>
<td>1670</td>
<td>28.9</td>
<td>7.27</td>
<td>98.6</td>
<td>3700</td>
<td>1.11</td>
</tr>
<tr>
<td>8i</td>
<td>7.20</td>
<td>0.29</td>
<td>>99</td>
<td>0.4</td>
<td>1670</td>
<td>27.5</td>
<td>6.92</td>
<td>96.1</td>
<td>3000</td>
<td>1.10</td>
</tr>
<tr>
<td>9j</td>
<td>7.04</td>
<td>0.28</td>
<td>>99</td>
<td>0.4</td>
<td>1670</td>
<td>27.1</td>
<td>6.82</td>
<td>96.9</td>
<td>2500</td>
<td>1.11</td>
</tr>
<tr>
<td>10k</td>
<td>7.29</td>
<td>0.29</td>
<td>>99</td>
<td>0.5</td>
<td>1670</td>
<td>28.4</td>
<td>7.14</td>
<td>97.9</td>
<td>1900</td>
<td>1.10</td>
</tr>
<tr>
<td>11</td>
<td>8.89</td>
<td>0.35</td>
<td>>99</td>
<td>0.3</td>
<td>1670</td>
<td>34.1</td>
<td>8.58</td>
<td>96.5</td>
<td>3800</td>
<td>1.12</td>
</tr>
<tr>
<td>12</td>
<td>9.81</td>
<td>0.39</td>
<td>95.6</td>
<td>0.4</td>
<td>1590</td>
<td>36.8</td>
<td>9.26</td>
<td>94.4</td>
<td>3800</td>
<td>1.11</td>
</tr>
<tr>
<td>13</td>
<td>11.72</td>
<td>0.47</td>
<td>>99</td>
<td>0.2</td>
<td>1250</td>
<td>40.2</td>
<td>10.06</td>
<td>85.8</td>
<td>4000</td>
<td>1.12</td>
</tr>
<tr>
<td>14l</td>
<td>5.89</td>
<td>0.47</td>
<td>94.8</td>
<td>0.8</td>
<td>590</td>
<td>44.9</td>
<td>5.35</td>
<td>90.8</td>
<td>3900</td>
<td>1.11</td>
</tr>
<tr>
<td>15</td>
<td>13.71</td>
<td>0.54</td>
<td>>99</td>
<td>0.4</td>
<td>1250</td>
<td>43.4</td>
<td>10.85</td>
<td>79.1</td>
<td>4000</td>
<td>1.12</td>
</tr>
</tbody>
</table>

a Polymerization reactions were run with molar ratio of [PO] : [SA] : [Al] : [PPNCl] = 50000 : 1000 : 1 : 1, at 50 °C in 40 mL PO in bulk. b Initial molar ratio. c Determined by 1H NMR analysis of crude reaction mixture. d The weight percentage of by-product cPC, determined by 1H NMR analysis. e Turnover frequency, calculated by (mol PO to polyol)/(mol Al × h). f Carbonate fraction in polyols, determined by 1H NMR analysis. g Fixation of CO$_2$ in polyols (g) = mol PO to polyol × Carbonate% × 44. h Determined by gel permeation chromatography in CH$_2$Cl$_2$ at 35 °C, calibrated with polyethylene glycol standards. i Molar ratio of [PO] : [SA] : 40. j Molar ratio of [PO] : [SA] : 32. k Molar ratio of [PO] : [SA] : 25.6. l Polymerization was run at 50 °C with molar ratio of [PO] : [SA] : [Al] : [PPNCl] = 25000 : 500 : 1 : 1, in a mixture of 20 mL PO and 20 mL CH$_2$Cl$_2$.

Table 1. Results of on demand PO/CO$_2$ polymerization catalyzed by CAT 1
Figure 4. Precisely tuning the structure of CO\textsubscript{2}-polyol in the presence of CAT 1. a. Quantitative relationship between polyol composition and the feed ratio of CO\textsubscript{2}/PO. b. Qualitative relationship between polyol composition and CO\textsubscript{2} pressure, data were collected from Entry 3, 7, 11, 13, 15 of Table 1 and Entry 1, 2, 3 of Table S6. c. Control of molar mass by the feed ratio of PO/SA. d. Invariability of selectivity and composition under different ratio of PO/SA. The data of c and d were collected from Entry 7-10 of Table 1.

