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Abstract 

Polymer-based membranes have the potential for use in energy efficient gas separations. The 

successful exploitation of new materials requires accurate knowledge of the transport 

properties of all gases of interest. Open-source databases of gas permeabilities are of significant 

potential benefit to the research community. The Membrane Society of Australasia 

(https://membrane-australasia.org/) hosts a database for experimentally measured and reported 

polymer gas permeabilities. However, the database is incomplete, limiting its potential use as 

a research tool. Here, missing values in the database were imputed (filled) using machine 

learning (ML). The ML model was validated against gas permeability measurements that were 

not recorded in the database. Through imputing the missing data, it is possible to re-analyse 

historical polymers and look for potential “missed” candidates with promising gas selectivity. 

In addition, for systems with limited experimental data, ML using sparse features was 

performed, and we suggest that once the permeability of CO2 and/or O2 for a polymer has been 

measured, most other gas permeabilities and selectivities, including those for CO2/CH4 and 

CO2/N2, can be quantitatively estimated. This early insight into the gas permeability of a new 

system can be used at an initial stage of experimental measurements to rapidly identify polymer 

membranes worth further investigation. 

Keywords 

polymers of intrinsic microporosity (PIMs), polyimides, database imputation, gas separation 

membranes, machine learning  
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1. Introduction 

Membranes with polymers as the selective layer have been widely used for the separation of 

gas mixtures including those of key relevance to energy and the environment[1–4]. The 

development of new polymers with improved gas permeability and selectivity would enhance 

the efficiency of membrane gas separations of industrial interest[5]. Polymers have been 

developed for various purposes including hydrogen recovery during ammonia preparation (H2 

from N2)[6,7], oxygen or nitrogen enrichment of air (O2 from N2)[8,9]; and natural gas 

sweetening or biogas upgrading (CO2 from CH4)[10–12]. Rising concern about global warming 

by greenhouse gas emissions has focused attention also on pre-combustion or post-combustion 

carbon capture (mainly H2 from CO2, and CO2 from N2, respectively)[13,14]. Membranes with 

high permeability are desired for industrial application at large scales, however, there is a well-

known trade-off between gas permeability and the gas selectivity for a gaseous mixture, with 

an upper bound for each gas pair quantified by Robeson in 1991[15] and updated in 2008[16]. 

Subsequent effort in polymer design and synthesis has pushed the Robeson upper bound 

towards polymers with both higher permeability and better selectivity, resulting in recently 

revised upper bounds[17,18]. However, since experimental analysis of the transport properties 

of novel materials can be time consuming and accurate studies require specialized equipment, 

many studies are limited to a single gas pair[19]; or to a few gases[20]. It is likely that there 

are missed opportunities, where polymers with promising gas selectivity and permeability for 

a different gaseous mixture than those tested are missed. Conversely, for rapid screening of 

potential polymers, it would be advantageous to assess the full potential based on fewer gas 

permeability measurements, helping focus experimental effort on the most promising systems. 

The Membrane Society of Australasia (MSA) hosts the public Polymer Gas Separation 

Membrane Database, which was launched online in 2012, and allows access to gas 

permeability data for a large number of polymers published from 1950 to 2018[21]. Initially, 

the resource consisted of data collated by Robeson, who empirically observed and 

characterized the upper bound phenomenon in 1991[15] and again in 2008[16], reflecting the 

growing interest in energy-efficient separations using membranes. The database now contains 

over 1500 data points. The philosophy of the database is for it to be open, with anyone able to 

freely add or edit the database, but the content is checked regularly to ensure the data-points 

are correctly referenced. Gas permeability measurements originally included hydrogen, oxygen, 

nitrogen, carbon dioxide and methane. Later the measurements were extended to vapours such 

as ethylene, ethane, propene, propane, butene, butane, carbon tetrafluoride, hexafluoroethane 
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and octafluoropropane. The membrane materials included cover a range of rubber and glassy 

polymers, carbon sieves, zeolites and mixed composites. However, not every entry in the 

database contains the experimentally reported values for every gas listed above. Due to the 

widespread use of the Polymer Gas Separation Membrane Database by researchers in academia 

and industry (approximately 1,000 views per month in 2019 and 2020), imputation of the 

database is desirable. In statistics, imputation refers to the process of replacing missing data 

with substituted values. With an accurate imputation model, one can not only retrieve 

candidates with good gas selectivity that were not measured at the time of publication, but also 

get a more complete database for future experimental and theoretical study. In addition, 

experimental measurement of the gas permeability of previously reported polymers would be 

time consuming and expensive, especially when the likelihood of publishing such studies in a 

formal journal article is small. It is thus highly desirable to develop an easily accessible 

computational model to estimate the permeability of certain gases when the original 

experimental data was not reported. 

