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ABSTRACT:

In this letter, we investigated the modification of oscillator strength of an asymmetric stretching
band of CS> by strong coupling to an infrared cavity photon. This is achieved by placing liquid
CS2 in a Fabry-Perot resonator and tune the cavity mode position to match with the molecular
vibrational transition. Ultra-strong coupling improves the self-interaction of transition dipoles of
asymmetric stretching band of CS; that resulted in an increase of its own oscillator strength. We
experimentally proved this by taking the area ratio of asymmetric stretching and combination band
by selectively coupling the former one. A non-linear increase in the oscillator strength of the
asymmetric stretching band is observed upon varying the coupling strength. This is explained by

a quantum mechanical model that predicts quadratic behavior under ultra-strong coupling



condition. These findings will set up a new paradigm for understanding chemical reaction

modification by vacuum field coupling.
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Vibrational strong coupling (VSC) offers a new way of controlling the chemical and physical
properties of the molecules and materials.[*,?] It involves the coupling of a selected vibrational
state to an infrared cavity photon that undergoes photon exchange between the excited state of the
molecule to the cavity field. This exchange process leads to a strong interaction within the system.
Depending upon the strength of the interaction, energy levels get reshuffled to an extent that
physically modifies their properties.[¥] These newly formed hybrid states are called vibro-
polaritonic states which have both molecule-like and photon-like behavior.[*,%°,] In some cases
the splitting energy is more than 10% of the fundamental transition, resulting in a dramatic change
of their chemical and physical behavior.[”,8,°] For example, chemical reactions can be modified by
coupling to vacuum fluctuations. Recently, there are many attempts to prove this concept by
placing reacting molecules in an optical resonator and probing their reaction kinetics.[*0,11,12,13 14
Surprisingly, some of the reactions got deaccelerated and some others catalyzed depending upon
the reaction conditions.[*°, 12,4] Recent experiments suggest that symmetry has a major role in
controlling chemical reactions under VSC condition.[*°,*®] Very recently, co-operative VSC was
also introduced to control chemistry.[*2,%4] This offers another advantage that solvent can be used
to activate a chemical reaction pathway if the vibrational level of the solvent overlaps with reactant
molecules.[*?] VSC can be also used as a spectroscopic tool to understand a complicated reaction
mechanism in some of the (bio)chemical reactions.[**] There are many theoretical approaches
available in the literature that covers from ON resonance effect to equilibrium theory.[*7,18,19 20 21
22,2%] Many of the experimental and theoretical predictions are so selective and fail to provide a
clear understanding on the influence of VSC on chemical reaction. Even-though, VSC modifies

the reaction rates, a universal model is yet to be established to understand the basic mechanism.



Small molecule VSC is the only way to solve this conundrum as it can give a simplified approach
in terms of spectral characterization. In this direction, there are few approaches so far reported in
the literature.[’] The first attempt was to solve the spectroscopic signature of Fe(CO)s and CS;
molecules under ultra-vibrational strong coupling (USC) conditions.["] There the self-interactions
perturb the N-dependent collective behavior that normally has been observed in the strongly
coupled system. Along with this interesting finding, a clear polaritonic band gap opening is also
seen experimentally that implies a complete modification of the absolute zero-point energy of the
coupled system. On the theoretical side, a QE-DFT method was proposed by A. Rubio and co-
workers using 1-D hydrogen atom model to predict the complicated polaritonic state potential
energy surface (PES).[*®] Here, calculations show that the ground state energy shift along with a
collapse of the PES leads to a complete reshuffling of the energy levels. Recent studies show clear
entropy reordering due to collective interaction in strongly coupled systems.[?*] On the other hand,
A. Nitzan and co-workers proposed an equilibrium consideration based on transition state
theory.[?% 2°] An extended ab-initio method was also introduced to study small molecule reaction
dynamics.[?] On the experimental side, Huira et.al. demonstrated that VVSC of water molecules
can catalyze chemical reactions.[?”] Water strong coupling experiments were also conducted to
control biomolecular reactions.[?] All the theoretical and experimental findings urge the use of
small molecule VSC studies to develop a microscopic model for understanding the mechanism of

polaritonic chemistry.

CS:in the liquid state is a well-studied system by spectroscopists. [2°,%,3!] It contains 4 normal
modes of vibrations in which the bending mode (010) is doubly degenerate.[?°] Other important
vibrational states are asymmetric stretching (001) and symmetric stretching (100) bands as shown

in Figure 1a. Out of these two, (001) is IR active and has very high oscillator strength.[?°,3!] For



pure CSy, various combination and difference bands are observed with a reasonably good
population.[*!] In the solution phase, (101) is one of the highly populated combination bands and
an area ratio of 45 is observed between (001) and (101). Here, these bands are fitted to multi-
Lorentzian envelope and compared in each experimental case (figure S2). The area ratio is a
constant value with respect to CS concentration in any of the solvent system. (001) is normally
very strong and appears at 1510 cm™, whereas, (101) is at 2155 cm™ with a structured feature as
shown in figure 1c. The structuring of (101) is specifically due to C32S34S isotopes and hot band

transitions.[**]

