
 1 

Comparative Study of Deep Generative Models on 1 

Chemical Space Coverage 2 

Jie Zhang＆,＄,‖, Rocío Mercado€, Ola Engkvist€, Hongming Chen＆,‖ ,* 3 

＆Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory 4 

Animals Monitoring Institute, Guangzhou, 510663, P. R. China 5 

＄State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, 6 

Chinese Academy of Sciences, Guangzhou 510530, P. R. China 7 

‖Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong 8 

Laboratory)，Guangzhou 510530, P. R. China 9 

€Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg 43183, Sweden 10 

*Correspondence e-mail: chen_hongming@grmh-gdl.cn 11 

Abstract 12 

In recent years, deep molecular generative models have emerged as novel methods for de novo 13 

molecular design. Thanks to the rapid advance of deep learning techniques, deep learning 14 

architectures such as recurrent neural networks, variational autoencoders, and adversarial networks, 15 

have been employed for constructing generative models. However, so far the metrics used to 16 

evaluate these deep generative models are not discriminative enough to separate the performance 17 

of various state-of-the-art generative models. This work presents a novel metric for evaluating 18 

deep molecular generative models; this new metric is based on the chemical space coverage of a 19 
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reference database, and compares not only the molecular structures, but also the ring systems and 20 

functional groups, reproduced from a reference dataset of a 1M subset of GDB-13. The 21 

performance of 7 different molecular generative models was compared by calculating their 22 

structure and substructure coverage of the GDB-13 database while using the 1M subset for training. 23 

The result shows that the performance of various generative models varies significantly using the 24 

benchmarking metrics introduced herein, such that generalization capability of the generative 25 

model can be clearly differentiated. Additionally, the coverage of ring systems and functional 26 

groups existing in GDB-13 was also compared between the models. Our study provides a useful 27 

new metric that can be used for evaluating and comparing generative models. 28 

Introduction 29 

Deep learning has been successfully used in many fields to learn relationships that are too complex 30 

to learn using traditional computer algorithms, including early image classification,1, 2 facial 31 

recognition, and music recognition.3 Deep learning even surpasses the performance of human 32 

experts in some challenging tasks, such as playing GO.4 Moreover, deep generative models play 33 

important roles in tasks like music composition,5 image generation,6 and language translation. 7 In 34 

the last five years, deep generative modeling has also been applied in the fields of cheminformatics 35 

and molecular design. One interesting example is using deep neural networks for compound 36 

structure generation.8-11 37 

The number of chemically feasible, drug-like molecules has been estimated to be on the order of 38 

1060 – 10100 compounds.12 For such a large chemical space, it is clearly impossible to synthesize and 39 

test every compound for pharmaceutical applications. To efficiently explore the space, molecular 40 
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generative models have emerged in recent years with the aim of better navigating through this 41 

huge chemical space for de novo molecule design.  42 

De novo molecular design has long been put forward as a way to accelerate the drug discovery 43 

process as it is expected to save time and resources in drug discovery, where it can take over a 44 

decade and billions of dollars in investment to bring a single drug to market.13 Historically, de novo 45 

design methods have been mainly rule-driven and used brute force algorithms to achieve their 46 

goal.14 For example, creating a virtual library using fixed rules and building blocks, then scoring 47 

each compound in the virtual library to find the best compound. Genetic algorithm based 48 

algorithms were also proposed to tackle the de novo design issue.15, 16 In contrast, deep generative 49 

molecular design is the concept of generating molecules using deep neural networks. Deep 50 

generative models are data-driven methods which generate compound structures by learning the 51 

underlying probability distributions in a compound dataset instead of screening existing databases 52 

for molecules that fit the desired profile. Deep generative models are powerful as they allow 53 

chemists to bypass models using hard-coded chemical rules which do not scale to larger datasets. 54 