Machine learning (ML) methods have been developed and applied to polymers for predicting 

properties including glass transition temperature[22], dielectric constants[23], the gas 

permeability of polymers[24],  and the discovery of novel functional polymers[25]. One of the 

main models for predicting polymer membrane performance is group contribution theory, 

where the chemical structure of a polymer is divided into smaller fragments and the fragments 

used in various ML models as input features[26–28]. Recently, hierarchical methods for 

fingerprinting polymers for property prediction have also been reported[29]. Such models were 

built upon chemical structures of polymers and are of great value for identifying structure-

property relationships. However, the gas permeability of the same polymer is often measured 

under different conditions, for example, different solvent treatment or degree of aging, and ML 

models based upon polymer fingerprints cannot distinguish the difference between these 

conditions. The Polymer Gas Separation Membrane Database often holds data for the same 

polymer tested under different conditions, in different laboratories with different instruments, 

and a ML model relying purely on chemical structure alone would not be sufficient for filling 

the missing values for gas permeability. 

An alternative way of imputing the database is to predict the permeability of unknown gases 

based on data for gases with known permeability. As suggested by Alentiev et al., the logarithm 

gas permeability coefficients Pi and Pj of gases i and j are strongly correlated[30], thus it is 

plausible to predict the gas permeability of gas i using the permeability data for other gases 
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without requiring any information on the molecular structure of the polymers or experimental 

conditions. In this paper, we developed both linear and non-linear ML models to “learn” the 

relationship of permeability of different gases recorded in the Polymer Gas Separation 

Membrane Database and impute the missing gas permeability in the database using the ML 

models. An overview of the approach is shown in Scheme 1. It is possible to uncover additional, 

but previously unknown, properties of existing polymers in the database. We do not aim to 

discover any novel gas selective polymers in this paper; however, the open-source ML model 

we present could be used in the future to impute the gas permeability data of novel polymers 

at an early stage of experimental measurements and thus help to accelerate the identification of 

polymer membranes worth further experimental investigation. 

 

 

Scheme 1: Overview of our workflow. We imputed the existing Polymer Gas Separation Membrane 

Database using machine learning, where previously reported polymers in the database that miss gas 

permeability values can be re-analysed and these gaps filled. An imputed database opens the potential 

for identifying promising polymers and the developed machine learning model has the potential to take 

incomplete datasets for novel polymers and impute them in seconds to allow the evaluation of which 

systems should be the focus of continuing experimental effort.  
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2. Methods 

The Polymer Gas Separation Membrane Database was downloaded from the online portal of 

the Membrane Society of Australasia (MSA) on 11/06/2020 at https://membrane-

australasia.org/msa-activities/polymer-gas-separation-membrane-database/. We focused on 

data for the commonly measured gases He, H₂, O₂, N₂, CO₂ and CH₄ and removed datasets 

that did not contain gas permeability data for at least one of these. We were left with a database 

of 1,378 entries, and the number of missing values for the permeability of each gas in the target 

database is shown in Table 1. The gas permeability of polymers was recorded in Barrer (1 

Barrer = 10-10cm3(STP)cmcm-2s-1cm Hg-1), in this study the gas permeabilities were 

converted to logarithm with base 10 values, since the logarithm values are used to define the 

empirical Robeson upper bounds of gas selectivity[15,16]. 

Table 1 Number of missing values for the gas permeability in the Polymer Gas Separation 

Membrane Database of each gas.  The total number of data points for the permeability of 

each gas was 1,378 in this study. 

Gas He H2 O2 N2 CO2 CH4 

Number and 

percentage of 

missing values 

620 

(45%) 

608 

(44%) 

102  

(7%) 

123  

(9%) 

165 

(12%) 

341 

(25%) 

 

Missing value imputation of the Polymer Gas Separation Membrane Database was performed 

using the Multivariate Imputation by Chained Equations (MICE), which ‘fills in’ the missing 

data in a dataset through an iterative procedure of predictive models[31]. In each iteration, the 

missing values of a specific variable are predicted with the predictive model using other 

variables in the dataset. The pseudo-code of the MICE algorithm is shown in Algorithm 1 in 

the Supporting Information.  

Here, a linear model and a non-linear model were selected as the predictive model in the MICE 

algorithm, which were the Bayesian Linear Regression[32] and the Extremely Randomized 

Trees[33], respectively. Predictive performance of these two models on the test set were 

compared. The Bayesian Linear Regression (BLR) is an approach for linear regression where 

the statistical analysis is undertaken with Bayesian inference, assuming that the regression 

model has errors that have a normal distribution; while the Extremely Randomized Trees (ERT) 

implements a meta-estimator that fits a number of randomized decision trees on various 

https://membrane-australasia.org/msa-activities/polymer-gas-separation-membrane-database/
https://membrane-australasia.org/msa-activities/polymer-gas-separation-membrane-database/
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subsamples of the dataset and uses averaging to improve the prediction accuracy and control 

over-fitting. In this study, the ERT model was composed of 100 decision trees. The missing 

value imputation of the Polymer Gas Separation Membrane Database was performed using 

Python 3.7.1 and Scikit-learn 0.21.2[34]. The code for imputing the database is available at 

github.com/qyuan7/polymer_permeability_imputation. 

The test set in this work was selected from papers published in 2019 and 2020 reporting gas 

permeability of polymers of intrinsic microporosity (PIMs)[18,35,36] and polyimides[37–42], 

which have not been recorded in the Polymer Gas Separation Membrane Database. 

