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Abstract  

Molecular photoswitches use light to interconvert from a thermodynamically stable isomer into a 

meta-stable isomer. Chemists and materials scientists have applied photoswitches in 

photopharmacology, catalysis, and molecular solar thermal (MOST) materials. Visible-light-

absorbing photoswitches are attractive because the relatively low-energy light minimizes 

undesired photochemical reactions and enables biological applications. Designing ideal 

photoswitches requires long-lived metastable states; predicting their half-lives with theory is 

difficult because it requires locating transition structures.  We now report the EZ-TS code, which 

automates the prediction of rate constants for the thermal Z → E isomerization. We leverage EZ-

TS to automate the location of the favored transition structure and to comprehensively benchmark 

the performance of 140 model chemistries against the experimental rate constants of 11 azoarenes. 

We used 28 density functionals [local spin density approximation, generalized gradient 

approximation, meta-GGA, hybrid GGA, hybrid meta-GGA], and five basis sets [6-31G(d), 6-

31+G(d,p), 6-311+G(d,p), cc-pvdz, and aug-cc-pvdz]. The hybrid GGA functionals performed the 

best of all tested functional classes. We demonstrate that the mean absolute errors of 14 model 

chemistries approach chemical accuracy, and mPWPW91/6-31+G(d,p) achieves chemical 

accuracy and should be used with EZ-TS.  

 

Introduction 

Molecular switches are organic or organometallic molecules that cycle between two distinct 

chemical states when subject to an outside stimulus such as changes in pH,1-6 mechanical force,7, 

8 solvent polarity,9 and light.10, 11 These two states have distinct chemical and physical properties, 

accessible by switching the stimulus on or off. Light stimulus is easily controlled spatiotemporally 

and promotes cycling between two photoswitch states. Azoarene photoswitches contain two aryl 

groups on either side of an N=N diazo bond, and their switching mechanisms are light-activated. 

Many classes of photoswitches have emerged in the literature, but azobenzenes are considered 

prototypical molecular switches because of their relatively straightforward syntheses and 

reliability. The vast majority of azobenzenes require ultraviolet light to promote photoswitching.12 

The relatively low-energy of visible light generally avoids undesired photochemical reactions, thus 

broadening the utility of visible-light photoswitches in biological13-18 and materials science 
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applications.19-21 Replacing the benzene moiety of azobenzene with heteroaryl groups has resulted 

in red-shifted absorbance maxima (λmax) and improved thermal half-lives over azobenzenes. 

Azoheteroarenes with aryl rings containing nitrogen22-26, sulfur27-30, and oxygen31 atoms have been 

studied. Recent studies by Dreuw and Wegner have shown that thiophenylazobenzene molecules 

exhibit redshifted λmax values over azobenzene of up to 60 nm, and near quantitative (>95%) 

photoswitching of the E isomer when irradiated with visible light.32 Heindl and Wegner also found 

in 2020 that substituting the phenyl ring of thiophenylazobenzene with an electron-withdrawing 

group can stabilize the meta-stable Z isomer, and can increase the half-life to up to 17.7 hours.33 

Azofuran molecules are the least explored of our given examples. A study from 2006 conducted 

by Oliveira et al. found that a diphenyl furan molecule was effective in inhibiting the growth of 

cancer in human cells.31 The photophysical properties of polymer materials containing a 

diazofuran moiety were investigated in 2005 by Wang et al.34 A diazofuran dye molecule was also 

included in a study conducted in 2000 by Åstrand et al.35 to investigate the effectiveness of five-

membered rings as optical data storage materials. To the best of our knowledge, there have been 

no studies on the thermal properties of diazofuran molecules to date. Nitrogen-containing 

photoswitches have by far been the most explored of all heteroaryl photoswitches. These 

molecules feature improved Z-isomer half-lives over azobenzene, ranging from 10 days to 46 years 

with near-quantitative bidirectional photoswitching (>98% pss).22, 23 The design of next-generation 

photoswitches is challenging because of the simultaneous tuning of multiple performance 

parameters: 1) λmax, and the minimal overlap between the absorbance spectrum of the trans- and 

cis-isomers, (Δλmax), 2) the half-life of the relative thermal stability of the metastable isomer (t1/2), 