The relationship between apparent CO\textsubscript{2} pressure and polyol composition was also studied. At 50 °C, 2 MPa CO\textsubscript{2} pressure relatively corresponds to CO\textsubscript{2}/PO molar ratio of 0.35, demarcating the “quantitative zone” (Fig. 4a). The pressure in Entry 13 and 15 of Ca. 2.5 MPa and 3 MPa resulted in lower CO\textsubscript{2} conversion (85.8%, 79.1%), while adding solvent can lower the viscosity of the medium and raise the solubility of CO\textsubscript{2}, facilitating increased CO\textsubscript{2} conversion (Entry 14, Table 1). In addition, higher pressure i.e. excess CO\textsubscript{2} reactions were also investigated (Table S6). CO\textsubscript{2} pressure at 5 MPa raised the carbonate linkage to 48.7%, while a further increase to 6 MPa reached the maximum at 52.1% yet with significant activity loss due to the gas expansion. Interestingly, there is a linear relationship between initial CO\textsubscript{2} pressure and carbonate ratio from 2.5 MPa to 6 MPa, which forms the “qualitative zone”. In general, in addition to quantitative prediction, the composition can also be qualitatively predicted by initial CO\textsubscript{2} pressure (Fig. 4b).

Molar mass is another important parameter of CO\textsubscript{2}-polylols. Gel permeation chromatography (GPC) analyzed molar mass and distribution were calibrated with polyethylene glycol (PEG) as standards, generally used in characterization of low-molar-mass polyols.35 As shown in Entry 7-10, Table 1, by altering the amount of SA with fixed CO\textsubscript{2}/PO ratio, a series of CO\textsubscript{2}-polylols with identical composition, molar mass in the range of 1900-3700 g/mol were delicately prepared accompanied by invariant cPC content (Fig. 4d). The intact catalytic performance illustrated the advanced stability of CAT 1 while some organometallic catalysts have been reported to undergo deactivation in the presence of excess protic compounds.36 GPC results showed monomodal and narrow distributions (<1.12) and the molar mass was linearly dependent on the feed of PO/SA with correlation coefficient (R2) above 0.99, demonstrating the characteristic “immortal” polymerization (Fig. 4c).37 The as-prepared CO\textsubscript{2}-polylols were analyzed by MALDI-ToF mass spectrometry, which
disclosed that all peaks corresponded to poly(ether carbonate) with SA core in the center and hydroxyl functions in terminal (Fig. S35-40). In short, CO₂-polyols can be precisely customized here by adjusting the feed of two monomers and CTA, to meet the different practical requirements.

Kinetics study and mechanistic consideration.

Firstly, we monitored the whole kinetics profiles of CO₂-polyol formation under CAT 1 using in situ infrared spectroscopy. As shown in Fig. 5a, the carbonyl absorption at Ca. 1800 cm⁻¹ for cPC was absent throughout the reaction. The absorption at Ca. 2335 cm⁻¹ for CO₂ reached the plateau prior to the absorption at Ca. 827 cm⁻¹ for PO, which disclosed that the CO₂-involved polymerization directly switched to PO ROP at the late stage. Such in situ switch polymerization assured the quantitative CO₂ transformation into polyols, which is sharply differentiated from the occurrence of depolymerization as observed in the mononuclear catalyst. The k_{obs} for carbonate and ether formation determined by the slope of linear part were 0.14 [abs./h] and 0.23 [abs./h], the ratio of which was somehow correlated with the maximum carbonate ratio in the “quantitative zone” (0.14/(0.14+0.23)=0.38). For careful calculation, ex situ aliquot ¹H NMR analysis was used to determine monomer numbers per chain, CO₂ net fixation and carbonate ratio at different time intervals in two separate reactions at 0.8 MPa/2.2 MPa pressure (Fig. 5b). In the first 6 h of the two reactions, the rate of CO₂ insertion exhibits the same value (Ca. 0.4 CO₂ g/h) yet with different carbonate linkage, illustrating the moderate deceleration of PO ROP by the increased CO₂ feed. The 0.8 MPa reaction finished CO₂ consumption within 10.5 h left with 38% unreacted PO and the full conversion of PO was achieved at 20 h. The 2.2 MPa reaction which represented the edge of “quantitative zone”, converted 4.6 g CO₂ within 12 h and the rest 0.5 g CO₂ still required another 12 h due to the highly viscous medium. As shown in Fig. 5c, the molar mass increased smoothly with time and displayed monomodal distribution at each time interval with narrow PDI values (<1.14). Meanwhile, the results of GPC analysis fitted well with ¹H NMR spectroscopy, demonstrating a well-controlled process. The analysis of molar mass also proved that after CO₂ consumption excess PO continued to insert in the existed chains generating homogeneous polyether chain in the end rather than regenerate a sole polyether chain.