Furthermore, not all chemical rules are easy to define. Using deep generative models, one can 55 

avoid enumerating all possible structures for a given application and then screening them (a 56 

daunting task). Instead, one can simply train a model using known compounds, and sample the 57 

model for the desired set of properties (e.g. ADMET profile) to get out promising structures. De 58 

novo generative models can generate structures that are in significantly narrower, but more 59 

promising, regions of chemical space. Moreover, deep learning methods can take advantage of all 60 

the information available in ever-increasing large public datasets, thanks to automation 61 

technologies used in high-throughput screening and parallel synthesis.17   62 



 4 

In recent years, many molecular generative models have been published, such as CharRNN, VAE, 63 

and REINVENT, which are remarkable at sampling molecules both in- and outside the training set 64 

used to learn chemistry rules.11, 18-21 It is worth noting that CharRNN was introduced as a general 65 

language model at the first place. However, similar architectures are also successfully applied in 66 

molecular generative models, e.g. REINVENT adopted a similar architecture with reinforcement 67 

learning.22-26 VAE is a general architecture that has a wide range of applications in many generative 68 

models and tasks.27-29 In current study, we adopts the implementation of CharRNN and VAE 69 

provided by the MOSES.10 Notably, many of these generative models have been benchmarked 70 

using existing “distribution-based” metrics implemented in open-source programs such as 71 

MOSES10 or GuacaMol.30 However, these metrics are in general non-discriminative as many of 72 

these state-of-the-art (SOTA) models perform quite well across all the included metrics, such that 73 

it is difficult to compare them and gain a deep understanding of each model’s strengths and 74 

weaknesses. We previously proposed a new metric: the percent coverage of functional groups 75 

present in GDB-13.31  As an extension of our previous work,32 we apply the idea as a way for 76 

benchmarking the performance of multiple generative models. GDB-13 contains in total 77 

975,820,210 structures, which enumerate small organic molecules containing up to 13 atoms of C, 78 

N, O, S, and Cl by following simple chemical stability and synthetic feasibility rules.32 The 79 

generalization capability of deep generative models is assessed by computing how much of the 80 

whole GDB-13 can be recovered by a model trained from a small GDB-13 subset.  81 

Substructure has long been used to characterize the composition of compounds. One concept is 82 

the so-called functional group, frequently used in many fields in chemistry, including medicinal 83 

chemistry. A functional group is defined as a subset of connected atoms in a molecule that in some 84 

way endows specific intrinsic properties (or functions) to a molecule. Furthermore, the presence 85 
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or absence of a functional group in a molecule could determine whether a molecule will react in a 86 

given reaction. Some of the most common groups in medicinal chemistry include amides 87 

(RC(=O)NR’R”), ethers (R–O–R’), and amines (RR’NR”), where R, R’, and R” represent organic 88 

groups or hydrogen atoms.33 Another substructure-based concept is the ring system; ring systems 89 

are the key components of molecular scaffolds. They play an important role in a molecule’s 90 

observed properties, such as the electronics, scaffold rigidity, molecular reactivity, and toxicity. 91 

On average six new ring systems enter the drug space each year and approximately 28% of new 92 

drugs contain a new ring system.34 We investigated the percentage of chemical space covered in 93 

terms of full structures, functional groups, and ring systems by published SOTA generative models. 94 

The size of GDB-13 was hypothesized to be large enough to highlight differences between the 95 

various models. 96 

Four major classes of deep generative models are benchmarked and studied in this work, including 97 

those based on recurrent neural networks (RNNs), autoencoder (AE) based networks, generative 98 

adversarial networks (GANs), and graph neural networks (GNNs). The deep generative models 99 

based on RNNs include REINVENT18, 32, 35 and CharRNN,25 which use SMILES as the input and 100 

output strings. VAE,36 AAE,21, 37 ORGAN,20 and LatentGAN11 adopt either an AE or GAN for structure 101 

generation using SMILES. Besides the SMILES-based generative models, one graph-based 102 

generative model, GraphINVENT,38 which uses GNNs in its core architecture, is also included in 103 

the benchmark study. An effort was made to cover most of the major types of generative model 104 

architectures in this study, in the hope that this would provide a comprehensive comparison for 105 

existing generative models.  106 

Methods 107 
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Extraction of functional groups and ring systems. To identify functional groups (FG) in the 108 

various sets of molecules in this work (generated molecule sets, and GDB-13), the RDKit 109 

functional group identification package,39 which is based on an algorithm introduced by Peter Ertl 110 

for automatically identifying functional groups, was used.40 The advantage of the method is that it 111 

is not based on manually curated lists of functional groups, and thus can be applied to any chemical 112 

series. It is important to note that different chemists have slightly different definitions of what is a 113 

functional group; however, as the benchmark introduced here calculated ratios of functional groups 114 

in the generated and reference sets, a difference in opinions between chemists shouldn’t be relevant. 115 