3) steady-state relative population of the photostationary states of the stable and meta-stable 

isomers, and 4) reproducibility of the switching over time. This report provides a new 

computational tool to predict the t1/2 of meta-stable Z-isomers; Scheme 1 illustrates the reaction 

and interconversion transition state that depletes the population of the metastable Z isomer 

(Scheme 1). 
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Scheme 1. Azobenzene photoswitching and thermal isomerization reaction. Generalized azoarene 

photoswitch, undergoing Z → E isomerization via an inversion mechanism. 

 

 

 
 

      Three possible mechanisms have been put forth to describe the thermal back-isomerization: 1) 

rotation about the CNNC dihedral,36 2) inversion-one side of the πNN bond becomes nearly 

collinear with one of the aryl rings,36 3) hula-twist-the transition structure features a twisting 

motion about the πNN bond while the aryl groups maintain their relative orientations.37 Density 

functional theory (DFT) calculations suggest that the inversion mechanism is generally preferred 

for the Z → E thermal isomerization.36, 38-40 Rietze and co-workers benchmarked density 

functionals against experimental ΔG‡ for azobenzene and one azobenzene derivative, AzoBiPyB 

in 2017.41 The AzoBiPyB molecule is azobenzene functionalized with pyridines at the meta 

positions of one benzene.  This study benchmarked 13 method and 7 basis sets, which includes 

standard Hartree-Fock calculations, meta-GGA functionals and range separated GGA functionals. 

The authors concluded that the B3LYP and BMK density functionals with the 6-31G(d) basis set 

are both predicted ΔG‡ to within ~1 kcal mol–1 of experimental values. These studies have shown 

that the B3LYP functional, coupled with Grimme’s dispersion correction D3BJ42-44 and the 6-

31G(d) basis set45 provided an acceptable compromise between computational cost and 

accuracy.37, 38, 46 

     The limited number of benchmarked model chemistries and molecular scope of azobenzenes 

has raised doubts on whether B3LYP/6-31G(d) is still the best model chemistry to use. Indeed, 

there is no guarantee that the performance can be transferred from one molecular class to another. 

Further, the performance of density functionals cannot be systematically improved. There is no 

guarantee that utilizing additional terms or basis functions will improve the description of 

molecular geometries and or energies.47 Kohn–Sham (KS)-DFT is formally exact, but it involves 

an exchange-correlation (xc) functional. The xc functional is referred to as a density functional; 
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the exact form of this functional is unknown and essentially unknowable. KS theory involves 

parametrizing the electron density by a Slater determinant, which enforces the Pauli exclusion 

principle and permits the calculation of non-interacting kinetic energy from the orbitals of the 

Slater determinant as if it were a wave function. The KS orbitals satisfy a set of coupled differential 

equations similar to the Hartree-Fock (HF) equations of wave function theory (WFT) but 

containing the xc potential instead of the HF-exchange potential. The xc potential approximates 

the exchange and includes electron correlation and the electron kinetic energy beyond the non-

interacting part(s). All xc functionals have empirical components; these components are often 

parameters fitted to experimental data and ab initio data and may combine various kinds of 

empiricism.48 

     Jacob’s ladder is an organizational scheme for density functionals with five rungs representing 

increasing levels of theoretical rigor in xc potentials with higher computational cost.47, 49 From 

lowest to highest, the rungs are local spin density approximation (LSDA) functionals, generalized 

gradient approximation (GGA) functionals, meta-GGA functionals, hybrid GGA functionals, and 

generalized random phase approximations (RPA) functional.47 Herein, we include functionals 

from the first four rungs of Jacob’s ladder. 

 

Scheme 2. Representation of Jacob’s ladder of density functionals. 

