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ABSTRACT 

Motivation: Target prediction is a crucial step in modern drug discovery. However, existing 

experimental approaches to target prediction are time-consuming and costly.  

 

Results:  The LigTMap server provides a fully automated workflow to identify targets from 17 

target classes with >6000 proteins.  It is a hybrid approach, combining ligand similarity search 

with docking and binding similarity analysis, to predict putative targets. In the validation 

experiment, LigTMap achieved a top-10 success rate of almost 70%, with an average precision 

rate of 0.34. The class-specific prediction method improved the success rate further with enhanced 

precision. In an independent benchmarking test, LigTMap showed good performance compared to 

the currently best target prediction servers.  LigTMap provides straightaway the PDB of a 

predicted target and the optimal ligand binding mode, which could facilitate structure-based drug 

design and the repurposing of existing drugs. 

 

Availability: LigTMap is free for non-commercial use at https://cbbio.cis.um.edu.mo/LigTMap/.  

(145 words) 

 

 

  

https://cbbio.cis.um.edu.mo/LigTMap/
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INTRODUCTION 

In recent years, the number of small natural and synthetic molecules, both real and virtual, has 

significantly increased (Hoffmann and Gastreich, 2019). One way to evaluate their potential for 

therapeutic application is to identify their disease-related molecular targets. Similarly, finding 

novel targets for existing drugs, i.e., drug repurposing, exposes new clinical applications of known 

drugs in less time and at lower cost in comparison to traditional approaches (Vanhaelen et al., 

2017). On the other hand, novel drug targets may exhibit undesirable side effects and toxicity, 

which must be considered to improve the safety profiles of such agents (Wu et al., 2018). Despite 

technological advances, experimental methods to target identification remain laborious, expensive, 

and sometimes unsuccessful. Moreover, initial hypotheses on the potential target are typically 

required as the basis for the design of effective biochemical and genetic interaction experiments 

(Schenone et al., 2017).  

 

Over the years, various in silico approaches have been developed to provide solutions to the target 

prediction problem (Agamah et al., 2019). Table S1 presents a list of some of these computational 

target prediction methods, highlighting their methodological strategies, employed datasets, and 

availability of online servers. These approaches can be broadly classified into three groups: ligand-

based, structure-based, and hybrid (Mathai et al., 2019)(Sydow et al., 2019). The central notion of 

ligand-based approaches is that chemically similar compounds exhibit analogous biological 

activities (Matter, 1997). Thus, ligand-based methods extract chemical features of molecules using 

fingerprint algorithms to compare the similarities between the query compounds and the ligands 

with known activities (Matter, 1997). Despite their simplicity, with prior knowledge of ligands 

and their targets, ligand-based methods are effective and fast. Nevertheless, an undeniable 
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disadvantage of ligand-based methods is that prediction for compounds with new chemical 

scaffolds is limited. Examples of ligand-based methods include SEA (Keiser et al., 2007), 

SuperPred (Nickel et al., 2014), PASS (Lagunin et al., 2000), and TarPred (Liu et al., 2014). To 

improve predictive performance, new methods have recently emerged which utilize supervised 

(such as HitPick (Liu et al., 2013) and Target Hunter (Wang et al., 2013)) and unsupervised 

machine learning (ML) (such as SPiDER (Reker et al., 2014)) to improve the model precision rate. 

Moreover, some earlier methods, including ChemProt (Kringelum et al., 2016) and 

SwissTargetPrediction (Daina et al., 2019), have also updated their search engines to ML models, 

which show greater effectiveness. 

 

On the other hand, structure-based approaches utilize the available three-dimensional (3D) 

structural information of the target. They either apply docking to estimate the structural and 

chemical fitness of the query compound to the target or extract a set of pharmacophores from 

protein-ligand complexes and check whether the query compound matches well with the 

pharmacophores. In both cases, sufficient exploration of the ligand or protein conformational space 

is necessary. Consequently, structure-based approaches are costly and more time-consuming than 

the ligand-based methods. Several approaches of this type have been developed including 

TarFisDock (Li et al., 2006), PharmMapper (Wang et al., 2017), DRAR-CPI (Luo et al., 2011), 

PatchSearch (Rey et al., 2019), ACID (Wang et al., 2019), and Zhang (Zhang et al., 2019). 