The extraction of compound ring system (RS) was done using RDKit. First, all monocyclic rings 116 

were retrieved; monocyclic rings were then fused depending on if individual ring systems shared 117 

atoms or not. 118 

Generative models. The models studied in this study include CharRNN, REINVENT, AAE, VAE, 119 

ORGAN, LatentGAN, and GraphINVENT. The REINVENT code available at the 120 

github.com/undeadpixel/reinvent-randomized repo35, 41 was used;  the CharRNN, AAE, VAE, and 121 

ORGAN codes available at the MOSES GitHub repository10, 42 were used; the LatentGAN code 122 

available at the github.com/Dierme/latent-gan repository11, 43 was used. Unlike original implement 123 

of LatentGAN, we retrained the embedded Deep Drug Coder (DDC) model with randomly 124 

selected 3M molecules from GDB-13 as the encoder and decoder component of LatentGAN. The 125 

DDC code available at the github.com/pcko1/Deep-Drug-Coder repository44 was used; finally, the 126 

GraphINVENT code available at the github.com/MolecularAI/GraphINVENT repository 38, 45, 46 was 127 

used. All methods except for GraphINVENT are string-based generative models, whereas 128 

GraphINVENT is a graph-based generative model.  129 
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Training. The GDB-13 database is used as the reference chemical space for this study.31 A one 130 

million (1M) molecule subset of GDB-13 was randomly selected and used as the training set for 131 

all the generative models. Another 200K molecules of GDB-13 were selected as the validation set 132 

for calculating the validation loss. During training, a check point model was saved at every epoch. 133 

The check point model with the lowest validation loss was chosen as the final model for sampling 134 

1 billion (1B) SMILES. 135 

Hyperparameters. For REINVENT, hyperparameters were taken from the GitHub repo.41 For 136 

CharRNN, AAE, VAE, and ORGAN, the parameters were taken from the models’ config file in 137 

MOSES GitHub repo without further optimization. For LatentGAN, , the default values of 138 

parameters in the GitHub repo were adopted.11, 43 For GraphINVENT, parameters and 139 

hyperparameters for the best performing model (cGGNN) in the original publication were used 140 

and not further optimized.46 Detailed hyperparameters for each model can be found in SI Table S2. 141 

Sampling. Once each model was trained, 1B compounds were sampled from each trained model. 142 

The functional groups and ring systems were then identified for all sample sets as well as the full 143 

GDB-13 set. All compounds in the analysis were standardized by converting to RDKit canonical 144 

SMILES. Molecular graphs generated using GraphINVENT were further sanitized via 145 

canonicalizing and aromatizing  during the conversion to canonical RDKit SMILES for a more 146 

fair comparison to the other models. 147 

Technical details. For models in the MOSES repository and REINVENT, the training was done 148 

using Python 3.647 and PyTorch 1.448. To accelerate sampling for 1B SMILES, the largest batch size 149 

allowed by the GPU memory was adopted; for example, ORGAN, AAE, and VAE adopted a 150 

sampling batch size of 25, 000, and CharRNN adopted a sampling batch size of 20,000. Also, 151 

LatentGAN was trained using tensorflow-gpu 2.2, which adopted a sampling batch size of 50,000. 152 
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All the computations were performed on Linux workstations with GeForce RTX 2080Ti graphic 153 

cards using CUDA 10.1. Canonical SMILES and dataset analysis were carried out using RDKit.39 154 

The Wasserstein distances49 between distributions in Figure 2 were calculated with an in-house 155 

script using SciPy.50 Finally, GraphINVENT runs using Python 3.6 and PyTorch 1.2. 156 

Results and Discussions 157 

Analysis of the GDB-13 database 158 

GDB-13 contains theoretically drug-like compounds whose heavy atom count is less than or equal 159 

to 13 and, in total, comprises of 975,820,210 molecules, 21,852,845 ring systems, and 4,401,506 160 

functional groups. The distribution of the occurrence frequency of these ring systems and 161 

functional groups is shown in Figure 1.  Figure 1 indicates that ~80% of ring systems and ~66% 162 

functional groups in GDB-13 occur in compounds only 1-2 times, while only ~1% of ring systems 163 

and functional groups are observed in GDB-13 molecules more than 200 times. In general, most 164 

of the ring systems (~93%) and functional groups (~91%) appear in GDB-13 less than 20 times.  165 