Fabry-Perot (FP) cavities are fabricated by placing two parallel mirrors separated by a mylar
spacer. Au mirrors (10 nm) are sputtered onto IR transparent BaF, windows which serve as
components of the flow cell cavity as shown in figure 1b. Here, in the present study, CS: is injected
(45 v% in CCly) in an FP cavity and the position of the mirrors are adjusted to fine-tune the ON
resonance condition for coupling (001). This resulted in the splitting of (001) into two vibro-
polaritonic states with Rabi splitting energy of ~180 cm™ (figure 1c). The full width-half maximum
(FWHM) of the (001) band and the empty cavity mode is 43 cm™ (I'm) and 23 cm™ (o),
respectively. It is clear that vibro-polaritonic states formed at ON resonance condition have
FWHM (I'p+ and I'p-; 12 cm*and 14 cm?, respectively) much smaller than the empty cavity mode
and the bare molecule (figure 1c). At the same time, (101) is weakly coupled to one of the higher-
order cavity modes, allowing us to trace its identity. Very interestingly, USC of (001) causes a
reasonable increase in the area ratio of asymmetric to combination bands at ON resonance

condition.



Further, strong coupling experiments are conducted by injecting a neat solution of CS> coupled to
10" mode of the cavity and the original (001) transition is now split into multiple vibro-polaritonic
states as shown in figure 2a. Mode folding occurs due to large refractive index modulation around
(001) that brings the nearby cavity modes to couple OFF resonantly to the fundamental
transition.[] The splitting energy of the ON resonant states (denoted as P*noo1)and P neon)) is ~280
cm ! suggesting that the system is in USC condition. Here, the fundamental (001) transition is split
more than 18 %, cause a large perturbation in the coupled system. At the same time, I'p+ and I'p.
are 10 and 12 cm, respectively, creating a much more stable vibro-polaritonic envelope (figure
2a). Under USC of (001), Rabi splitting energy is higher than predicted by TMM simulation.
Hence, TMM fitting is done carefully to match the experimental data for (001) transition. This is
arbitrarily achieved by varying the oscillator strength of the (001) transition on a multi-Lorentzian
envelope of the uncoupled molecules (Section S3; figure S1). We used the same oscillator strength
correction for (101) carefully analyzing the variation, assuming that the combination band strength
is not affected under weak coupling regime (figure S2). This serves as a good internal reference to
understand the physical effect of USC on (001) transition. Please note that (001) band position
saturates in higher concentration of CS; for our experimental condition (pathlength of 18 um).
Hence, we fitted the bare absorption of CS> in 2 um pathlength to extract the area ratio (figure S1
and table S1). The area ratio of CS» is ~44.5 in all the concentrations indicating the system obeys
Beer’s law throughout the non-cavity condition (figure S5). At ON resonance condition, TMM
results suggest a deviation of more than 10 % of splitting energy as compared to experimental data
(blue trace; figure 2a). This observation is supported by the tuning experiments with respect to
USC of the (001) transition. Changing the cavity mode resonance at (001) by slowly varying the

pathlength leads to less deviation and eventually the same signature for weakly coupled (101) as



OFF resonance situation is achieved (figure 2b). Here, all the other parameters are fixed except the
pathlength of the cavity mode so that the 10" mode undergoes USC with (001). Overall, USC of
(001) causes a modification of its own oscillator strength that can be assessed through (101) of the

CS, molecule at ON resonance condition.

In the next step, we varied the concentration of the CS> molecule and observed the effect of USC
of (001) on the combination bands. Here, we used CCl4 as the co-solvent for dilution as the latter
is transparent in the IR optical window. To understand the effect of coupling strength, CCl4
(refractive index; n= 1.45) is added into CS2 (n= 1.60) in a proportion to match the criteria of
having two different cavity modes couple to (001) and (101) simultaneously. Other than pure CSa,
85 v%, 45 v%, and 25 v% are chosen for this experiment and the corresponding results are plotted
in figure 3. There is no variation in the area ratio is observed for the non-cavity condition. Whereas,
the system shows a clear variation in the area ratio as its coupling strength changes from low to
high concentration of CS, molecules. For the coupled system the area ratio changes non-linearly,
at the same time, the Rabi splitting of (001) and (101) follows linearly with the square root of
concentration (inset of figure 3). This shows that some non-linear interactions are taking place

while coupling the (001) band to the cavity field.

For understanding this we used a simple quantum mechanical model considering CS; molecules
whose axis is perpendicular to the axis of the cavity and can only couple to the transverse
oscillations of the cavity field. The asymmetric stretching mode for each molecule is characterized

by the dimensionless coordinate,

Uws Z1+ 2z,
&= % where z = z3 — >




In the equation above, z,, z, and z; are the coordinates along the molecular axis of the two sulfur
and one carbon atom respectively measured relative to the center of mass of the two sulfur
atoms.[32,%] Corresponding to an asymmetric displacement z of the carbon atom along the

molecular axis, the dipole moment operator of the molecule is,

ﬁ d(p) d( ) / d( > h
p(0) = ld_z P l Mws P (a; + ag)

where a; and a}L are the annihilation and creation operators corresponding to the asymmetric

stretching mode oscillations. The collective polarization of the n molecules is,

B, C d
P(0)=Zﬁ(0)=[ “”] Zuw Z(awa
j=1

The cavity-molecule coupling is described by the Hamiltonian,

n
5 = d(p)
Hey = E-P=hQZ(aC+aI)(aU+a;); Q= l l
= J V2€V

Where a, and a:[ are the annihilation and creation operators of the relevant cavity mode, ¢, is the
permittivity of free space and V is the mode volume within which the molecules interacting with

the mode are located.