However, few of them provide an online server, and in the ones that do, the numbers of searchable 

targets are limited. Finally, methods that combine both ligand and structural information, such as 

ChemMapper (Gong et al., 2013), can be utilized to predict more complex systems (Sydow et al., 

2019). In addition to the typical protein or ligand data, other biological information, including 
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protein sequence, protein-protein and protein-ligand interactions, and disease pathway, can be 

utilized to more reliably deduce the related target (Madhukar et al., 2019). 

 

In the present study, a new, hybrid, fully automated target prediction workflow called LigTMap 

was developed to predict targets for query compounds. Here, ligand similarity search was proposed 

as the first step to short-list the putative targets. We investigated the influence of different 

fingerprints and cutoff values for effective target selection. In the second step, the binding mode 

of the query compound at a putative target was predicted by molecular docking and its binding 

mode was compared to the binding mode of the crystal ligand. Ranking of the targets was based 

on the combined score from both the ligand and binding similarity scores. To assess the 

performance of LigTMap, we compared it to four existing servers using a set of manually curated 

benchmark compounds.  

  

MATERIALS & METHODS 

Dataset 

The ligand and protein structures, as well as their experimental activity data in Ki, Kd, or IC50, 

were obtained from the PDBbind database (version 2017) (Wang et al., 2004). This annually 

updated database has been widely used as the benchmark for the comparison of protein-ligand 

docking programs and for the assessment of scoring functions. For the purpose of target prediction, 

we labeled each PDB from the dataset with its actual target class by referring to the PDB database 

(Berman et al., 2000) and the available literature to ensure correctness. In total, 17 target classes 

were processed; among them, 11 were human protein targets and 6 were disease targets. The 

former included the kinase, transferase, beta-secretase, hydrolase, ligase, and isomerase enzymes 
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as well as an anticoagulant, a bromodomain (BRD), peroxisome, estrogen, and carbonic anhydrase 

(CA), while the latter included the human immunodeficiency virus (HIV), tuberculosis (TB), 

hepatitis C virus (HCV), influenza, Helicobacter pylori (H. pylori), and diabetes. Except for 

diabetes, the disease targets were nonhuman protein targets that originate from viruses or bacteria. 

Descriptions about the preparation of the data for fingerprint generation and docking are provided 

in the Supplementary Materials and Method section. In summary, there are totally 6313 proteins 

in the 17 datasets as presented in Table S2. 

 

For model validation, approximately 20% of the data from each target class was designated as the 

validation data, and the remaining was the training data. In total, there were 1251 ligands in the 

validation set. To test the performance of LigTMap independently, newly identified compounds 

with experimentally validated targets were searched in the available medicinal chemistry journals. 

To ensure that these compounds were not already included in our datasets or in the datasets of the 

methods used for comparison only reports published in 2018 and later were considered. In total, 

98 compounds were obtained for 7 target classes, including kinase, ligase, BRD, CA, beta-

secretase, HIV, and TB.  It should be noted that the benchmark data also contained compounds for 

multiple targets – kinase and BRD (categorized into the kinase class) as well as TB and kinase 

(categorized into the TB class). Moreover, for 10 target classes, new compounds were not found 

in the literature, and thus, they were not included in the benchmark experiments.  
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Target Prediction Workflow 

The workflow of the LigTMap target prediction is illustrated in Figure 1. It consists of five steps:  

1. For a query compound, a set of potential targets is selected based on fingerprint similarities 

to the crystal ligands. Multiple fingerprints (Morgan, MACCS, Daylight) are generated, 

and the ligand similarity score (TL) is taken as an average of either three MMD or two MM 

fingerprint Tanimoto coefficients, depending on whether the run is for all-target class 

prediction or class-specific prediction. The Tanimoto coefficient can be computed as 

follows (Delaney, 1996): 

𝑇 =
𝑁𝑎𝑏

𝑁𝑎 + 𝑁𝑏− 𝑁𝑎𝑏
 

(1) 

where 𝑁𝑎  and 𝑁𝑏 are the numbers of 1-bit in the fingerprints of ligand a and ligand b, 

respectively. 𝑁𝑎𝑏 denotes the number of 1-bit common to both ligands. A cutoff value for 

TL is used as the target selection criteria; the default is 0.4. 