Performance of the ML models on the test sets was measured in a round-robin manner with 

“dense features”, for example, to test the model on prediction of permeability of H2, the 

permeability data of H2 was dropped from the test database, and the data of H2 was modelled 

as a function of other gases in the test database. To examine the ability of the imputation models 

for cases where only limited permeability data is available, test sets with “sparse features” were 

also used, where the gas permeability data of only one gas was used to predict the permeability 

for all other gases, for example, predicting the gas permeability of He, O2, N2, CH4 and CO2 

using the gas permeability data of H2. The performance of the ML model on the test set was 

measured by the rooted mean squared error (RMSE) between the logarithm gas permeability 

obtained by ML prediction and the experimentally reported values as defined in equation (1), 

where n is the number of data points, 𝑝𝑖  is the experimentally reported logarithm gas 

permeability of polymer i, and �̂�𝑖 is the logarithm gas permeability of polymer i prediction 

using the ML model: 

                                            𝑅𝑀𝑆𝐸 =  √
∑ (𝑝𝑖− �̂�𝑖)2𝑛

𝑖=1

𝑛
                   (1) 

The ability of the ML models to predict the gas selectivity of polymers was measured by a 

classification problem, where the ML models were used to predict whether polymers in the test 

set had gas selectivity beyond the Robeson 2008 upper bound. Polymers with gas selectivity 

above the Robeson 2008 upper bound were regarded as “positive”, while those below the 

Robeson 2008 upper bound were regarded as “negative”. The gas permeabilities of polymers 

were evaluated using the ML models to determine if they were predicted “positive” or 

“negative” in the Robeson diagram. “True positive” represents polymers that were positive 

from both experimental measurements and ML prediction; “False positive” represents 

polymers that were positive from ML prediction but negative from experimental measurements; 

“True negative” represents polymers that were negative from both experimental measurements 

https://github.com/qyuan7/polymer_permeability_imputation
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and ML prediction, and “False negative” represents polymers that were negative from ML 

prediction but positive from experimental measurements. We computed the accuracy, precision, 

and recall scores for identifying the polymers with gas selectivity above the Robeson 2008 

upper bound. In this study, accuracy refers to the fraction of correct predictions from all 

predictions made, precision refers to the fraction of “true positive” values from values that were 

predicted as “positive”, and recall refers to the fraction of “true positive” values from all values 

that were “positive” experimentally. The accuracy, precision and recall scores are defined in 

equations (2) to (4): 

                                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑡𝑒𝑠𝑡 𝑠𝑒𝑡
                                              (2) 

                                     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                                             (3) 

                                        𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                              (4) 

 

3. Results and discussion 

3.1 Comparison of the BLR and ERT imputation results 

A comparison of the BLR and ERT imputation results are shown in Fig. 1. The BLR and ERT 

imputation results are highly correlated apart from a few outliers, and no systematic error 

between the two imputation methods is observed, with neither of the two imputation methods 

giving constantly larger or smaller predictions than the other. As shown in Fig. 1, the RMSE 

of the logarithm gas permeability obtained from the BLR and ERT imputations ranged from 

0.07 to 0.26, with the largest disagreement observed for the CH4 data. This is possibly because 

the data for CH4 has a relatively weak correlation with the data for other gases, as shown in 

Figure S1, which is in part due to the relatively low permeability of CH4 in most glassy 

polymers, and therefore the measurement may have a lower accuracy than that of other gases. 

Furthermore, CH4 has the largest effective diameter of the gases considered in this work, and 

is thus more affected by variations in the sample history, physical aging and measurement 

conditions[43]. The fact that both the linear model BLR and non-linear model ERT produced 

highly correlated imputation results indicates that the MICE algorithm is relatively robust 

against the choice of the predictive model type. We have provided the imputed database 

obtained from both the BLR and ERT model in the supporting information and at 
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github.com/qyuan7/polymer_permeability_imputation. In addition, the standard deviation of 

the BLR imputation is provided to give prediction confidence intervals. 

 

Fig. 1 Comparison of the BLR and ERT imputation results on the Polymer Gas Separation 

Membrane Database of reported gas permeability. The RMSE in logarithm Barrer between 

the BLR and ERT predictions are given in each sub figure. The same comparison using the 

raw gas permeability in Barrer is shown in Figure S2 on a linear scale. 

3.2 Validation of the imputation models on the test set 

We selected publications with experimental data not recorded in the Polymer Gas Separation 

Membrane Database for PIMs[18,35,36] and polyimides[37–42]. Representative molecular 

structures of the PIMs and polyimides are shown in Fig. 2. The test set contained experimental 

gas permeabilities of 50 PIM entries and 37 polyimide entries. As can be seen from Fig. 2, 

there is structural diversity in the test sets. In addition, polymers in the test exhibit a wide range 

of gas selectivity, as shown in Table S1. For example, the range of CO2/CH4 selectivities in the 

test set is 3.2 - 75.0 and the range of CO2/N2 selectivities is 6.8 - 36.5. 

https://github.com/qyuan7/polymer_permeability_imputation
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Fig. 2 Representative structures of PIMs (a-c) and polyimides(d,e) in the test set. (a) 

Adamantane-grafted PIM[35]; (b) Benzotriptycene-based PIM[18]; (c) OH-functionalized 

Tröger’s base-based PIM[36]; (d) Microporous polyimides containing bulky tetra-o-isopropyl 

and naphthalene groups[37]; (e) Imidazole containing polyimide[42]; (f) Polyimides based on 

the diethyltoluenediamine isomer mixture[38]. 