 166 

Figure 1. Distribution of ring systems (RS) and functional groups (FG) in GDB-13 according to 167 

the frequency of occurrence. Y-axis is the percentage plotted on a logarithmic scale. 168 
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Analysis of the 1M training dataset 169 

One million SMILES were randomly selected from the GDB-13 database for the training set, 170 

which corresponds to roughly 0.1% of the total GDB-13 dataset. The training set contains around 171 

0.9% of the ring systems and functional groups in the whole GDB-13 database (Table 1). The 172 

coverage of the ring systems and functional groups is nine times as high as the coverage of 173 

compounds, which is obviously due to the fact that some ring systems and functional groups occur 174 

far more than once in GDB-13, as shown in Figure 1. 175 

Table 1. Summary of GDB-13 coverage in the training set, consisting of 1M randomly selected 176 

molecules. 177 

Item Counts in the training dataset (1M) Coverage of GDB-13 

Compounds 1,000,000 ~0.1% 

Ring systems 202,848 ~0.9% 

Functional groups 38,209 ~0.9% 

 178 

 179 

Figure 2. The frament weight distributions for the different substructures in GDB-13. The different 180 

colors indicate distributions involving substructures that occur in GDB-13 a similar number of 181 

times (i.e. orange is substructures that occur >20,000 times in GDB-13, brown is substructures that 182 
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occur ≤ 2 times). In the key, the numbers in parentheses indicate the Wasserstein distance between 183 

the training set distribution and the indicated distribution. (a) Ring systems (RS). (b) Functional 184 

groups (FG). 185 

The fragment weights (FWs) of ring systems and functional groups in the training set, grouped by 186 

frequency of occurrence, are shown in Figure 2. The FWs here were calculated from the 187 

composition of specific ring systems and functional groups rather than the full compound.  It is 188 

observed that their probability of occurrence decreases with increasing FW. For example, the mean 189 

FW of RS and FG which occur with a frequency >20,000 is around 100; however, for RS and FG 190 

which occur <=2 times in GDB-13, the mean FW is around 170. More basic RS and FG, such as 191 

C1CC1 (cyclopropyl) and C=O (carbonyl), respectively, tend to have smaller FW compared to 192 

complex RS and FG. Furthermore, many complex RS and FG can be built from the basic 193 

components via enumeration and combination following the chemical rules extracted from the 194 

training dataset. 195 

Training and sampling speed 196 

All deep molecular generative models were trained with the same training set of 1M compounds. 197 

Each epoch of training took 17-20 min for most models (Figure 3), except CharRNN (28 min) and 198 

GraphINVENT (36 min). In general, the training speed of all the models is acceptable. We 199 

observed that training SMILES-based models is faster than the graph-based model; this is 200 

understandable because the action space of the graph-based model is much larger than any of the 201 

SMILES-based models.  202 

Nonetheless, the sampling speed of the generative models was observed to vary significantly. The 203 

sampling speed of REINVENT, AAE, ORGAN, and VAE were all above 7000 compounds per 204 

second, while the sampling speed of CharRNN, LatentGAN, and GraphINVENT were only 200, 205 
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100, and 1100 compounds per second, respectively. Notably, CharRNN and REINVENT share 206 

similar architecture of character-level recurrent neural networks. The difference of their 207 

performance is mainly due to CharRNN implementation provided by MOSES adopts a larger size 208 

of architecture. The detailed hyper parameters are given as Table S2 in the supporting materials. 209 

It should also be noted that both training and sampling speeds are strongly related to the batch size 210 

that is limited by the memory of the GPU. In current work, the default batch size as specified in 211 

the code was used during the training, while for sampling, the largest batch size allowed by the 212 

GPU memory was chosen. 213 

Given the relatively small size of the training set (1M molecules), all the deep generative models 214 

had a tractable training speed. In terms of sampling, the sampling speed was limited by each 215 

model’s architecture and size; using a larger sampling batch size allowed by a greater GPU 216 

memory could boost the sampling speed. 217 

 218 
Figure 3. Training and sampling speeds of the generative models benchmarked in this work. (a) 219 

Time consumed per epoch during training. (b) Sampling speed, which is the number of 220 