2. For each potential target, molecular docking is performed using PSOVina2 (Tai et al., 2018) 

to predict the most optimal binding mode of the compound in the ligand-binding pocket.  

3. A binding interaction fingerprint (IFP) of the compound is generated based on the predicted 

binding mode. The established IFP is compared with the IFP of the crystal ligand using the 

Tanimoto coefficient to obtain the binding similarity score (TB) (Eq. 1). 

4. For each potential target class, the compound binding activity is predicted using the class-

specific random forest (RF) model based on the Avalon fingerprint.  

5. Finally, all prediction results are consolidated, and the protein targets are ranked based on 

the combined score LigTMap score = 0.7 TL + 0.3 TB. 
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Figure 1. Workflow of LigTMap for all-target class prediction. For class-specific prediction, 

MM is used instead of MMD in the ligand similarity search. 

 

Target Prediction Performance Measures 

A predicted target is considered correct if its name matches the name of the experimental target of 

a compound. Moreover, in the case of a multi-target compound, a predicted target matching with 

any of the known targets is considered correct. When testing a set of ligands, we computed the 

success rate as the fraction of ligands in the set predicted correctly within top N ∈ {1, 5, 10} of the 

output list. In addition, for each ligand prediction, we computed the recall, precision, and F1 scores 

taking the top N targets as predicted positives and all correct targets as actual positives: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 
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𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝐹1 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Thus, recall measures the proportion of correctly predicted targets among all correct targets, 

while precision indicates the proportion of correctly predicted targets within top N. F1 provides a 

single estimate combining recall and precision.  

 

Ligand Binding Activity Prediction 

Once a target is identified, it is desirable to obtain an estimation of the compound binding activity 

toward the target. In the current method, the binding activity (pKi/Kd/IC50) is predicted employing 

a class-specific ML model. Four ML algorithms based on the Avalon fingerprint were tested, 

including RF, support vector machines, gradient boosted tree, and K-nearest neighbor algorithms. 

RF was selected, as the preliminary tests using five selected target class datasets indicated that, in 

comparison to the other algorithms, it produced superior results. To prevent the issue of 

information leak (Wainer and Cawley, 2018), nested cross-validation (CV) (Stone, 1976) was used 

to train and optimize the RF models. The detail of the nested CV for model training-and-

optimization is presented in the Supplementary Materials and Methods section. 
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RESULTS AND DISCUSSION 

LigTMap is a ligand- and structure-based method for target prediction. It consists of five key steps: 

1) ligand similarity search to identify potential targets and the associated target class, 2) prediction 

of ligand binding modes toward the potential targets, 3) assessment of binding similarity to the 

crystal ligand binding modes, 4) prediction of class-specific binding activity, and 5) consolidation 

of results and ranking. 

Selection of the Fingerprint Algorithm for Ligand Similarity Search  

Previous studies have shown that the choice of the fingerprint algorithm is crucial for the success 

of ligand-based target prediction. Furthermore, combining multiple fingerprints further improves 

the success rates of target prediction models (Wang et al., 2016) (Kogej et al., 2006). To establish 

an optimal combination of fingerprints for the ligand similarity search, we tested six different 

fingerprint algorithms, i.e., Morgan, MACCS, Daylight, AtomPairs, Torsion, and Pharmacophore, 

as well as their combinations for target prediction using the validation set. Supplementary Figure 

S2 shows the distribution of the number of ligands with correctly predicted targets, which ranked 

within the top 1, 5, and 10 in the output of the ligand similarity search. The figure also indicates 

the number of ligands for which targets ranked below 10 but were still in the prediction list. Based 

on the obtained results, it is clear that when the cutoff decreased from 1.0 to 0.1, the number of 

correctly predicted targets increased until reaching a certain cutoff value, at which the top 1/5/10 

results remained relatively stable. This “optimal” range of cutoff values varied for different 

fingerprints. For Morgan, AtomPairs, and Torsion, it was determined at 0.1–0.3; for MACCS and 

Daylight, it was 0.1–0.5; and for Pharmacophore, it was 0.1–0.2. When extracting the potential 

targets in LigTMap, if the cutoff is set too high, actual targets may be discarded too early. 