In a related research by Williams and coworkers using a mononuclear chromium catalyst, equimolar feed of cyclic anhydride and epoxide formed polyester, while excess epoxide afforded switchable polymerization between ROCOP and ROP producing block copolymers with versatile architectures. Unfortunately, when it came to PO/CO₂, the catalytic cycle was likely to shift to “back-biting” from propagation as illustrated in Fig. 3. In this work, the successful quantitative CO₂ polymerization is undoubtedly attributed to CAT 1 which shares the same structure of active site with mono 1 but functions entirely different. To better understand the advanced multisite catalysis of CAT 1, we calculated the order in CO₂, epoxide and catalyst for the formation of PPC by determining the initial rates (slopes of absorbance at Ca. 1745 cm⁻¹ versus time at conversion below 15%) in controlled series of experiments. Since SA with poor solubility in PO, is gradually dissolved by the enchainment of PO, while PEG dissolves well in PO whose absorption at Ca. 1104 cm⁻¹ flattened very fast as monitored. Therefore, PEG was used as CTA and initial rates were measured without interference. A zero order in CO₂ was observed over the range of 0.5-2.5 MPa pressure, revealing that the insertion of CO₂ is not rate-determining for carbonate formation (Fig. 6a). Surprisingly, the initial rates at 3.0-4.6 MPa were only about one-third of those at 0.5-2.5 MPa due to the gas expansion. As previously reported, CO₂ insertion is always fast and zero-order dependence in most CO₂/epoxide ROCOP catalysis. While Rieger and coworkers found that under a di-zinc catalyst the CO₂ insertion was first-order below 2.5 MPa and shifted to zero-order at higher pressure. Similarly, we here found that 2.5 MPa was the boundary between the “quantitative zone” and the “qualitative zone”, and yet the distinct shift for
the reaction order in CO\textsubscript{2} was not observed around 2.5 MPa. In the “quantitative zone”, the initial rates only fluctuated with CO\textsubscript{2} pressure within the range of ± 13.5%. Therefore, the critical value of the zone also reflected the intrinsic selectivity of CAT 1 between ROP and ROCOP as disclosed before. In the “qualitative zone”, with the increase in CO\textsubscript{2} pressure, the rate of ROP significantly dropped while ROCOP still exhibited the similar rate, which resulted in such coincidentally linear dependency of polyol composition on the CO\textsubscript{2} pressure.

Figure 5. Monitoring CAT 1 catalyzed quantitative CO\textsubscript{2} polymerization. a. Reaction profiles monitored by *in situ* IR and the resulting three-dimensional stack plot of IR spectra. Profiles of the absorbance at Ca. 2335 cm\(^{-1}\) corresponds to ν(C=O) from CO\textsubscript{2}. Profiles of the absorbance at Ca. 827 cm\(^{-1}\) corresponds to ν(C-O) from PO. Reaction condition: PO/[SA]/[Al]/PPNCl=50000/1000/1/1 (molar ratio), 50 °C, 1.5 MPa CO\textsubscript{2} pressure, 30 mL PO in bulk. The final crude is also determined by \(^1\)H NMR analysis: conv. of PO% > 99%, \(W_{\text{ CPC}}\%\) 0.2%, Carbonate% 27.1%. b. Quantitative calculation by \(^1\)H NMR determining sampled aliquots at different time intervals, presented by plots of numbers of monomer enchained, mass of CO\textsubscript{2} in polyols, and carbonate linkage, versus time. Reactions were carried out in the autoclave equipped with a sampling valve, with PO/[Al]/PPNCl=50000/1/1 &PO/SA=30 (molar ratio), 50 °C, 0.8/2.2 MPa CO\textsubscript{2} pressure, 25 mL PO in bulk. c. Plots of \(M_n\) versus time and GPC curves of sampled aliquots from 0.8 MPa reaction in b.
The double logarithmic plot of initial rates and PO concentration gave the reaction order in PO as the slope of the plot. As shown in Fig. 6b, a first-dependence for PO was clearly demonstrated in the concentration of 1.4-10.5 M in dichloromethane. This strongly suggests the ring-opening of PO attacked by the carbonate intermediate is the rate-determining step rather than CO$_2$ insertion into the alkoxide. Next, the plot of ln(k_{obs}) versus ln(cat) gave a slope of 0.9, indicating a first-order dependence in CAT 1 within experimental error (Fig. 6c). This stands in contrast to the order between 1 and 2 as observed in most mononuclear catalysts, indicating the occurrence of intramolecular metal-metal cooperativity within one oligomeric catalyst chain as previously evidenced in the multinuclear Co(III) salen catalyzed hydrolytic kinetic resolution of epoxides\(^{41,42}\) and a recent multimetallic CO$_2$/epoxide ROCOP catalysis\(^{43}\).