 

 
 

    The local spin-density approximation (LSDA) is the simplest exchange-correlation functionals, 

which occupy the first rung of Jacob’s Ladder. These functionals assume an infinite uniform 

electron gas; while computationally expedient, these functionals are typically unable to reproduce 
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experimentally measured molecular properties, since a majority of molecules and materials have 

inhomogeneous density distributions. Generalized gradient approximation (GGA) functionals 

improve upon the systematic errors of the LSDA by introducing a factor that partially accounts for 

inhomogeneous densities. These functionals occupy the second rung of Jacob’s Ladder and show 

significant improvements relative to LSDA. Two additional independent ingredients that further 

improve the functional’s accuracy are the Laplacian of the electron density or the kinetic energy 

density.50 The kinetic energy density describes electron delocalization in 𝜋-conjugated 

molecules.51 The third rung of Jacob’s Ladder and are known as meta-generalized-gradient 

approximations (meta-GGA); meta-GGA functions include either the Laplacian of the electron 

density or the kinetic energy.47 Despite the improvement offered by Laplacian of the electron 

density or the kinetic energy, self-interaction error (SIE), long-range dynamic correlation 

(dispersion), and strong correlation cannot be remedied within LSDA, GGA, and meta-GGA.47 In 

Kohn-Sham (KS)-DFT, since the exact exchange term is replaced by the exchange-correlation 

functional, most functionals are not one-electron SIE-free.52 Leveraging an ‘exact’ HF-exchange 

functional with a local correlation functional gives exactly zero correlation energy for one-electron 

systems has proved effective to improve SIE. Becke pioneered the mixing of a global fraction of 

exact exchange with the exchange-correlation functional,44, 53 which resulted in the solution that 

defines Rung 4 of Jacob’s Ladder (hybrid GGA and hybrid meta-GGA).47  

 

Computational Methods 

      We used 28 density functionals and five different basis sets. The list includes hybrid 

functionals that include Grimme’s empirical dispersion correction (PBE0,54  B3LYP,44, 55-57 and 

BMK58), the Petersson-Firsch Dispersion correction (APFD),59  no dispersion corrections (MN12-

SX,60 M06-2X,61 M06-HF,62 PBEh1PBE,63 OHSE2PBE,64 and mPW1PW9165), functionals with 

long-range corrections (CAM-B3LYP,66 ωb97XD,67 and LC-wHPBE68), functionals with 

generalized gradient approximations (GGA) (M11L,69 N12-SX,60 mPW1B95,70 mPW1PBE,65, 71 

TPSS1KCIS,72 mPW1B1K,70 mPW1K,73 BB1K,74 BHandH,55, 75 ωB97,76 and ωB97X76), the τ-

corrected gradient correlation functional TPSSH.77 and functionals with local spin density 

approximations (LSDA), (SVWN78 and SVWN556, 78). We have combined the following five basis 

sets with each density functional: 6-31G(d), 6-31+G(d,p), 6-311+G(d,p),45 cc-pvdz, and aug-cc-

pvdz.79, 80 We included the common double- and triple- Pople family basis sets with and without 

diffuse functions. We also included correlation consistent basis sets with and without diffuse 

functions, because they systematically result in smooth convergence of energies toward the 

complete basis set (CBS) limit with the cardinal number, n (in cc-pVnZ). This feature permits the 

systematic improvement of ab initio energies with basis set size.81-84 All optimizations are 

performed using the Integral Equation Formalism Polarizable Continuum Model85 (IEFPCM) for 

water in Gaussian 16.86 
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Discussion/Results 

      The purpose of this study is 3-fold: 1) Identify the most accurate model chemistry for 

predicting the ΔGcomp
‡ for the thermal reversion reactions of azoarenes, 2) Obtain a clear idea of 

functional and basis set effects on ΔGcomp
‡ free energies and thermal isomerization mechanisms, 

3) Demonstrate how our open-source EZ-TS code can be used to automate thermal isomerization 

transition structures of diazoarenes. After searching the literature for experimental half-lives and 

corresponding kexp we identified many more azoarenes than we could benchmark in a single report. 