 11 

Conversely, if the cutoff is set too low, too many false positives are included, causing excessive 

computations in the subsequent steps. Among the six fingerprints, Morgan, MACCS, and Daylight 

were considered as the best options. Importantly, MACCS and Daylight included correct targets 

with high cutoff, while Morgan predicted correct targets in top 10 for most ligands. On the other 

hand, AtomPairs, Torsion, and Pharmacophore exhibited worse performance or required low 

cutoff. 

Subsequently, we also tested combinations of fingerprints, i.e., Morgan+MACCS (MM) and 

Morgan+MACCS+Daylight (MMD) for target prediction, where the average of the component 

scores was taken as the ligand similarity score. As shown in Supplementary Figure S3, the 

combined fingerprints performed better than MACCS and Daylight alone with improved correct 

top 10 predictions. In addition, they achieved similar performances as Morgan, however, with 

increased optimal cutoff range (between 0.1 and 0.4). Consequently, we considered both combined 

fingerprints in further experiments and took the borderline cutoff of 0.4 as default in the LigTMap 

workflow.  

 

LigTMap Target Prediction Performance Evaluation 

Predictive performance of the entire LigTMap workflow was assessed utilizing both the validation 

and benchmark sets. Because the binding IFP calculation was computationally expensive, we 

tested target classes from the validation set of which benchmark data was also available. These 

included kinase, beta-secretase, BRD, CA, ligase, HIV, and TB. Totally, 733 ligands were tested 

from the validation set and 98 from the benchmark set. The entire target prediction workflow was 
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run comprising the MM or MMD for the ligand similarity search with IFP based binding similarity 

analysis.  Target ranking was based on the LigTMap score that was obtained as a weighted sum of 

the ligand similarity and binding similarity scores. Furthermore, according to the SEA target 

prediction study, target class-specific models improve the prediction precision rate in ligand-based 

methods (Wang et al., 2016). To verify this hypothesis, we compared the results from the all-target 

class prediction to those from the class-specific prediction. In the CS experiment, each ligand was 

predicted for its target class only, and thus, the output contained only targets from this class. Table 

1 shows the overall performance of LigTMap in the conducted experiments.  

 

For all-target class prediction, the LigTMap score with MMD achieved higher top-5 and top-10 

success rates than that with MM in both validation and benchmark experiments. It achieved an 

average top-10 success rate of almost 70%, with an average precision rate of 0.34 and recall of 

0.26. Notably, the comparison between all-target class experiments (LigTMap score with MM or 

MMD) and CS experiments (with MM-CS or MMD-CS) revealed significant improvement in all 

measures. This is presumably due to the exclusion of “off-targets” from the prediction list. 

Moreover, the comparison between MM-CS and MMD-CS shows that LigTMap score with MM-

CS has a 1%–5% higher success rate and 15%–35% improvement in recall with comparable 

precision. Meanwhile, comparing to MMD, LigTMap score with MM-CS improved the top-1 

success rate by 27% and the top-10 success rate by 17%, with >50% increase in precision. Overall, 

the LigTMap score with MMD outperformed that with MM in all-target class predictions; however, 

LigTMap score with MM-CS surpassed MMD-CS in the CS predictions. 
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Table 1. Overall performance of LigTMap using MM or MMD as ligand similarity search, 

for all-target class prediction or class-specific (CS) prediction. 

 Average Success Rate Average (Top 10) 

 Top 1 Top 5 Top 10 Precision Recall F1 Score 

Validation Set 

MM 0.56 0.68 0.72 0.35 0.27 0.23 

MMD 0.53 0.70 0.73 0.35 0.25 0.20 

MM-CS 0.63 0.75 0.77 0.55 0.52 0.45 

MMD-CS 0.61 0.74 0.76 0.54 0.38 0.35 

Benchmark Set 

MM 0.40 0.59 0.63 0.29 0.27 0.26 

MMD 0.44 0.64 0.65 0.33 0.27 0.24 

MM-CS 0.60 0.74 0.84 0.53 0.52 0.65 

MMD-CS 0.57 0.73 0.82 0.55 0.45 0.44 

 

Table 2 demonstrates the detailed predictive performance of LigTMap for each target class. 