Performance of the BLR and ERT imputation models was compared by computing the RMSE 

between “predicted” logarithm gas permeability and the experimental logarithm gas 

permeability reported in the literature, as shown in Table 2. The BLR model was more accurate 

in the predictions for the gas permeability of PIMs than the ERT model, while the performance 

of the two models were comparable for polyimides, except that the ERT model had 

significantly larger errors for the H2 permeability. The BLR model is more accurate than the 

ERT model in general on the test set with “dense features”, where the permeability of one gas 

was predicted using the permeabilities of all other gases; and the discussion in this study for 

validation with “dense features” is primarily based on the predictions of the BLR model. 

Correlation of the experimentally reported gas permeability and the BLR model predictions is 

shown in Fig. 3. According to Table 2 and Fig. 3, the BLR model had the largest error in 

predicting the CH4 and CO2 permeability, and the smallest in O2 permeability.  From Fig. 3 it 

can be seen that the BLR model systematically underestimated the CO2 permeability for almost 

all the entries in the test set, while no obvious systematic error is observed for CH4 permeability.  

Table 2 RMSE between the BLR and ERT predicted gas permeability and experimental results 

in logarithm Barrer. The smaller RMSE values among the two models are in bold. 

 He H₂ O₂ N₂ CH₄ CO₂ 
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BLR/PIMs 0.04 0.05 0.03 0.07 0.10 0.12 

ERT/PIMs 0.08 0.14 0.04 0.11 0.15 0.13 

BLR/polyimides 0.11 0.10 0.07 0.09 0.17 0.11 

ERT/polyimides 0.13 0.19 0.08 0.09 0.16 0.10 

BLR/average 0.06 0.07 0.05 0.08 0.13 0.12 

ERT/average 0.10 0.16 0.06 0.10 0.16 0.12 

 

 

Fig. 3 Correlation of BLR prediction and the experimental report of the gas permeability of 

PIMs (orange data points) and polyimides (blue data points) in the test set. The same 

comparison using the raw gas permeability in Barrer is shown in Figure S3 on a linear scale. 

The most likely explanation for the model underestimating the CO2 permeability is that 

researchers have been working towards improving the gas permeability by increasing the 

amount of free volume (or microporosity) of the polymers. According to the solution-diffusion 

model of gas transport[44], greater free volume enhances both gas diffusivity and solubility 

with the latter being particularly high for PIMs relative to conventional polymers. Thus, the 

pairwise relationship between different gases has changed over time, and the samples from the 

test set belong to the latest generation of polymers with relatively high CO2 permeability. The 

Robeson diagrams showing the position of polymers in the Polymer Gas Separation Membrane 
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Database for the selectivity of CO2/CH4 and CO2/N2 are shown in Figure S4. A chronological 

increase can be observed in the gas selectivity, especially when comparing the gas selectivity 

of polymers reported after 2010 and those reported before 2000. A time series analysis for 

removing the error incurred by the time-dependent nature of the database was performed, 

where data points in the Polymer Gas Separation Membrane Database were classified to 

smaller datasets by the decade of publication, and imputation of the smaller datasets were 

performed and validated against the test set. However, due to the existence of missing values 

and the inconsistent number of data points per decade in the database, the imputation results 

were not improved. As a result, we used the entries in the database as provided, without 

performing any time-based corrections, and the uncertainty in predicting the CO2 permeability 

is represented by the standard deviation of the BLR prediction, as provided in a raw data file 

as additional supporting information.  

The most important property for gas separation membranes is to have a high permeability in 

combination with a high selectivity for the gas pair of interest, which can be examined from 

the Robeson diagram. We measured the performance of the imputation models using a two-

class classification task: polymers with gas selectivity above the Robeson 2008 upper bound 

were regarded as “positive”, and those below the Robeson 2008 upper bound were regarded as 

“negative”. For both the BLR and ERT model, the gas permeabilities of interest were calculated 

using the permeability of other gases (the prediction using “dense features”), and the positions 

of the calculated values in the Robeson diagram were computed. The model performance was 

then evaluated by whether the correct label was assigned to the polymers in the test set. Two 

of the most reported gas pairs, CO2/CH4 and CO2/N2, were considered, and we have simulated 

three cases of gas permeability missing for each gas pair. For the CO2/CH4 selectivity, for 

example, we applied our imputation model to the test set under three parallel assumptions: the 

permeability for both CO2 and CH4 are missing; only the permeability for CH4 is missing; and 

only the permeability of CO2 is missing. For all three cases, we have evaluated the missing gas 

permeabilities using the permeabilities of all other gases – the “dense features”, and the 

accuracy, precision and recall scores for the BLR prediction of CO2/CH4 and CO2/N2 

selectivity are shown in Table 3, and the scores for the ERT prediction of CO2/CH4 and CO2/N2 

selectivity are shown in Table S2 in the Supporting Information.  