In the USC regime, this interaction between the cavity and the molecules cannot be treated
perturbatively. Powerful numerical approaches have been developed to compute the spectra and

other relevant parameters in the presence of very strong coupling including the QE-DFT



method.[*®] However here we can take a much more direct and elementary approach since we are

interested only in the vibrational motion of the molecules.

The E-P (light-matter) interaction term is proportional to . If a term that is linear in the
coordinate is added to the quantum harmonic oscillator Hamiltonian, the problem can still be
solved exactly by transforming the Hamiltonian into one for an oscillator with a shifted equilibrium
position plus a constant energy shift. The shifted equilibrium of the asymmetric stretching mode
indicates the induced dipole moment of the molecule due to the presence of the cavity. The induced
dipoles of the n molecules that oscillate resonantly and coherently with the oscillations of the
cavity field, interact with each other. For weak coupling this interaction is an insignificant higher-
order effect. However, for USC, the dipole-dipole interactions lead to significant collective,

nonlinear effects. The Hamiltonian for this interaction is,

1 5 - 07
Hym = ZeoV P-P= hw_g Zk:(afj + agj)(afk + agk)’
j.

where w5 is the natural frequency of the asymmetric stretching mode.

In the USC regime, the dipole-dipole coupling also has to be treated non-perturbatively. The
corresponding Hamiltonian, Hy,,, is quadratic in . Therefore, the dipole-dipole interaction can be

incorporated into the harmonic oscillator Hamiltonian as a simple shift in the frequency. Adding a
term to the harmonic oscillator Hamiltonian of the form %hl{fz, with K being a constant,

effectively shifts the frequency of the oscillator by K. Finding the strengths of the collective dipole-

cavity coupling Hy, and the dipole-dipole coupling Hy,Will therefore allow us to identify the



shift in the equilibrium position as well as the shift in frequency of the asymmetric stretching

mode.

A detailed analysis of the molecule-cavity system shows that the effective coupling constant in

Hcy (Rabi splitting) is given by Qg where the Rabi frequency is given by Qp = vnQ. The
2
effective strength of the dipole-dipole coupling is given by hwﬁ = 2nh0?/w3.[**] Assuming that

the number of molecules n oriented perpendicular to the cavity axis and located within the mode
volume of the resonant vacuum mode of the cavity is proportional to the concentration, C, of CS»
within the cavity, we expect two detectable collective effects in the USC regime. The first is a
concentration dependent Rabi shift which is proportional to v/n ~ +/C and the second is the shift
in the frequency of the asymmetric stretching mode which is proportional to C. It is not easy to
detect the shift in the bare frequency w5 because of the Rabi splitting that is larger than the shift

by a factor of ws;.

Using perturbation theory to find the transition rate for the normally dipole forbidden transition to
the combination band, made possible by the anharmonicity of the molecular potential (See

Supporting information for details), yields an expression for the measured area ratio as,

w3
A=———
W, + w;

Where T is effectively a constant despite a very weak dependence on w, and w5. We have extracted

out of the expression for A, the dominant dependence on ws.

2
In the USC regime, we expect w; = w3 + 2n 2— which we approximate as w3 + kn. The ws
3

appearing in the numerator of the expression for A corresponds to the (000) to (001) transition
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while that appearing in the denominator corresponds to the (000) to (101) transition. Since the
change in the denominator also depends on the admixture of (001) in the combination band, we
write the dependence on the denominator on the concentration with an additional constant factor
as w; + w3 = w; + w3 + nrn. Assuming that n is proportional to the concentration, C, of CS2
as n = yC we obtain the following form for the expected relation between the measured area ratio
and the concentration under USC conditions,

w3 y 1+ Cyx/w; 14k C
wy+ ws 1+ Cyne/(w,+w3) 1+ k,C

where A, is the area ratio in the absence of cavity coupling. Figure 3 shows a two-parameter fit
(QM fitting) of the expression above for the observed changes in the area ratio. The fitted values
of the parameters are k;, = 0.0185673 and k, = 0.00638233 giving n ~ 1/3, indicating that
there is approximately 33% admixture of the (001) band in the (101) combination band. We
observe that the expression for the area ratio and the measured data are in very good agreement
indicating that the system is indeed in the USC regime and the simple model phrased in terms of
a quantum harmonic oscillator not only gives a clear picture of the nature of the interaction between

the cavity and the molecules, it also yields a quantitative understanding of the same.

In conclusion, a clear boost in the self-interaction of vibrational transition dipole in CSz molecules
is observed under USC condition. Here, the non-linear change in the self-interaction is proved both
experimentally and theoretically. Recent experiments on the non-linear behavior in the rate
enhancement mediated through the polaritonic state may be triggered through this mechanism.[*°,
121 However, the complexity of organic chemical reactions won’t allow us to measure the relation

between the rate enhancement and cavity mediated self-interaction in strongly coupled systems.
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Figure 1. (a) Schematic illustration of VSC of CS> molecule and (b) a Fabry-Perot cavity. (b)
Infrared transmission spectra of non-cavity (2 um; red) and cavity (18 um; blue) by coupling of

(001) band of CS2 (45 v%) in CCls solution and the corresponding TMM simulation (dotted lines).
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Figure 2. (a) IR transmission spectra of USC of pure CS; (red) to 10" mode of an FP cavity and

the corresponding TMM (dotted red line) simulation; (b) experimental splitting energy of (101)

band (red) and the corresponding deviation in TMM simulation (blue) [dotted lines are guide to

eye].
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1 Materials and Methods:

Carbon disulfide and Carbon tetrachloride used for the studies purchased from Sigma-Aldrich. The
demountable flow cell, BaF2 substrates, and mylar spacers used for measurements purchased from

Specac.