To determine the activation energy (E_a), initial rates were measured in CAT 1 involved controlled experiments at 50 °C, 60 °C, 70 °C, 80 °C, respectively. Fig. 6d depicted the Arrhenius plots for the formation of PPC while the absorption at Ca. 1800 cm$^{-1}$ for cPC was not observable in such temperature range. The E_a for PPC was 34.2 kJ/mol in the presence of CAT 1, while mono 1 showed significant higher E_a value of 44.7 kJ/mol for PPC (Fig. S51). The ΔE_a of 10.5 kJ/mol correlates well with the differentiated catalytic performance as observed before.

Figure 6. Kinetics studies of CAT 1 for the formation of PPC determined by *in situ* IR. a. The dependence of initial rates on CO$_2$ pressure. b. Order in PO. c. Order in catalyst. d. Arrhenius plot.

In addition to Arrhenius method, the Eyring analysis was also involved to determine the activation parameters for further insight into the catalysis (Fig. S53).\(^{44,45}\) With CAT 1 (Fig. S49), the enthalpy of activation (ΔH^\ddagger) values for PPC and PPO were determined to be 31.4, 42.0 kJ/mol and the entropy of activation (ΔS^\ddagger) values for PPC and PPO were -167.9, -144.3 J/(mol*K), respectively. Overall, the transition state Gibbs free energy (ΔG^\ddagger) values were 89.0 kJ/mol for PPC and 91.5 kJ/mol for PPO (at 70 °C). This similarity in ΔG^\ddagger values support the fact that CAT 1 exhibits comparative rates of ROP and ROCOP from a thermodynamic perspective. Classic metal complexes like porphyrin and salen catalysts...
normally produce polycarbonates with trivial ether linkage, while in striking difference, oligomeric CAT 1 can produce ether-rich CO2-polyols which extends the employment of metal-based CO2 ROCOP catalysts previously only for biodegradable plastics to the manufacturing of polyurethanes. For comparison, the Eyring analysis was also applied for the case of mono 1 in similar controlled temperature-dependent experiments achieving the following activation parameters for PPC: ΔH° of 41.9 kJ/mol, ΔS° of -158.4 J/(mol*K) and ΔG° (at 70 °C) of 96.2 kJ/mol (Fig. S52). Since CO2 is zero-order dependence in PPC formation, these activation parameters are supposed to be consistent with the transition state involving a carbonate end attacking the activated PO (Fig. S54). With mono 1 the replacement of carbonate by PO in the coordinating site and the ring-opening of PO by carbonate proceed within one metal, while CAT 1 allows that both anionic carbonate and PO are well stabilized in an intra-bimetallic manner and such Al-Al synergy is just a random permutation along the oligomeric chain. Such difference is substantiated by the ΔH° value which is largely related to the stability of such transition state. The reduced enthalpy barrier with CAT 1 accelerates the PO ring-opening step which leads to the high activity of the whole catalysis. On the other hand, the oligomer catalyst CAT 1 accumulates monomers and propagating chains in a confined space, which decreases the degrees of freedom resulting in more entropic loss. Nevertheless, in the range of common operating temperature (25-100 °C), the use of CAT 1 is always thermodynamically favored and $\Delta(\Delta G^\circ)$ of CAT 1 and mono 1 is 6.9-7.6 kJ/mol due to the remarkable enthalpic benefit.