The accuracy scores of the BLR model for both gas pairs in all three cases are higher than 0.8. 

It should be noted, however, for cases where the permeability for both CO2 and CH4 (similarly 

for both CO2 and N2) are missing, the precision scores and recall scores are rather imbalanced: 
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the precision for almost all predictions in Table 3 is close to perfect, while the recall score were 

0.76 and 0.59 for CO2/CH4 and CO2/N2, respectively. Such an imbalance indicates that the 

imputation models are “useful” but not “complete” for cases where the permeability data for 

both gases of interest is missing: polymers predicted to have good gas selectivity are highly 

likely to be gas selective following experimental measurements, however, a considerable 

percentage of the polymers with good gas selectivity are misclassified as “negative” by the 

BLR model. For cases where the permeability of one gas (CO2 or CH4 for the selectivity of 

CO2/CH4) is missing, the BLR model is much more robust compared to the cases where 

permeability data of both gases is missing, where the accuracy, precision and recall scores 

ranged from 0.80 to 1.00. It should also be noted that in Table 3, for CO2/CH4 and CO2/N2, the 

accuracy, precision and recall scores were all higher than 0.90 for cases when the only missing 

data was the CH4 or N2 permeability. For such cases, the imputation models are both “useful” 

and “complete”: robust predictions about the gas selectivity can be made if the permeability 

for only CH4 or N2 is missing. 

Table 3 Accuracy, precision, and recall score for the BLR in predicting the polymers with gas 

selectivity above the 2008 Robeson upper bound with permeabilities of different gases missing: 

the accuracy, precision and recall scores are in the range of 0-1, where the closer a number is 

to 1, the better the model.  

Model Gas Pair 
Missing 

Permeability 
Accuracy Precision Recall 

BLR 
 

CO2/CH4 

CH4 and CO2 0.89 1.00 0.76 

CH4 0.95 1.00 0.90 

CO2 0.91 1.00 0.81 

CO2/N2 

N2 and CO2 0.83 1.00 0.59 

N2 1.00 1.00 1.00 

CO2 0.92 1.00 0.81 

 

The experimentally measured and BLR predicted positions of data points in the test set for 

cases where only the CH4 or N2 permeability is missing are shown in Fig. 4. The data cloud of 

the BLR prediction for both CO2/CH4 and CO2/N2 overlapped with the experimental reports 

greatly, which is in agreement with the high accuracy, precision and recall scores for the 

corresponding cases. It is thus possible to identify the future polymers with high gas selectivity 
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when not all the gas permeability data is available, or to evaluate the gas selectivity of a 

previously reported polymer when the gas permeability data is missing for one or more gases. 

 

Fig. 4 BLR prediction and experimental reports of the CO2/CH4 and CO2/N2 selectivity in the 

Robeson diagram, with the cases for a) permeability data of CH4 missing; b) permeability 

data of N2 missing. 

The CO2/CH4 and CO2/N2 selectivity for polymers has been studied extensively, and it is 

believed that mobility and sorption both favour the permeation of CO2 and so making 

predictions with this pair is probably relatively easy. We also investigated the selectivity of 

H2/CO2 using the test set, where sorption and mobility selectivity are opposed for this gas pair. 

The accuracy, precision and recall scores for identifying polymers against the Robeson 2008 

upper bound are shown in Table 4. These scores were all above 0.83 for prediction when H2 

permeability is missing, while for cases when CO2 or both CO2 and H2 permeability data is 

missing, the precision of the imputation model decreased considerably. Therefore, our 

imputation model can be used to evaluate the H2/CO2 selectivity without experimentally 
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measuring the H2 permeability. This may become of considerable practical relevance given the 

rapidly increasing interest in H2 as a fuel and given that H2 production methods require a 

H2/CO2 separation step, for instance from syngas. 

Table 4 Accuracy, precision, and recall score for the BLR in predicting the polymers with 

H2/CO2 selectivity above the 2008 Robeson upper bound with permeabilities of different gases 

missing: the accuracy, precision and recall scores are in the range of 0-1, where the closer a 

number is to 1, the better the model. 