The IR transmission spectrum of pure CS,, 45% and 85% CS; solutions in CCly in both cavity
and non-cavity recorded using the Fourier Transform Infrared (FT-IR) interferometer ((C) Bruker
model INVENIO). The spectra were recorded in transmission mode with a 2 cm™! resolution under

16 scans.

2 Preparation of cavity and non-cavity cells:

The 2 mm thick BaF, substrates were used as IR transmitting windows. The non-cavity measure-
ments carried out by placing BaF, substrates one above the other, without any spacer between the
substrates, inside the demountable flow cell. Even in the absence of any spacer, a 2 um spacing
created between the substrates due to their surface roughness. Then solutions of different con-
centrations of CS, were injected to obtain their IR spectra. For the cavity measurements, 10 nm
gold film sputtered on to the BaF, substrates. A Fabry-Perot cavity is prepared by placing these

gold-coated substrates separated by Mylar spacer in a demountable flow cell.

3 IR spectrum of CS,, Transfer matrix method (TMM) fitting
and area ratio calculations:

Firstly, the IR transmission spectrum of pure CS, recorded in a non-cavity. The spectrum consists
of an inhomogeneously broadened asymmetric stretching band (001) at 1510 cm ™! and a combina-
tion band (101) of the asymmetric and symmetric stretch at 2155 cm™! (Fig.S1(a)). TMM used to
fit this spectrum using multi-Loretzians for fitting the asymmetric stretching band and combination
band.

This transmission spectrum was converted into its corresponding absorption spectrum (Fig.
S2(b)) to calculate the area under both the asymmetric stretching band and the combination band.
With the help of OriginPro 9 software, the area under these curves was calculated. Using this

method the area ratio of asymmetric to combination band was approximated to 44.6. Similar area
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Figure S1: (a) Infrared transmission spectra of pure CS2 (red trace) and the corresponding TMM
fitting (dotted black trace) outside the cavity. Infrared absorption spectra of pure CS;, (b) asym-
metric stretching band (¢) combination band.

ratio calculations were done for different concentrations of CS, in CCly solutions, and results
are summarized in Table 1, which shows area ratio remains approximately the same for all the

concentrations of CS; in the non-cavity conditions.

4 Area ratio for ON resonance cavity:

Here, we achieved the ON resonance condition by tuning the cavity mode position to resonate

with the (001) mode of CS; molecule. This will help us to understand the effect of strong coupling

4



Table 1: Area ratio for different concentrations of CS, in non-cavity conditions.

| Sr. No. | Concentration of CS, | Area Ratio
1 25% (4.14M) 44.30
2 45% (7.45M) 44 .27
3 85% (14.07M) 44.27
4 100% (16.55M) 44.67
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Figure §2: (a) IR transmission spectrum of Fabry-Perot 18 um cavity filled with pure CS; (red:
experiment; dotted blue: TMM) with 10™ cavity mode at 1512.33 cm ™! in ON resonance with
the asymmetric band (001). (b) Zoomed image of S2(a) showing the same splitting for (001) in
both TMM and experiment, and deviation in splitting for (101). (¢) Zoomed image of S2(a) with
changing the oscillator strength of (101) to match splitting in TMM with experiment.



by observing the changes in the (101). For this purpose, 18 um pathlength cavity was prepared
and 10" mode of the cavity was ON resonantly coupled to the asymmetric stretching band (001).
Simultaneously, the combination band (101) is also coupled to the 14t cavity mode (Fig. S2(a)).
TMM simulations were done for the same, and then a comparison of splitting energy from exper-
imental value is done. After the correction, it was observed that for (001) band, splitting energy
of approximately 280 cm~! by both experimental TMM simulation. At the same time, the (101)
band deviate approximately, 8 cm~! with respect to experiment and TMM as shown in figure S2b.
This variation can be attributed to the change in the oscillator strength of (001) band.

In order to calculate the area ratio for the cavity experiments, the oscillator strength of the
combination band (101) is arbitrarily decreased to get the same splitting energy as obtained from
the experiment (Fig. S2(c)). After getting the same splitting energy for the combination band
(101) in TMM, the mirrors were removed in the TMM calculations to obtain the IR spectrum
under these cavity conditions. Thus, the value of area under combination band (101) obtained
from the experiment deviates from that from TMM (figure S3). Since both TMM and experiment
give the same value of splitting energy for the asymmetric band (001), so no changes were made to
its oscillator strength; thus area under the curve remains the same for both TMM and experiment.
The value of area ratio from the ON resonance cavity was 52.6, and the value predicted for the

same without making any changes in the oscillator strength of (101) band was 44.6.