In general, quantitative CO2 polymerization faces overlapped difficulties from low CO2 pressure, the requirement of full conversion, and the use of protic compounds. The above discussion explains how CAT 1 facilitates the transformation of quantitative CO2 into polyols. Last but not least, another question is how to preserve such transformation afterwards, i.e., why CAT 1 realizes the switch catalysis from ROCOP to ROP while mono 1 shifted to back-biting reaction under the same condition. To this end, the activation parameters with mono 1 at the late stage were also studied. As shown in Fig. 7, when CO2 is insufficient at the late stage, the catalytic resting state stalls at metal-alkoxide (RS), where three pathways may occur subsequently in the presence of excess PO as the monomer and solvent at the same time. In Path A, RS undergoes 1) the dissociation of polyol from the metal and 2) intramolecular “back-biting” between alkoxide end and adjacent carbonyl to give TS A. At last, cPC is afforded after releasing the remained chain which is likely to be coordinated back to the metal center or to diffuse into the bulk solution. With mono 1, the values of ΔH° and ΔG° (at 70 °C) were measured to be 40.5, 87.7 kJ/mol for such depolymerization. These activation parameters are significantly lower compared to those for initial cPC formation (the values of ΔH° and ΔG° at 70 °C were 57.9, 96.6 kJ/mol) under the same catalyst. The values are in line with the result where cPC is formed much faster by depolymerization from PPC at the late stage than coupling reaction in the beginning. In Path B, the alkoxide is first substituted by a new PO from the coordinating site and then directly attack it to realize enchainment. The activation parameters to reach TS B with mono 1 were much higher: ΔH° of 55.0 kJ/mol, ΔG° (at 70 °C) of 100.7 kJ/mol. As evidenced in the kinetic studies with mono 1, the PO enchainment via Path B is dominated by the depolymerization via Path A. In sharp contrast, in Path C, CAT 1 reached TS C with ΔH° of 42.0 kJ/mol, ΔG° (at 70 °C) of 91.5 kJ/mol as mentioned before, which was much lower than those of monometallic Path B. The reduced enthalpy is still the main contributor, since CAT 1 with multiple Al centers assures the involvement of two metals (one for PO activation and another for the stabilization of the alkoxide end) in the attack of PO which effectiely stabilizes the anionic transition state TS C. A previous literature even reported that the shorter distanced bimetallic pathway had more prominent promotion in PO ROP than PO/CO2 ROCOP. Therefore, CAT 1 successfully shifts to ROP process from RS via Path C and thus sequesters the before-polymerized CO2 once for all. Besides, from a macroscopic perspective, a feature of catalytic chain-transfer polymerization is that one metal serves as the active site for multiple propagation events,
greatly amplifies the diversity since free-base chains are more unstable and prone to depolymerize as previously illustrated by Daresbourg.48 Hence, the isolated active sites also cause such uncontrolled catalysis in the presence of common mononuclear catalyst like mono 1. In terms of CAT 1, the loading is more extreme which results in one metal versus Ca. 1,000 polyols (Table 1). Nevertheless, the accumulation effect of CAT 1 creates more possibilities for bimetallic interactions, and thus the swap between dormant chains and activated chains is tremendously accelerated which also stabilizes the dormant chains from “back-biting”.

Figure 7. Proposed pathways from Al-alkoxide resting state at high CO$_2$ conversion.

Conclusion

Different from high pressure condition normally required in CO$_2$ transformation, and also different from the pursuit of absolute ambient pressure reaction, we establish an on-demand CO$_2$ fixation, which is the first time for quantitative CO$_2$ polymerization, tuning the composition of polyols by accurate CO$_2$ feed. Kinetic study reveals that under substoichiometric CO$_2$, CAT 1 allows the in situ switch catalysis between CO$_2$-involved copolymerization and PO ROP when CO$_2$ was fully reacted, while common mononuclear catalysts shift the selectivity at high CO$_2$ conversion producing a mixture of polyol and cyclic carbonate. The success is attributed to the intra- multimetallic cooperativity of CAT 1, which increases the rate of monomer enchainment, stabilizes the key intermediates and blocks the “back-biting” pathway. The findings presented here provide mutual benefit for quantitative CO$_2$ transformation and precise polymer synthesis, which also elicits a question how precise catalysis can offer better opportunities for the development of green chemistry.
Data availability

Detailed experimental procedures, the characterization of all the synthesized compounds and polymers, other data mentioned in the manuscript are provided in the Supporting Information.

Author information

Corresponding Author

*E-mail: xhwang@ciac.ac.cn (X.W.).

ORCID identification number(s)

Xianhong Wang: 0000-0002-4228-705X

Conflict of interest

The authors declare no competing financial interest.

Acknowledgement

The authors greatly appreciated the financial support from Fundamental Science Center projector in National Natural Science Foundation of China (Grant No. 51988102) and Key Research Program of Frontier Sciences, CAS (Grant No. QYZDJ-SSW-JSC017).

References:

11 Sujith, S., Min, J. K., Seong, J. E., Na, S. J. & Lee, B. Y. A Highly Active and Recyclable Catalytic System for

Darensbourg, D. J., Moncada, A. I., Choi, W. & Reibenspies, J. H. Mechanistic Studies of the Copolymerization