Among the seven target classes, in the validation set, the highest success rate was achieved for 

beta-secretase (>0.9), followed by BRD, HIV (~0.8), CA and ligase (~0.7), kinase, and TB (~0.5). 

For the benchmark set, LigTMap performed exceptionally for CA, beta-secretase, and BRD (>0.9). 

It also showed good performance for HIV (>0.8) and moderate for kinase (~0.7). LigTMap failed 

to find correct targets for ligase and TB ligands. In consistent with Table 1, LigTMap score with 

MMD performed better than MM in all-target class experiments for most targets in terms of the 

top 10 success rate, in expense of the reduced F1 score. As a target prediction method, successful 

identification of the query compounds is of great importance; thus, LigTMap score with MMD is 

suitable. For compounds the target class of which is known but not the proteins, MM-CS is more 

optimal for finding the correct target within the class. The prediction results of all benchmark 
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compounds with their experimental targets, predicted targets, PDB IDs, and ranks of the first true 

targets are provided in Tables S3–S9 of the Supplementary Information. 

 

Table 2. Predictive performance for each target class in all-target class and class-specific 

experiments.  

 

LigTMap score 

(MM) 

LigTMap score 

(MMD) 

LigTMap score   

(MM-CS) 

LigTMap score 

(MMD-CS) 

 Top 10 F1 Score Top 10  F1 Score Top 10  F1 Score  Top 10  F1 Score  

Validation Set 

Kinase 0.52 0.20 0.54 0.16 0.55 0.32 0.56 0.19 

Beta-secretase 0.97 0.29 0.97 0.23 1.00 0.54 1.00 0.42 

Bromodomain 0.79 0.25 0.82 0.25 0.91 0.63 0.88 0.55 

Carbonic 

anhydrase 0.74 0.19 0.72 0.23 0.74 0.29 0.72 0.28 

Ligase 0.72 0.34 0.72 0.23 0.72 0.72 0.72 0.4 

HIV 0.79 0.14 0.83 0.13 0.83 0.18 0.85 0.17 

TB 0.49 0.53 0.21 0.20 0.62 0.58 0.44 0.42 

Benchmark Set 

Kinase 0.67 0.15 0.72 0.13 0.89 0.23 0.72 0.22 

Beta-secretase 0.89 0.42 1.00 0.28 0.95 0.49 0.95 0.30 

Bromodomain 0.89 0.27 0.95 0.33 0.95 0.72 0.95 0.70 

Carbonic 

anhydrase 1.00 0.54 1.00 0.60 1.00 0.81 1.00 0.85 

Ligase 0.00 0.00 0.00 0.00 0.20 0.00 0.20 0.00 

HIV 0.80 0.29 0.80 0.31 1.00 0.83 1.00 0.93 

TB 0.18 0.13 0.09 0.01 0.91 1.49 0.91 0.08 
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Comparison to the State-of-the-Art Target Prediction Methods 

The benchmark dataset was tested using four state-of-the-art target prediction servers, i.e., 

SwissTargetPrediction (Daina et al., 2019), SEA (Wang et al., 2016), SuperPred (Nickel et al., 

2014), and HitPick (Liu et al., 2013). As these servers mainly provide prediction for human targets, 

we excluded nonhuman targets from the comparative study. In total, 77 ligands for kinase, beta-

secretase, CA, ligase, and BRD were evaluated. As benchmark data run with all classes, LigTMap 

score with MMD was used and results are shown in Table 3. LigTMap exhibited the highest top-

10 success rates of 86%, followed by SEA (83%), and SwissTargetPrediction (78%). Moreover, it 

outperforms SuperPred and HitPick in all top-1, top-5, and top-10 success rates. 

SwissTargetPrediction has the highest top-1 success rate of 66%. 

Table 3. The number of top-1, top-10, and failure predictions in the benchmark set for five 

target prediction servers.  