Table 2: Area ratio for different concentrations of CS; in ON resonance cavity conditions.

| Sr.No. | Concentration of CS, | Area Ratioin TMM | Area Ratio in experiments |

1 25% (4.14M) 44.32 46.43
2 45% (7.45M) 44.27 48.15
3 85% (14.07TM) 44.40 50.8
4 100% (16.55M) 44.67 52.49

Similar area ratio calculations were done for different concentrations of CS, in a 18 um thick
cavity, and the result is summarized in Table 2. It is evident that for all the cases, the area ratio

obtained in experiments deviates from the value as predicted from TMM.
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Figure $3: Absorption spectrum for (101) of pure CS; in cavity conditions: TMM (Dotted black)
and experiment (red).

S Area ratio in cavity tuning experiment:

Cavity detuning is performed by decreasing the pathlength between the Au mirrors, in such a way

that 10™ cavity mode slowly move away from ON resonance condition of (001) band (Figure S4).

Table 3: Area ratio deviation for the experiment from TMM in tuning experiments.

| Tuning Set | 10" mode | Area Ratio in TMM | Area Ratio in experiments |

1 (Black) 1512.33 44.67 52.49
2 (Red) 1515.55 44.51 50.07

3 (Green) 1522.56 45.1 49
4 (Blue) 1529.19 45.10 48
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Figure S4: Cavity tuning experiment by physically varying the distance between the mirrors. Even
though the cavity mode shifted from ON resonance condition to OFF resonance, still the coupling
of asymmetric band (001) occurs as it is a very strong band. For each position of cavity mode in
tuning experiment, TMM simulations were done, and the area ratio for both experiment and TMM
compared as shown in Table 3. It is clear from Table 3 that as the cavity mode shifts from ON
resonance condition to OFF resonance with respect to asymmetric band (001), the deviation of the
experimental area ratio in TMM decreases.
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Figure §5: (a) Absorbance spectrum of (001) for different concentrations of CS, in CCly in non-
cavity conditions. (b) The corresponding Beer-Lambert plot.

6 Beer-Lambert plot for Asymmetric stretching band

For understanding the self-interaction in non-cavities, varying concentration of CS, in CCly was

prepared and measured in a BaF, flow cell. A paghlength of 2 um is used for all the measurement



and the corresponding IR spectrum was acquired in transmission configuration. Absorbance of
(001) band is plotted against concentration as shown in Fig. S5 (a). This give a straight line indi-
cating the system obeys Beer?s law and self-interactions are minimum for the non-cavity condition.
Slope of the figure Fig. S5 (b) gives the molar absorptivity coefficient for asymmetric stretching

band (001) as 684.85 cm ™! mol~!-lit.

7 Theoretical expression for the area ratio

The objective here is to derive the theoretical expression that is used in the main text for the area
ratio between the fundamental band (0,0,1) and the combination band (1,0,1) of CS, molecule.
Here, area under the band is taken to be synonymous for all practical purposes to the intensity of
the corresponding absorption band assuming Lorentzian profiles for each band with similar widths.
We start with a recap of the basic quantum theory of linear triatomic molecules, following which

an expression is obtained for the area/intensity ratio.

7.1 The linear triatomic molecule

The quantum theory of the linear triatomic molecule was worked out in detail in the early 1930s by
Dennison, Fermi, Adel and others. '™ We briefly outline this model before proceeding to examine
the area ratio. We look at a generic molecule of the form XY, with the coordinates of the two
identical Y atoms given by (x1,y1,z1) and (x2,y2,22) respectively. The coordinates of the central
X atom is designated as (x3,y3,x3). The molecule has nine degrees of freedom out of which we are
not interested in the three translation and two rotation degrees of freedom. Removing these five, we
have four vibrational degrees of freedom that we focus on. We are taking XY to be linear like CO,
or CS; and these vibrational degrees of freedom are readily identified as the symmetric stretching
mode, the two out-of-plane bending modes (2 orthogonal directions) and the asymmetric bending
mode. Without explicit diagonalization of the equations of motion and by defining the axis of the

linear molecule as the z axis, we can identify the corresponding normal mode coordinates as



1. Corresponding to the symmetric stretching mode:

g=(z1—22)—a

where a is the equilibrium separation between the two Y atoms. This normal mode does not

involve motion of the X atom.

2. Corresponding to the vibration of the X atom perpendicular to the molecular axis relative
to the centre of mass of the two Y atoms that are assumed to be stationary, the relevant

coordinates are:

xatxao g y:y3_Y1-2Fy2_

X =X3—

Utilising the symmetry of the molecule, we can as well use plane polar coordinates r =

V/x2+y? and ¢ = tan~!(y/x) for the transverse vibrations.

3. Corresponding to the asymmetric mode of vibration wherein the X atom moves along the

molecular axis, the relevant normal mode cooridinate is
21t 22

i=233— 7

In identifying the normal mode coordinates we have assumed that the vibrational motion of the
molecule is simple harmonic in nature and the corresponding potential are quadratic in the normal
mode coordinates. These coordinates remain useful as long as anharmonicities in the potential are
small and can be treated perturbatively.

In the harmonic regime, the Hamiltonian describing the vibrational motion can be written in

terms of the normal mode coordinates* as

Hy=Ty+Vp,
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where

1 1 . |
Iy = E(m/z)qurEﬂ(f2+72¢2)+§#22
1 1 1
Vo = E(m/2)(1)12qz—|—E,I,La)zzrz—i—E,u(ug%zz. (1)

In the expressions for the kinetic and potential energies above, m is the mass of the X atom while

2mM
m—+2M

IJ':

is the reduced mass of the system with the Y atoms having mass M. The normal mode frequencies
are @1, @, and w3 respectively.