Model Gas Pair 
Missing 

Permeability 
Accuracy Precision Recall 

BLR 
 

H2/CO2 

H2 and CO2 0.88 0.52 1.00 

H2 0.96 0.83 0.90 

CO2 0.85 0.45 1.00 

 

3.3 Identifying Promising Candidates in the Polymer Gas Separation Membrane 

Database 

The Polymer Gas Separation Membrane Database contains inputs of which some or all 

permeability data for CO2, CH4 and N2 was missing. Upon imputation of the database, the gas 

selectivity of the candidates with missing values were examined using the imputed gas 

permeability to identify potential candidates with good CO2/CH4 and CO2/N2 selectivity. First 

of all, before seeking potential candidates whose selectivity was not reported the database, we 

asked the question: Would it have been possible to identify PIM-1 as a promising separation 

membrane based upon applying our imputation model to limited preliminary data? PIM-1 

being the archetypal PIM system that initiated the current research interest in PIM separation 

performance[16]. We revisited the gas selectivity of PIM-1 by separately removing either the 

experimental N2 or CH4 permeability data for PIM-1 from our database and then imputing 

whichever of the two gases was missing using the BLR model. The comparison of the 

imputation result and the experimental report is shown in Table 5. The CO2/N2 and CO2/CH4 

selectivities obtained from the BLR model were 25 and 18, respectively, which are close to the 

experimental measurements (23 and 17, respectively). In addition, the position of PIM-1 

obtained via BLR imputation in the Robeson diagram is shown in Fig. 5a and b. It can be seen 

that PIM-1 lies close to the Robeson 2008 upper bound for both CO2/N2 and CO2/CH4 
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selectivity, indicating that our imputation ML model would have been able to identify PIM-1 

as a promising separation membrane from limited initial experimental data.  

Next, we moved on to explore whether our imputed database could reveal promising 

selectivities that were not originally reported in the Gas Separation Membrane Database. As 

shown in Fig. 5a and b, most of the candidates with missing values had potentially limited gas 

selectivity for CO2/CH4 and CO2/N2. However, the KAUST-PI-1 reported by Pinnau et al.[17], 

of which the CO2 permeability was not been reported in the database, was found to have a 

predicted CO2/CH4 selectivity above the Robeson 2008 upper bound and predicted CO2/N2 

selectivity close to the Robeson 2008 upper bound. The molecular structures of KAUST-PI-1 

and PIM-1 are shown in Fig. 5c and d. Based purely on the ML predictions from existing data 

in the Polymer Gas Separation Membrane Database, we identified that KAUST-PI-1 has 

potentially high CO2/CH4 selectivity and good CO2/N2 selectivity. Our assumption for 

KAUST-PI-1 was confirmed by further review of the literature, where we found another report 

on KAUST-PI-1 by Pinnau et al.[45], which was not included in the Polymer Gas Separation 

Membrane Database. The permeability of KAUST-PI-1 for CO2, CH4, as well as N2 was 

reported as an average value from two films. It was found that the KAUST-PI-1 exhibited 

excellent CO2/CH4 selectivity, which was above the Robeson 2008 upper bound (as we 

predicted), while the CO2/N2 selectivity was good but just below the Robeson 2008 upper 

bound (we predicted it to be close to the upper bound). The comparison of the CO2/CH4 and 

CO2/N2 selectivity of our prediction and the experimental measurement is shown in Table 5. 

The cross validation between experimental measurements that are not recorded in the Polymer 

Gas Separation Membrane Database and the ML prediction indicates that it is possible to re-

analyse historical data and identify potentially “missed” polymers with promising gas 

selectivity using our ML imputation model. 

 

Table 5 Comparison of the CO2/CH4 and CO2/N2 selectivity of the ML prediction and 

experimental report for KAUST-PI-1 [45] and PIM-1[46]. 

  
CO2 

permeability 

CO2/N2 

selectivity  

CO2/CH4 

selectivity  

Above the 

CO2/N2 

bounda 

Above 

CO2/CH4 

bounda 

KAUST-

PI-1 

BLR 

prediction 
2290 b 26 b 28 b No 

 

Yes 

 

Experimental 

measurement 2398 22 23 No Yes 



16 
 

PIM-1 

BLR 

prediction 
2300c 23c 17c No No 

Experimental 

measurement 
2300 25 18 n/a n/a 

a Whether or not the CO2/N2 and CO2/CH4 selectivity is above the Robeson 2008 upper bound. 

b The CO2 permeability was calculated using our BLR model, the N2 and CH4 permeabilities were collected from 

the Polymer Gas Separation Membrane Database. The permeability data is in Barrer.  

c The CO2 permeability of PIM-1 was reported by reference[16] and he CH4 and N2 permeability of PIM-1 was 

imputed using our BLR model. 

 

 

Fig. 5 Robeson diagram for candidates in the Polymer Gas Separation Membrane Database 

with missing permeability data for (a) CO2 and CH4, where blue circles represent PIMs of 

which CO2 permeability are not reported, red squares represent PIMs of which CH4 

permeability are not reported, and black triangles represent PIMs of which neither CO2 nor 

CH4 permeability are reported; (b) CO2 and N2, where blue circles represent PIMs of which 

CO2 permeability are not reported, red squares represent PIMs of which N2 permeability are 

not reported, and black triangles represent PIMs of which neither CO2 nor N2 permeability are 

reported, the data for PIM-1 is shown with a green dot; (c) the structure of KAUST-PI-1 PIM. 

(d) the structure of PIM-1. 

3.4 Prediction of gas permeability from a single measurement 

During the experimental testing of gas selectivity of new polymers, the gas permeability is 

usually measured sequentially, and these measurements take considerable time and effort. We 

gave the BLR and ERT predictors a more challenging, yet rewarding, task to impute the test 



17 
 

set with sparse features by removing the gas permeability data of all but one gas and using the 

permeability of that one gas to predict the permeability for all the other gases. 