SMILES/graphs generated per second (including invalid ones). 221 

Validity and repetition rate of sampled molecules 222 
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We first check the validity of the molecules generated by all the deep generative models, which is 223 

defined as the percentage of chemically valid SMILES/graphs in the 1B generated set. Table 2 224 

shows that the validity in general is satisfactory for all models, where most models achieve a 225 

validity higher than 90 percent. RNN based models (REINVENT and CharRNN) have the highest 226 

validity which is above 99.3% (Table 2). The validity of LatentGAN and GraphINVENT are 85.4% 227 

and 95.3% respectively, which are lowest among all the models. In order to check how much 228 

duplication is generated among the sample sets, the repetition rate (𝑅"#$%) was calculated via the 229 

formula below: 230 

𝑅"#$% =
𝑁()*+, − 𝑁./+0.#

𝑁./+0.#
,																																																																			(1) 231 

where, 𝑁()*+, is the number of total valid molecules in the 1B generated set and 𝑁./+0.# is the 232 

number of unique valid molecules in the 1B generated set (i.e. duplicates removed). The compound 233 

repetition rates of most deep generative models were around 1.0, that is to say, most compounds 234 

were sampled twice on the average. ORGAN and CharRNN have the highest repetition rates, 235 

which are 3.8 and 1.4 respectively, whereas GraphINVENT and LatentGAN have the lowest (0.7). 236 

It seems that all the deep generative models had a satisfactory high percent validity that was above 237 

85% in this study. The validity of CharRNN reached as high as 99.7%. ORGAN had a repetitive 238 

rate as high as 3.8, which means that each generated compound was sampled 4.8 times on average. 239 

The high repetition rate resulted in a low overall compound coverage for ORGAN, where the 240 

coverage was as low as 16%.   241 

Table 2. Percentage of the valid molecules and molecular repetition rate in the 1B generated set 242 

for each model in this study. The uncertainty in the percent validity was less than a fraction of a 243 

percentage point for each model. 244 
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Model REINVENT CharRNN AAE ORGAN LatentGAN VAE GraphINVENT 

Validity 
(%) 99.3 99.7 97.8 97.2 85.4 98.2 95.3 

Repetition 

rate 
0.9 1.4 0.9 3.8 0.7 1.0 0.7 

 245 

Coverage of GDB-13 chemical space 246 

The molecule and substructure coverage of GDB-13 space for all generative models studied herein 247 

is shown in Figure 4a. It can be seen that all the models possess good capabilities for generalization, 248 

surpassing the coverage of the 1M training set used, which has a ~0.1% coverage of GDB-13 249 

compounds, ~0.9% coverage of GDB-13 ring systems, and ~0.9% coverage of GDB-13 functional 250 

groups. REINVENT achieves the highest compound and FG coverage (39% and 26%, 251 

respectively), while AAE achieves best RS coverage (41%). The GAN models (ORGAN and 252 

LatentGAN) have lowest coverage at all three levels.  253 

Using these new metrics, the difference in performance among these models is more pronounced; 254 

this is in contrast to a previous benchmarking study using the MOSES metrics,[10] where the two 255 

GAN models appear to perform similarly with the CharRNN, AAE, and VAE models. 256 

Overall, REINVENT, CharRNN, AAE, and VAE are the top-ranking models in this benchmarking 257 

study. They have a compound coverage, RS coverage, and FG coverage around 34%, 34%, and 258 

21%, respectively, in all cases. The performance of GraphINVENT is in the middle rank among 259 

the generative models in this study, and demonstrates coverage scores of 22%, 30%, and 24% for 260 

compound coverage, RS coverage, and FG coverage, respectively. 261 

 262 

 263 

 264 
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 265 

 266 

Figure 4. Coverage of GDB-13 chemical space using 1B sampled molecules. (a) Coverage of 267 

compounds, ring systems (RS), and functional groups (FG) in GDB-13 (𝑃78(#"#,). (b) Percentage 268 

of sampled molecules, RS, and FG that are outside the chemical space of GDB-13 (𝑃8.%). 269 

Coverage of compounds, RS, and FG in GDB-13 was calculated via the formula below: 270 

𝑃78(#"#, =
𝑁./+0.#_+/
𝑁:;<=>

	∗ 100%	,																																																							(2) 271 

where 𝑁./+0.#_+/  is the number of unique valid sampled compounds, RS, or FG that are also found 272 

in GDB-13, and 𝑁:;<=> is the total number of compounds, RS, or FG present in GDB-13.  273 