A further change of coordinates is useful where we define

_feRe a6
6= i q, p_ h r 5_ fi <. (2)

In terms of these scaled coordinates we have

1 1 1
Hy=—-— —h 57 —henE2. 3
0= 3R Pe Ty Pt yppPet o Pty 0167+ wzp+ & 3)

It is useful to introduce the following creation and annihilation operators,

ac:%<6+%Pc> ; GL:%<G_%PG>7
a§:%<§+%pg> ; a£=%<§—%pg>7
ai —%(P1+%P1> ; aI_%(Pl—%m)?
ay= %(Pﬁépz) , ab= %(Pz—%pz)- “4)

where p; = pcos@, pp = psingd, p; = hip;/m; and pr» = hipy/@,. We can now write the bare

11



vibrational Hamiltonian Hy as

1 1
Hy = hay (af,ac + 5) +han (alay +abar +1) + ha (agag + 5). (5)

The eigenstates of Hy can be labeled as |ng, nf,,n§> for ng,np,ng =0,1,..., with ny = ny +ny and
I =ny —ny, where l = —np, (—np +2),...(np —2),np. The corresponding energy eigenvalues are

1 1

and the corresponding wave functions are given by

Tng,nﬁ,,né (vav (P;ﬁ) = WnG(G)ylné ()C)R”lp,l(’,)eil(p7

where " (x) are the usual Harmonic oscillator wave functions and R (r)e''? are the eigenfunc-
tions of the two-dimensional, isotropic Harmonic oscillator. Note that the energy eigenvalues are
independent of the azimuthal quantum number [/ indicating that the out-of-plane states have corre-
sponding degeneracies.

In the realistic case, the molecular potentials are not harmonic. The variety of anharmonic
terms that appear in the real potential are limited by considerations of the symmetry of the molecule.
The anharmonic terms can be grouped into cubic and quartic ones and the Hamiltonian for the
molecule can be written as

H =Hy+ AH; + A*H,, (6)

where A is an adjustable perturbation parameter and

AH, = A(ag® +bgr* + cqz?),

A2H, = /lz(dq4+er4+fz4+gq2r2+hq2z2+ir2z2), %)
where a,b,c,... are constants that can be spectroscopically determined. We can define scaled

12



coupling constants,

A:a{mr/{ g pher [m/2)o

tc.
n n oo
and rewrite the anharmonic part of the Hamiltonian as
AH, = A(Ac®+Bop?+Coé?),
A’Hy, = A*(Do*+Ep*+FEY4+Go?p? +Ho?E? +1p2E2). (8)

7.2 Intensity of absorption

The intensity of absorption from a state labelled by quantum numbers (ng, ni,,né:) to one labelled

by (ﬁg,ﬁ%,ﬁ&) is given by,>

ot =275y Ly e R )P (1= 11T, ®
where @ is the frequency of the transition, g and g are the degeneracies of the initial and final states,
T is the temperature and R; are the components of the electric dipole moment of the molecule.

At room temperatures 7@ >> kT and the thermal factor can be ignored in the above expressions.
In the following we are interested in the transitions between the states with quantum numbers
(0,0°,0), (0,0°,1) and (1,0°, 1), all of whom have no degeneracy so that § = g = 1. In particular

we are interested in the ratio

10,00,0 )
o0 apor £;1€0,0,0[R;{0,0, 1)

- I?:(?(()):? B 0101 Z] |<07070‘RJ|1707 1>|27

J

(10)

where we have suppressed the quantum number / since for all the initial and final states we are
considering, [ = 0 uniformly.
Only the asymmetric stretching mode and the bending mode of vibrations of the linear molecule

contribute to the electric dipole moment. Given the axial symmetry of the molecule, we can write

13



R=R.?+ R,Z. Here we are assuming that the molecule does not have an intrinsic electric dipole
moment and that the symmetric stretching mode displaces the charge distribution of the molecule
in such a way that the net dipole moment remains zero. In other words, R, depends only on the

normal mode coordinate z and not on g. We can write
R,=dr=ap, and R,=p'z=p¢, (1)

where o’ and B’ are constants specific to the molecule while @ = o’ \/li/pt, and = B'\/h/ L.

Since n, = [ = 0 for all the three states we are interested in it is easy to show that (R,) = 0 for both

matrix elements appearing Eq. (10). Using & = (ag + a;g) /v/2, we find that

(il iz |Re [ne, i me ) = %5%%5%@5”'5@;1@1.
It is easy to see that the denominator of Eq. (10) must vanish and the intensity ratio we are inter-
ested in must go to infinity. This is happening because in the absence of the anharmonic terms
of the molecular Hamiltonian, the symmetric stretching mode cannot couple to the electromag-
netic field at all. However, in reality the combination band |1,0°,1) is indeed observed and is
found to be IR active in case of molecules like CO, and CS,. This is due to the anharmonici-

ties in the real potential function and the matrix elements that we should really be computing are

({0,0,0[R;]0,0, 1)) and ((0,0,0|R;|1,0,1)) where the double kets,

- )} denote the physical states

that are the eigenstates of the full Hamiltonian, H.