The imputation of the test set was performed following the MICE algorithm using the BLR and 

ERT model as shown in Algorithm 1 and the RMSE for the predictions is shown in Table 6. 

The correlation between gas permeability of pairs of gases can be observed from the RMSE 

results in Table 6. For example, it can be observed that the permeability of H2 and He are 

strongly correlated, since the permeability of H2 solely is a strong feature in predicting the 

permeability of He, with RMSE of 0.05 and 0.10 for the BLR and ERT model, respectively. 

The permeability of He, on the other hand, is a rather weak feature in predicting the 

permeability of other gases. This is purely due to the lack of sufficient experimental data for 

He permeability in the membrane database, and therefore in our test set. Indeed, 48% of the 

polymers in the test set lack the experimental He permeability, thus permeability of He is a 

weak feature for a machine learning model. With more data points for the permeability of He 

experimentally measured and reported in the future, it would be possible to improve the 

predictive power using He permeability as a feature in the imputation model.  

With the imputation using sparse features, O2 and CO2 permeability was the strongest indicator 

of the permeability of the other gases. According to Table 6, the average RMSE of the BLR 

model for predicting permeability of other gases using data for O2 and CO2 are 0.25 and 0.27; 

and the RMSE of the ERT model using data for O2 and CO2 are 0.28 and 0.23, respectively. 

The order of reliability of prediction from permeability of a single gas for BLR model is O2 > 

CO2 > N2 > CH4 > He, and the order of reliability for the ERT model is CO2 > O2 > H2 > N2 > 

He > CH4.  
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Table 6 RMSE of the BLR and ERT predicted gas permeability in logarithm Barrer against the 

experimental reports in the test set. Each column corresponds to a completed imputation with 

the MICE algorithm using the permeability of only the gas in that column as input. The RMSE 

values in bold shows the best ‘feature’ in predicting the gas permeability of the corresponding 

‘target’.  

  Feature 

  He H2 O2 N2 CH4 CO2 

BLR 

Target 

He - 0.05 0.26 0.43 0.59 0.27 

H2 0.62 - 0.23 0.41 0.58 0.23 

O2 0.82 0.24 - 0.23 0.46 0.10 

N2 0.93 0.46 0.24 - 0.31 0.28 

CH4 1.05 0.63 0.42 0.19 - 0.47 

CO2 0.89 0.23 0.11 0.3 0.51 - 

Average 0.86 0.32 0.25 0.31 0.49 0.27 

ERT 

Target 

He - 0.10 0.26 0.65 0.91 0.29 

H2 0.41 - 0.27 0.64 0.93 0.29 

O2 0.47 0.26 - 0.36 0.62 0.13 

N2 0.46 0.43 0.24 - 0.39 0.15 

CH4 0.58 0.55 0.50 0.33 - 0.30 

CO2 0.76 0.32 0.11 0.39 0.67 - 

Average 0.54 0.33 0.28 0.47 0.70 0.23 

 

To simulate the scenario where the experimental permeability of a new polymer for only one 

gas has been measured and one wants to evaluate the gas selectivity of the polymer without 

experimentally measuring the gas permeability of the other gases, we examined specifically 

the performance of CO2 permeability in predicting whether the polymer is above the Robeson 

2008 upper bound for CO2/CH4 and CO2/N2. The accuracy, precision and recall scores for the 

BLR and ERT prediction of CO2/CH4 and CO2/N2 selectivity using only CO2 permeability are 

shown in Table 7. The ERT model outperformed the BLR model for both the selectivity of 

CO2/CH4 and CO2/N2 in the “sparse feature” case. It should be noted that for the BLR model, 

the recall scores are very low, and the precision and recall for CO2/CH4 are both 0.00, which 

indicates that according to the BLR model, all polymers in the test set are “negative”. The ERT 

model, on the other hand, yields robust prediction scores for both the CO2/CH4 and CO2/N2 

selectivity, except that the recall score for CO2/CH4 selectivity is moderate. The reason for the 

ERT model in outperforming the BLR model in the “sparse feature” case might be that the 

linear BLR model learned a stricter relationship between the pairwise gas permeability from 
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the Polymer Gas Separation Membrane Database. This enabled accurate prediction of gas 

permeability in the “dense feature” case, however limited the generalizability of the model in 

the “sparse feature” case. 