The percentage of sampled compounds, RS, or FG that are outside the chemical space of GDB-13 274 

was calculated via the formula below: 275 

𝑃8.% =
𝑁./+0.#_8.%
𝑁./+0.#

	∗ 100%	,																																																															(3) 276 

where 𝑁./+0.#_8.% is the number of unique valid sampled compounds, RS, or FG that are not found 277 

in GDB-13, and 𝑁./+0.# is the total number of unique valid compounds, RS, or FG in the generated 278 

sets.  279 



 15 

There are four major metrics mentioned above, namely validity, repetition rate, coverage of GDB-280 

13 chemical space, and percentage outside GDB-13. Validity represents how good a generative 281 

model has learned the chemical rules for constructing compounds; repetition rate represents how 282 

much structure duplication exists in the generated compound set; generalization capacities of 283 

models can be measured with the coverage of GDB-13 after being trained on a smaller fraction of 284 

chemical space. As a supplement to above metrics, percentage outside GDB-13 shows how many 285 

sampled compounds fall outside the scope of GDB-13 (which are usually non drug-like 286 

compounds). Also, these four metrics are not independent from each other. For example, if a model 287 

has a high validity and a small percentage sampled outside GDB-13, given that exactly 1B 288 

compounds are sampled, the only reasonable explanation for a low GDB-13 coverage is a high 289 

repetition rate. 290 

Figure 4b shows the generated structures outside GDB-13. As GDB-13 uses filters to remove 291 

molecules that do not satisfy simple chemical stability and synthetic feasibility rules, such as ring-292 

strain criteria and valency rules, there are many structures that can be generated which violate the 293 

filters used by GDB-13. For example, there are around 27% valid SMILES generated by 294 

REINVENT which fall outside the scope of GDB-13 chemical space. However, for CharRNN, 295 

only 15% of its respective generated sets fall outside GDB-13, which is lower than other models 296 

in this study. As the percent validity of the structures generated by both models is above 97%, we 297 

conclude that the lower fraction of compounds outside GDB-13 is due to the high repetition rate 298 

of compounds for these models, as shown in Table 2. As for the percentage of RS and FG outside 299 

of the scope of GDB-13, more than 50% of all FG and RS found in the generated sets for each 300 

model are outside the GDB-13 chemical space. 301 
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After training with a subset of the GDB-13 database (0.1%), all the generative models showed 302 

promising performance in terms of compound coverage. Around 16% compounds of GDB-13 were 303 

covered with 1B SMILES sampled by the LatentGAN, which is 160 times greater than the 304 

coverage of the training dataset itself. The model with the best performance in this study is 305 

REINVENT, which has an observed compound coverage as high as 39%. Thus, we conclude that 306 

deep generative models in general have satisfactory learning and generalization capacities. In 307 

terms of overall GDB-13 compound coverage, the rank of performance in descending order is 308 

REINVENT > CharRNN > VAE > AAE > GraphINVENT > LatentGAN > ORGAN.  309 

The GDB-13 coverage of RS and FG was generally less than the coverage of compounds, except 310 

in the cases of AAE, LatentGAN, and GraphINVENT. However, in these cases, greater than 60% 311 

RS and FG in the generated set were outside the scope GDB-13 chemical space, while less than 312 

40% of generated molecules were outside GDB-13 (except LatentGAN). In terms of RS coverage 313 

of GDB-13, the rank of performance in descending order is AAE > REINVENT > VAE > 314 

CharRNN > GraphINVENT > LatentGAN > ORGAN. In terms of FG coverage of GDB-13, the 315 

rank of performance in descending order is REINVENT > VAE > GraphINVENT > CharRNN > 316 

AAE > LatentGAN > ORGAN. Examples of the most commonly observed groups in structures 317 

generated by the two best models in terms of functional groups and ring systems recovery, 318 

REINVENT and AAE, are shown in Figures 6 & 8. Examples of the most commonly observed 319 

groups that are outside of GDB-13 in structures and generated by LatentGAN, are shown in Figures 320 

7 & 9. 321 

It is worthwhile to mention that the original LatentGAN adopts a heteroencoder and decoder model 322 

(DDC) trained on ChEMBL dataset, the LatentGAN had a compounds coverage, RS coverage and 323 

FG coverage of GDB-13 as 13%, 15% and 18%, respectively. When the DDC model were trained 324 
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on a 3M subset of GDB-13 instead, the compounds coverage, RS coverage and FG coverage of 325 