7.3 Physical states

The anharmonic terms in H can be treated as a perturbation on Hy. Note that the anharmonic terms
in Section 7.1 or Section 7.1 are independent of ¢. This means that the perturbation cannot mix
together eigenstates of Hy with different values of /. So we can pick a value of / and use non-
degenerate perturbation theory instead of degenerate one despite the degeneracy that is otherwise

there on account of the energy eigenvalues also not depending on the sign of /. The eigenvalues of

14



H can be readily written down to second order in perturbation as

Engn% = Const—i—no—ho)l+npha)2+n§ha)3+x11n%,+x22(n,2,—12/3)

+X33I’lé +X12n6Np +X13N6NE +X23NpNe, (12)

where x;; are constants that depend on the coupling constants a, b, ... that appear in A H; and AZH2.
First order perturbation, proportional to A, to the energy is zero since the expectation values of all
the cubic terms in AH; are zero with respect to any of the eigenstates of H.

Non-degenerate perturbation theory gives the physical states as

!
|n0,nf3,n§)> = \ng,ni),ng) + Zcz(xzng Ine +u,ni, +2v,ne +2w), (13)

uvw

where u,v,w are such that they are not equal to zero themselves but ng +u, np +2v and ng + 2w

are all positive numbers with

ngnlrné 2n
C =
uvwl uw) +2vay +2wws

(ne + u,ni) +2v,ng +2w|H'|ng,nfy,n§>,

where H' = AH; + A%H>. A long but straightforward computation yields,

27TQ11 27?6131

10,0,0)) = 10,0°0) +2=""=]1,0°0) + 2 =—=(3,0°,0)
2 2
+A&|1720,0>+/1&|100 2+ 012, (14)
W) +2an w42
0,0%,1)) = 10,0°1)+ ’”’“u 0%, 1) + 7”’31|3 0, 1)
27TP32 0 27FP33 0 3 2
A—ZEP32 1y o0 1y g EEP33 1 00 3y 1 g(A2), 15
IR L0 0) 42 P00+ 00, as)
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and

277.7511 271'S12

2
L00D) = [LO+ATEI0.0° 1)+ 2= R (2.0°, 1) + A 10,27, 1)
2 2 2
+A&|z,20,1>+1&|0 0°,3) + A&p 0°,3) + 0(12), (16)
w;+2m W) +2 w;+2

where ¢;;, p;;j and s;; are constants depending on the couplings in H; and H; and we have also
ignored writing down explicitly the normalisation of the physical states.

In the expressions for 0,0°,0)), [0,0°,1)) and [1,0°,1)), we see that in all the terms n,, is
even. This means that ((R,)) = 0 continues to be zero when computed with respect to the physical
states also because R, can only connect states which differ in n, by 1. On the other hand if we
compare the states |0,0°,0)) and |0,0°, 1)) corresponding to the strongly IR-active fundamental
of the asymmetric stretching mode of CO; and CS,, we see that term-by-term, ng differs by one.

Accounting for the normalisations of |0,0°,0)) and |0,0°, 1)) also one can show that
((0,0°,0[R.]0,0°,1)) ~ (0,0°,0|R.|0,0°,1) = B, (17)
where B is defined inEq. (11) . Again, a straightforward computation yields,

V2
((0,0%,01Re|1,0°,1)) = AGoo- Vi1 2B A (q“ +2 +433—), (18)

1 0 +203

where .4y00 and .41 are the normalisations of the two physical states. Using Eq. (17) and Eq. (18)

we get

1 @3 +x33 1

AR A2 N2 ot @y s s 2
T 0007101 IF @3 X T3NS (g sy gy
W1 +2m3

(19)

We have used wgg; = w3 +x33 and @191 = ®; + ®3 +x11 + x33 + Xx13 incorporating corrections to
the energies due to anharmonicity up to second order in A. Note that in the third term on the right

in Eq. (19) we have used only the bare frequencies @; and @3 since the origin of these terms are
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from the perturbation series for the physical states. The constants g1, s11 and ¢33 are proportional

to x11, x33 and x13 respectively.

7.4 The CS, Molecule

Let us now specialise to the case of the Carbon Disulphide molecule. We are interested in com-
puting the dependence of the area ratio between the strongly IR-active band corresponding to the
fundamental of the asymmetric stretching mode and the weak (1,0°,1) combination band. As
mentioned earlier, the area under each band is taken to be proportional to the intensity of absorp-
tion (oscillator strength) and so the area ratio, apart from a proportionality constant is equal to the
quantity J for which we have obtained an expression for in Eq. (19). Under strong and ultra-strong
coupling regimes the variable in Eq. (19) that has a dependence on the concentration of molecules
in the cavity is the frequency ws of the asymmetric stretching mode and through this, the area ratio
also acquires a dependence on the concentration.

For the CS, molecule, the spectroscopically determined values of the relevant anharmonicity
constants® are x;; = —0.7 cm™ !, x33 = —4.8 cm ™! and x33 = —8.0 cm~! while in the same units,

Iand

the fundamentals of the symmetric and asymmetric stretching modes correspond to 655 cm™
1510 cm™! respectively. In our expression for J we can therefore effectively ignore these constants
relative to the frequencies w; and @,. In addition to this, we note that the denominator of the third
term in Eq. (19) also has a dependence on @w; and consequently on the concentration. However
this dependence is strongly suppressed by ¢33 which, in turn, is proportional to x33. For clarity of

our discussion, we will choose to ignore the w3 dependence of the denominator of the third term

as well and write the area ratio as

A=KJ=T———, (20)
W) + 03
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where

K 1
X

r=
2 0 2
AT Ao Mdr (w4 any2
[} w1 o;+2m3

is assumed to be approximated well by a constant.