It should be noted that the ERT model is not deterministic and might give slightly varied results 

from different runs if different random seeds are used. In this study, we built the ERT model 

using the combination of 100 decision trees, which reduced the probability of high variance in 

the predictions. In addition, parallel ERT tests with different random seeds were performed and 

the RMSE across the ERT models with different seeds with “sparse feature” were smaller than 

0.02. Thus, we believe that the ERT model is robust in predicting the CO2/CH4 and CO2/N2 

selectivity from the permeability of CO2. We suggest here that once the permeability of CO2 

for some polymer has been measured, researchers can quantitatively estimate the permeability 

of N2 and CH4 to gain primary insight on the CO2/CH4 and CO2/N2 selectivity of that polymer 

using the ERT model. Similarly, if only one gas pair (CO2/CH4 or CO2/N2) is tested, this 

method is of high predictive value for the other gas pair. This may save time for future work, 

because less experiments will be needed to screen the potential performance of new materials, 

but it may be particularly helpful also in the evaluation of existing materials outside the 

application field for which they were originally developed. For instance, many polymers were 

studied for carbon capture from flue gas, where CO2/N2 separation is relevant, but they may be 

equally interesting for the strongly emerging new application field of biogas upgrading, where 

CO2/CH4 separation is important.  

 

Table 7 Accuracy, precision, and recall score for the BLR and ERT model in predicting the 

polymers with gas selectivity above the 2008 Robeson upper bound using only the permeability 

of CO2, the “sparse feature”: the accuracy, precision and recall scores are in the range of 0-

1, where the closer a number is to 1, the better the model. 

Model Gases Accuracy Precision Recall 

BLR 
 

CO2/CH4 0.52 0.00 0.00 

CO2/N2 0.64 1.00 0.16 

ERT 
 

CO2/CH4 0.84 1.00 0.66 

CO2/N2 0.89 0.90 0.81 
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Although it does not have the full predictive power of other methods[24,29], the advantage of 

the models presented in this work is that they do not require any knowledge about the polymer 

structure and they work for polymers with different measurement conditions (such as aging 

and solvent treatment), which makes it a fast and versatile approach. For the rapid screening of 

polymers, especially those produced via high-throughput techniques, the prediction of the full 

range of gas permeability from a single rapid measurement could be highly beneficial to 

researchers, especially as the chosen gas may be selected based on avoiding stringent local 

safety regulations (e.g. for H2 or CH4) or high costs (e.g. for He). Our ML model for this 

purpose is open-source and thus available for all experimental researchers in the field to use. 

Our methodology must be used with caution for the evaluation of polymers that may have non-

standard solubility selectivity due to enhanced interaction (e.g. amines for CO2) or poor 

interaction (e.g. fluorinated polymers with CH4) with a particular gas. 

  

4. Conclusions 

The missing values for the permeability of He, H2, O2, N2, CH4 and CO2 in the online Polymer 

Gas Separation Membrane Database of the Membrane Society of Australasia were imputed 

using the MICE algorithm combined with Bayesian Linear Regression and Extremely 

Randomized Trees. Based on the imputed database, we suggested that the KAUST-PI-1 has 

potentially high CO2/CH4 selectivity and good CO2/N2 selectivity, which was confirmed by 

experimental work that was not recorded in the database. The imputed database can serve as 

the training set for future polymers for gas separation, and the gas permeability and selectivity 

of newly synthesized polymers can be predicted using the ML models in this work. Such 

models rely purely on the experimental measurement data of the gas permeability of one or 

more gases and are applicable against different experimental conditions. Validation of the 

imputation model against unseen data suggests that the gas permeability can be modelled with 

reasonable accuracy. Furthermore, it is possible to evaluate the gas selectivity of polymer 

membranes for natural gas sweetening or biogas upgrading (CO2/CH4), carbon capture 

(H2/CO2 and CO2/ N2), and clean fuel production (H2/CO2).    

Our results for ML models using “sparse features” suggest that permeability of He, H2, O2, N2 

and CH4 can be quantitatively estimated using the gas permeability of O2 and/or CO2. 

Specifically, the ERT model is robust in predicting the CO2/CH4 and CO2/N2 selectivity from 

the permeability of CO2. It is suggested that for cases with “dense features”, where the 
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permeability data of multiple gases is already measured, the BLR model can provide accurate 

imputation results to the remaining gas permeability. For cases with “sparse features”, on the 

other hand, the ERT model is recommended for making quantitative predictions to the 

permeability of untested gases given that the CO2 permeability has been measured. In summary, 

preliminary insight into the gas permeability of polymers can be gained at the initial stage of 

experimental measurements, and our model has the potential to rapidly identify polymer 

membranes worth further investigation for both separations of primary interest and those other 

than they were originally designed for. As more data points are continually added to the 

Polymer Gas Separation Membrane Database, particularly for rarely reported sorbents and 

novel polymers, this will eventually provide sufficient data for the ML prediction of further 

gas separation performances, such as ethylene, ethane, propylene, propane, CF4 based only 

upon initial measurements of CO2 and O2. In addition, as larger experimental datasets become 

available, it would be possible to develop additional ML models using data from different 

groups of polymers. For example, ML imputation models for rubbery polymers and glassy 

polymers, where gas transport is dominated by solubility-selectivity and size-selectivity can be 

developed independently with sufficient data for both groups of polymers.  This would be of 

significant advantage to researchers in vastly accelerating the assessment of new polymer 

membranes, at much lower experimental cost. We strongly encourage researchers to report all 

measured permeability data for membranes in their papers and to upload these to the Gas 

Separation Membrane Database, with this open data effort having a universal benefit for the 

polymer membrane community.  
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