GDB-13 increased to 18%, 26% and 18%, respectively. Thus, we adopted the heteroencoder and 326 

decoder model trained on the 3M subset in this study. 327 

Relationship between the coverage of GDB-13 and occurrence frequency 328 

 329 

 330 

Figure 5. Coverage of GDB-13 chemical space from 1B sampled molecules, grouped by the 331 

occurrence frequency of molecules in GDB-13. (a & c) Coverage of RS and FG. (b & d) 332 

Distribution of generated RS and FG that are shared with the chemical space of GDB-13. The y-333 

axes for (b) and (d) are displayed in logarithmic scale. 334 

The coverage of GDB-13 chemical space from 1B sampled molecules, grouped by the 335 

occurrence frequency of molecules in GDB-13, was calculated via the formula below: 336 
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𝑃78(#"#, =
𝑁./+0.#_+/(𝑅D, 𝑅/)
𝑁:;<=>(𝑅D, 𝑅/)

	∗ 100%	,																																																(4) 337 

where 𝑁./+0.#_+/(𝑅D, 𝑅/) is the number of unique RS or FG in the sampled set that have an 338 

occurrence frequency in the interval of 𝑅D − 𝑅/ (including 𝑅/) in GDB-13, and 𝑁:;<=>(𝑅D, 𝑅/)  339 

is the total number of RS or FG in GDB-13 with an occurrence frequency in the interval of 𝑅D −340 

𝑅/  (including 𝑅/ ). As such, 𝑃78(#"#,  represents the coverage of specific set of substructures 341 

𝑁:;<=>(𝑅D, 𝑅/)  of GDB-13 from the 1B generated set. 342 

In Figures 5a and 5c, the RS and FG coverage of various models is broken down into different 343 

frequency sections to examine the coverage performance for different types of substructures. 344 

Figure 5 shows that for high frequency RS and FG, the coverage is high and quite similar among 345 

all models, while for less frequent RS and FG, the coverage reveals differences between models. 346 

On the other hand, comparing with the training set, all models demonstrate clear enrichment of RS 347 

and FG coverage, and the enrichment gets bigger as the RS and FG frequency is lower. As for RS 348 

and FG at the occurrence ranges of  “>20000”, “2000-20000”, and “200-2000”, the coverage is 349 

close to 100% for all models, while the coverage of the training dataset is around 82%, 73%, and 350 

31% at these respective occurrence frequency ranges. As for RS at the occurrence range of “20-351 

200”, “2-20” and “≤2”, most generative models have an RS coverage of around 80%, 60%, and 352 

30%, compared to only 5%, 1%, and 0% for the training dataset. The coverage of FG at the 353 

different occurrence frequency ranges has a similar pattern to the RS coverage. 354 

Similarly, distribution of generated RS and FG that are shared with the chemical space of GDB-355 

13 was calculated via the formula below: 356 

𝑃,+F% =
𝑁./+0.#_+/(𝑅D, 𝑅/)

𝑁./+0.#_+/
∗ 100%	,																																													(5) 357 
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where 𝑁./+0.#_+/(𝑅D, 𝑅/) is the number of unique RS or FG in the sampled set that have an 358 

occurrence frequency in the range of 𝑅D to 𝑅/ in GDB-13, and 𝑁./+0.#_+/  is the total number of 359 

unique RS or FG in the generated set, which are also included in GDB-13. Thus, 𝑃,+F%	is a metric 360 

of the distribution of RS or FG that are shared with GDB-13 at different occurrence ranges. 361 

The distributions of generated RS and FG corresponding to occurrence frequency in GDB-13 are 362 

shown in Figures 5b & 5d. Given that most RS and FG have an occurrence frequency below 20 in 363 

the GDB-13 database (as shown in Figure 1), the overall coverage of RS and FG is thus dominated 364 

by ones with low occurrence frequency. 365 

The most frequent and least frequent ring systems and functional groups sampled by the deep 366 

generative models are listed in Figures 6-9. The most often sampled ring systems are simple carbon 367 

cycles or aromatic heterocycles containing O and N atoms, such as C1CC1 (cyclopropane), which 368 

was sampled up to 78M times in the 1B sample set, and C1COC1 (oxetane), which were sampled 369 

up to 26M times in the 1B sample set. For comparison, the benzene ring ranked 85th among the 370 

most common sampled ring systems. As for the least common sampled ring systems, they were 371 

usually complex macrocycles that were only sampled once out of the 1B compounds generated.  372 