 SwissTargetPrediction SEA SuperPred HitPick LigTMap 

 Top  

1 

Top  

10 

Fail Top  

1 

Top  

10 

Fail Top  

1 

Top  

10 

Fail Top  

1 

Top  

10 

Fail Top  

1 

Top  

10 

Fail 

Beta-secretase 16 19 0 17 19 0 9 19 0 6 6 13 15 19 0 

Bromodomain 17 19 0 19 19 0 0 0 19 0 0 19 14 18 1 

Kinase 10 13 5 1 18 0 0 0 18 10 10 8 3 13 5 

Carbonic 

anhydrase 

8 9 7 4 8 8 6 7 8 1 5 8 13 16 0 

Ligase 0 0 5 0 0 5 0 0 5 0 0 5 0 0 5 

Total 51 60 17 41 64 13 15 27 50 17 24 53 45 66 11 

(%) 66 78 22 53 83 17 19 35 65 22 31 69 59 86 14 
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Regarding the predictions for each target class, all beta-secretase ligands were successfully 

predicted by SwissTargetPrediction, SEA, and LigTMap. The same outcomes were noted for BRD, 

apart from LigTMap, which had one failure. For kinase, SEA successfully predicted all ligands; 

however, SwissTargetPrediction and LigTMap resulted in five failures. Furthermore, for CA, 

LigTMap was the only method, which predicted all ligands, with the remaining four methods 

predicting just half of the cases. Ligase proved to be the most challenging target in the 

benchmarking experiment; no methods provided successful prediction for this target class. Based 

on the conducted analyses, it can be concluded that LigTMap reached the state-of-the-art 

performance and, in some target classes, outperformed the existing methods.  

 

Performance of Ligand Binding Activity Prediction  

The predictive performance of all-target class-specific RF models using the core set is presented 

in Table 4. Two metrics were used to measure the performance of the models, i.e., the Pearson’s 

correlation coefficient (R) and the RMSE between the experimentally measured binding constants 

and the predicted values. Both coefficients were obtained by averaging from the test folds in the 

outer CV loop. The nested CV run was performed 10 times for each target, and the average 

performance and standard deviation were reported. Based on the obtained outcomes, we observed 

that R ranges between 0.5 to 0.8 for different target classes, with the HIV model achieves the 

highest correlation of 0.81 and the estrogen model the lowest correlation of 0.47. Overall, the 

average performance gives a correlation of 0.61 and RMSE of 1.23 (-log M).  
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Table 4. Cross-validation performance of 17 target class-specific RF activity prediction 

models on the core dataset. 

 Target Class 
Pearson’s Correlation 

Coefficient 

RMSE 

(-log M) 

HIV 0.81 ± 0.01 1.28 ± 0.03 

Beta-secretase 0.75 ± 0.01 0.97 ± 0.03 

Ligase 0.73 ± 0.01 1.26 ± 0.03 

TB 0.67 ± 0.02 1.24 ± 0.03 

Transferase 0.67 ± 0.01 1.30 ± 0.02 

Kinase 0.66 ± 0.06 1.18 ± 0.01 

HCV 0.65 ± 0.02 1.22 ± 0.04 

Bromodomain 0.65 ± 0.02 0.93 ± 0.02 

Carbonic anhydrase 0.64 ± 0.02 1.23 ± 0.04 

Anticoagulant 0.63 ± 0.02 1.37 ± 0.03 

Hydrolase 0.62 ± 0.02 1.42 ± 0.03 

Helicobacter pylori 0.60 ± 0.11 1.44 ± 0.19 

Influenza 0.59 ± 0.05 1.77 ± 0.08 

Diabetes 0.53 ± 0.03 1.05 ± 0.03 

Isomerase 0.53 ± 0.03 1.38 ± 0.01 

Peroxisome 0.48 ± 0.07 0.99 ± 0.10 

Estrogen 0.47 ± 0.07 1.12 ± 0.05 

Average 0.61 1.23 

 

The class-specific RF models were further assessed using the benchmark set. As shown in Table 

5, the average correlation is 0.63, while RMSE is 1.26, which is in good agreement with the CV 

result. The two cases that are found different between the benchmark and validation results are the 

beta-secretase (benchmark/validation 0.31/0.75) and kinase (0.18/0.66). For the beta-secretase, the 

experimental values of the test compound concentrated in a narrow range of 7.6–8.2, whereas the 
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prediction gave a range of 7.2–9. Despite the poor correlation, the RMSE for beta-secretase is low 

(only 0.49), suggesting that the predicted values were reasonably close to the experimental ones.  