8 Ultra-strong coupling to the cavity

Let us consider N molecules in the cavity. In the present case the ((),007 1) transition couples
strongly with the 10™ harmonic of the cavity mode. We focus only on this cavity mode to the ex-

clusion of all other modes that may be present. The cavity mode is described by the field operator,

. ho, L oy T
E(?):MZSO; (acke™™ " +alére™™), 1)

where . is the frequency of the relevant mode, k is its wave vector, V is the mode volume, a. and

a! its corresponding creation and annihilation operators and 575 is the polarisation of the mode. In
the present case the molecules are coupling to the vacuum of the electromagnetic field inside the
cavity. We assume that the cavity mode has uniform intensity within the mode volume V and that
its polarisation is in the plane perpendicular to the axis of the cavity. The asymmetric stretching
mode of those molecules whose axis lie on this plane would couple strongly to this mode while
those with orientation perpendicular to this plane (along the axis of the cavity) will not couple at
all. At intermediate orientation the coupling energy is modulated by the cosine of the angle that
the molecular axis makes with the plane of polarisation of the mode. We are not concerned with
the bending mode of vibration of the molecule here and assume that it is not resonant with any of
the harmonics of the cavity mode.

For simplicity, we focus only on the n molecules, out of the total NV, whose axis is perpendicular
to the axis of the cavity and aligned with the polarization direction of the cavity field. A more
detailed computation relaxing this assumption can be done but it serves only to add unnecessary

mathematical complexity to our treatment. We assume that the mode volume within which the
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collective excitations of the n molecules we are interested in is quantized coincides with the volume
of the cavity mode. With these simplifying assumptions, we can write the expression for the field

operator in Eq. (21) as

A G (22)

The induced dipole moment along the molecular axis due to the presence of the cavity field is

where (d(p)/dz)o arises from Taylor expanding the molecular polarizability about its equilibrium

position. The collective polarization of the n molecules is

S0 N o) [440)
PO = L0 = | 2] e L s et o)

The interaction between the cavity field and the molecules is given bu

A ho,
Hey—E-B = 1/2,ua)3 Z@sz(a6+az>(a§j+a21>

= ac—l—a agj—i-aéj) (25)
J
where
d<ﬁ>] 1
Q= 26
{dz 02V 1eV’ (26)

assuming that at resonance @, = @3. The coupling to the cavity field induces dipole moments in
the molecules. The induced dipoles interact among each other and under ultra strong coupling, this
interaction is also substantial and it cannot be ignored. The corresponding interaction Hamiltonian

is
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Zk agj+al;)(ag+ag,). 27)

The problem of vibrational modes strongly coupled to the IR field with the Hcy and Hpgpy
terms included can be solved exactly using various approaches including the polariton transforma-
tion, Hopfield diagonalization etc.”~'® However our focus here is not on finding the eigenmodes
and eigen-energies of the coupled system but rather on the dependence of the bare frequency of
the asymmetric stretching mode @3 on n (and consequently on the concentration). For this, it is
sufficient to take a semi-classical approach where we ignore the quantum features of the cavity
field. The E - P coupling is linear in & while the self interaction term is quadratic in &. Consider a
general harmonic oscillator is suitably scaled coordinates with the Hamiltonian,

h— 1, 15 2

@
A

Addition of a term of the form kx? can be treated easily and exactly since all it does is to shift the
frequency to @? + k. On the other hand, addition of a term 2@?cx can again be dealt with exactly
by completion of the square shifting x to x + ¢ without change in frequency of the oscillator but
shifting the overall energy of the oscillator by a constant amount, namely —c?>®?/2. Here c is a
constant. This simple picture is consistent with our understanding of the cavity-molecule coupled
dynamics in that the E - P term shifts the equilibrium value of & thereby endowing each of the
molecules a dipole moment along the direction of the electric field of the mode. These induced
dipoles are significant in the resonant/ultra-strong coupling regime and they interact with each
other leading to the P- P term that also needs to be treated exactly and not perturbatively.

Detailed theory of the molecule-cavity system®° shows that the effective coupling constant in
Hcyy is given by Qg where Qg = /nQ is the Rabi frequency which is enhanced relative to the bare
coupling Q by the collective effect proportional to y/n. The strength of the dipole-dipole coupling

is similarly given by #Q2%/w; = 2nhQ?/w;. We see that the bare frequency of the asymmetric
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stretching mode behaves as
2

Q
0" = w3 + =y = o+ n. (28)
3

We choose a simple form for w; a)én) appearing in the denominator Eq. (20) as

o] +a)3("> = W + w3 + nKn. (29)

So finally we arrive at the following expression for the concentration dependence of the area ratio:

3+ Kn
O + 03 +nkn’
- © 1+nk/w?
o+ o3 1+nnk/(@ + o)’
1+kC
"T+kC

(30)

where Ag = T'ws/(@; + @3) is the area ratio in the absence of the cavity. In the last line of the
equation above we have replaced n with the concentration C of CS; injected into the cavity with

C = yn and the constants k; = yx /w3 and ky = nyx/(w; + @3).
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