The most commonly sampled functional groups are ordinary small ones, such as single oxygen 373 

and nitrogen atoms, C-C double bonds, and C-C triple bonds. The least commonly sampled 374 

functional groups are those with complex structures formed by a combination of simple ones. The 375 

ring systems and functional groups that are not included in GDB-13 usually do not conform to 376 

simple chemical stability and synthetic feasibility rules.  377 

Most of the RS (~93%) and FG (~91%) found in the generated sets that are also found in GDB-13 378 

are seen less than 20 times. As the results show in Figure 2, RS and FG that occur more frequently 379 

in GDB-13 tend to have smaller fragment weights. The building blocks of RS and FG are basic 380 
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rings and functional groups with simple structures and small fragment weights. More complex RS 381 

and FG can be built via the combination of these basic components.  382 

The coverage of RS and FG with an occurrence frequency in GDB-13 greater than 200 was nearly 383 

100%. This is because these RS and FG can be easily obtained via combinations of smaller 384 

fragments. However, given that as many as up to 13 heavy atoms were considered in constructing 385 

the GDB-13 database, most RS and FG possess complex structures and were included in 386 

compounds of GDB-13 less than 20 times. RS and FG that occur less than 20 times in the generated 387 

sets dominate the coverage of the deep generative models. 388 

Besides, as shown in Figures 10, most common ring systems and functional groups sampled by 389 

generative models have close relative occurrence frequency compared to their distribution in 390 

GDB-13.  391 

Model comparison 392 

It is interesting to observe that these models describe the chemical space so differently, although 393 

trained with the same training set. It seems that the RS and FG coverage of GraphINVENT is 394 

higher than its overall molecular coverage, one reason could be due to its large action space; that 395 

is, the number of possible “correct” sampled actions at any stage during graph generation is much 396 

larger than it is for SMILES-based methods which must use only tokens sampled in the training 397 

set. As such, given that GraphINVENT samples actions probabilistically, it is possible that 398 

sequences of actions are sampled which have never been seen in the training set, thus leading to 399 

new molecules. Another interesting observation is that GAN based models generally perform 400 

worst in terms of GDB-13 coverage on all three metrics, one reason could be due to that, in the 401 

adversarial training, the generator is supposed to mimic the true data as much as possible to fool 402 

the discriminator, which deteriorates its generalization capability to a certain extent. We also 403 
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noticed that the performance of REINVENT and CharRNN is somehow similar, while their 404 

sampling speed has very large difference. Given that both models are based on the same RNN 405 

architecture, suggesting that the technical implementation of CharRNN is suboptimal. 406 

 407 

Figure 6. Typical ring systems that are sampled by AAE, which are included in GDB-13. The 408 

numbers below the structures in the figure are the occurrence frequency of ring systems in the 1B 409 

sampled compounds. 410 

 411 

Figure 7. Typical ring systems that are sampled by LatentGAN, which are outside GDB-13.  412 
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 413 

Figure 8. Typical functional groups that are sampled by REINVENT, which are included in GDB-414 

13.  415 

 416 

 417 

Figure 9. Typical functional groups that are sampled by LatentGAN, which are outside GDB-13.  418 
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 419 

Figure 10. Relative occurrence frequency of  most common functional groups and ring systems.  420 

Conclusions 421 

Molecules consist of a variety of ring systems and functional groups, which are connected in 422 

different ways to form molecules. The most basic ring systems and functional groups have simple 423 

structures and small fragment weights; these can be found in GDB-13 molecules over dozens of 424 

times. More complex ring systems and functional groups have complicated structures and large 425 

fragment weights, and might only occur in GDB-13 a handful of times. However, due to their 426 

structural variety and enormous quantity (>90%), complex ring systems and functional groups are 427 

strong components affecting the coverage of GDB-13. 428 

All the deep generative models studied in this work have over 100 times greater chemical space 429 

coverage for GDB-13 using 1B samples than the training set (1M) used to train the models. In 430 

terms of compound coverage of GDB-13, the best model (REINVENT) reached ~39% coverage, 431 

far beyond the coverage of ORGAN (~16%), which ranked lowest amongst the models in this 432 

study. Depending on the generative task, the deep generative model used should thus be chosen 433 
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carefully, as there are differences in how all these seemingly similar models sample the chemical 434 

space. 435 
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