 

Table 5. Test performance of 7 target class-specific RF activity prediction models on the 

benchmark dataset.  

Target Class 
Pearson’s Correlation 

Coefficient 

RMSE  

(-log M) 

Bromodomain 0.95 0.65 

Ligase 0.88 0.99 

HIV 0.83 0.44 

Carbonic anhydrase 0.57 1.92 

TB 0.72 2.71 

Beta-secretase 0.31 0.49 

Kinase 0.18 1.62 

Average 0.63 1.26 

 

 

In the kinase class, some of the compounds were identified experimentally to target two different 

kinase proteins (PLK1 and ALK), and some also targeted another class, i.e., bromodomain BRD4. 

Taking the average of the PLK1 and ALK activity values and comparing them to the predicted 

values gave a poor correlation of 0.18 and RMSD of 1.62. Nevertheless, the predictions correlated 

better with PLK1 alone, giving an improved correlation of 0.61 and RMSD of 0.85 (see Table 

S14). However, worse outcomes were noted when the predictions were correlated with ALK alone 

(correlation of -0.33 and RMSD of 1.11). As none of the dual-class compounds were identified for 
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BRD, the predicted activity using the BRD model poorly correlated with the experimental data for 

BRD4 (correlation of -0.09 and RMSD of 1.17).  

In the case of TB, although all compounds were identified to target both the bacterial TB 

(MtbAdok) and human kinase (hAdoK), only the TB model correlated reasonably with the 

MtbAdok activity (correlation of 0.72 and RMSD of 2.71). The kinase model did not correlate 

with hAdoK (correlation of 0.24 and RMSD of 5.42).  

The activity prediction results of the benchmark set are listed in Tables S9–S15. 

 

Case Study of the HIV Drug Target Prediction  

Structure-based drug design has played an important role in the anti-HIV drug search. Since the 

first discovery of HIV 36 years ago (Gallo et al., 1983) more than 30 drugs for the treatment of 

AIDS have been developed and identified to target all 7 life cycles of the virus (FDA-Approved 

HIV Medicines). The fast development of novel anti-HIV agents targeting multiple targets can be 

attributed to the availability of the 3D structures of the HIV proteins. In the PDBbind dataset alone, 

there are currently 580 crystal complexes of the HIV proteins as well as their ligands. The 

structural information, together with accurate experimental activity data of true binders, can be 

exploited to construct highly accurate predictive HIV models to support the hits discovery and lead 

optimization. In the present study, the developed predictive RF model for HIV yields an average 

correlation of 0.81 with RMSE of 1.28 (-log M) in the nested CV assessment (see Table 4). Further 

evaluation of the RF model was performed using 10 novel compounds reported by Pribut et al. 

(Pribut et al., 2019). According to their study, aryl substituted benzimidazolones were 
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experimentally validated to exhibit inhibitory effects against the HIV-1 non-nucleoside reverse 

transcriptase, with the reported pIC50 values in the range of 4.87–7.58. The binding modes of 

these compounds were studied by molecular docking using the receptor structures PDB 2jle and 

2fr2. Notably, our RF model for HIV displayed remarkable performance in predicting the activities 

of these 10 compounds, yielding a correlation of 0.83 and RMSE of 0.44 (see Table 5).  

Furthermore, for comparison, we also tested the new compounds using two recently released 

online servers for anti-HIV biological activity prediction, namely, AntiHIV-Pred (Stolbov et al., 

2019) and HIVprotI (Qureshi et al., 2018). Their methods employed large-scale experimental data 

extracted from the ChEMBL database and their prediction models are ligand-based and HIV 

protein-specific. Users can select the prediction target as HIV protease, reverse transcriptase, 

integrase, REV (AntiHIV-Pred only), or TAT (AntiHIV-Pred only). Surprisingly, the AntiHIV-

Pred server reported that the evaluated compounds were in the non-applicable domain, regardless 

of the selected target; therefore, no activity values were predicted. On the other hand, the HIVprotI 

server successfully returned prediction results for nine compounds against the reverse transcriptase 

target. However, poor correlation of 0.56 was obtained, which was significantly lower than the 

originally reported correlation of 0.76 (Qureshi et al., 2018). Figure S5 showed a comparison of 

the anti-HIV inhibitor predictions by HIVprotI and LigTMap, indicating that LigTMap performed 

superior in activity predictions. 
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Figure 2. Predicted binding modes of three known anti-HIV ligands by PSOVina2 in 

LigTMap. Images were prepared using Schrödinger Maestro. 

 

We compared the binding modes predicted by PSOVina2 in LigTMap to the previously reported 

binding modes (Pribut et al., 2019). The three compounds were evaluated: 42, 50, and 54. 

Previously, these compounds were lead optimized from the non-nucleoside reverse transcriptase 

inhibitor (PDB ID 2jle). Remarkably, LigTMap was able to predict the correct target for the three 

compounds in the top 1. As shown in Figure 2, our predicted binding modes matched closely to 

the reported protein-ligand interaction patterns. For instance, the binding of the second-generation 

benzimidazole inhibitor (compound 42) was reported to involve two pi-pi interactions with the 

Tyr188 and Trp229 residues, and a hydrogen bond to Lys101. The ligand docked by LigTMap 

retained an analogous binding mode, also predicting two pi-pi interactions and a hydrogen bond 

as the major contributors to the ligand binding. The reported binding modes of 50 involved the 

Lys101, Tyr188, Lys223, and Tyr229 amino acids, while Lys101, Tyr188, and Tyr229 participated 

in the interactions with compound 54. Notably, all of them were correctly predicted by LigTMap.  
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Features of the LigTMap Server 

The LigTMap server is free for non-commercial use at https://cbbio.cis.um.edu.mo/LigTMap/. 

The server accepts queries for multiple compound predictions (maximum of 20 for a batch 

submission) for both human and nonhuman target classes. The output of the target prediction 

displays the name of the predicted target, its PDB ID, the ligand similarity score, binding similarity 

score, predicted activity value, docking score, and docking pose determined using PSOVina2. In 

Table 6, the LigTMap server is compared to the existing state-of-the-art target prediction servers 

with respect to their target scope and prediction output.  

 

Table 6. Comparison of various features of target prediction servers. 

Server Feature SEA SwissTarget 

Prediction 

SuperPred HitPick LigTMap 

Target Scope 

Predict human 

targets 

Yes Yes Yes Yes Yes 

Predict 

nonhuman (or 

disease) targets 

No Yes (few) No No Yes 

Prediction  

Support input of 

multiple compounds 

No No No Yes Yes 

Target name Yes Yes Yes Yes Yes 

Target PDB No No Yes No Yes 

Biological activity No No No No Yes 

Binding mode No No No No Yes 

External links to 

target related 

information 

ZINC Uniprot, 

GeneCard 

Uniprot, 

BindingDB, 

RefSeq, etc. 

GeneCard PDB 

 

 

  

https://cbbio.cis.um.edu.mo/LigTMap/


 23 

CONCLUSION 

Target prediction of small molecules is a crucial step in drug discovery and study of disease 

mechanisms. The existing computational approaches to target prediction are limited in terms of 

availability, functionality, and accuracy. In the current work, we present LigTMap, a new target 

prediction method developed to predict 17 target classes, including human and nonhuman protein 

targets. It is a multistage prediction workflow, which combines the ligand similarity search with 

docking and binding similarity analysis to accurately identify protein targets. Extensive 

experiments utilizing validation and benchmark sets revealed that LigTMap (MMD) achieved a 

top-10 success rate of almost 70%, with an average precision rate of 0.34. This performance is 

good as compared to the current best prediction servers SwissTargetPrediction and SEA. Class-

specific target prediction of LigTMap (MM-CS) improved the top-1 success rate by 27% and the 

top-10 success rate by 17%, with >50% increase in precision. Hence, LigTMap is a new, reliable 

method for target prediction of novel ligands. Furthermore, it can identify with a higher success 

rate for ligands whose target class is known but the actual targets are still unknown.  

 

The current version of LigTMap is limited to target classes prediction. For future work, other large 

compound databases, such as ChEMBL and ZINC, as well as protein-ligand interaction databases, 

e.g., STITCH, will be exploited to expand the target class coverage and enhance the prediction 

accuracy.  
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