We excluded all azoarenes that featured extended alkyl chains,87 transition metal complexes,88, 89 

or macrocycles.90-92 We decided not to include these classes of azoarenes because of the 

exponentially larger computational cost associated with evaluating the conformational space of 

alkyl chains and inconsistent performance of density functionals for organometallic species.93, 94 

 

Conformational search of Z-isomers 

      We developed a computational workflow to determine the lowest energy conformer of the 

reactant (Z-isomer) for the thermal back-reaction. The simplified molecular-input line-entry 

system (SMILES)95 string is first read in using openbabel, which generates a rough 3D coordinate 

file (e.g., .xyz). The coordinate file is passed to the Conformer Rotamer Ensemble Sampling Tool 

(CREST) tool,96 which uses metadynamics simulations to sample the conformational space of 

organic molecules. A CREST conformational search can yield up to 100 possible conformers. The 

xTB97 minimization procedure led to inaccurate structures that had convergence failures across the 

wide range of functionals in this report. We introduced a workaround that involved a partial 

optimization scheme, where each xTB-structure structure was relaxed with 5 B3LYP/6-31G(d) 

optimization steps using ORCA98. The resulting conformers are ranked by energy and the 10 

lowest energy conformers are fed into the optimization and vibrational analysis portion of the 

workflow.  

       

EZ-TS open-access code 

EZ-TS leverages molecular dynamics simulations and DFT calculations to locate the lowest energy 

transition structure for each Z → E isomerization; this workflow is illustrated in Scheme 3. EZ-TS 

aims to contribute to the growing body of codes meant to automate quantum chemical 

calculations.99-102 
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Scheme 3. EZ-TS workflow starting from an optimized cis geometry (top left) and undergoing 

conformational searching and optimizations towards the lowest energy transition structure (bottom 

left). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      EZ-TS (available at https://github.com/lopez-lab) first generates a 3D input structure as 

described in the computational methods section. The resulting 3D geometry is automatically 

altered to generate 12 input guess-structures by setting the CNN angle to a value between 120 and 

180°. These input structures are then initially optimized with B3LYP(D3BJ)/6-31G(d); a 

vibrational analysis is performed to verify that the stationary point is indeed a transition structure 

(one negative frequency). We observed that the imaginary frequency for the inversion mechanism 

is typically in the range of  –500 - –200cm–1. For the rotation mechanisms, we observed imaginary 

frequencies in the range of –1000 - –700cm–1. Each of these transition structures is subjected to a 

CREST conformational search with constrained CNNC dihedral angle and both CNN angles 

(highlighted in Scheme 3). The truncated optimization scheme is also applied to the transition state 

conformational search as described above. After this partial optimization, the conformers are 

ranked by energy, and the 10 lowest conformers are subject to an optimization and vibrational 

analysis procedure using B3LYP-(D3BJ)/6-31G(d) using the Gaussian16 software. The energies 

of these 10 TS-conformers are ranked, those transition structures with frequencies not 

corresponding to azoarene isomerization mechanisms (>–200cm–1) are discarded.  

      With EZ-TS in hand, we used high-performance computing to predict the corresponding 

thermal rate constants kexp of the 12 azoarenes with 28 density functionals and 5 basis sets; the 

kcomp are compared to experimental kexp. We report deviations of kcomp from kexp as mean average 
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error (MAE) for each combination method and basis set. Scheme 4 shows the 12 tested azoarenes, 

and their names in the associated references.  

 

     Scheme 4. Tested set of 12 azoarene photoswitches. Their labels from the relevant references 

are given. 

 
Table 1 shows a summary of the 12 included azoarenes and their corresponding ΔGexpt

‡, kexpt, and 

known reaction conditions (solvent and temperature).  

 

Table 1. List of benchmarked azoarenes and corresponding ΔGexpt
‡ (kcal mol–1), kexpt (s–1), and 

reaction conditions (solvent and temperature). 

Mol Name in Ref ΔGexpt
‡ k  Conditions 

1 2pyH 23.1 6.50x10-5 MeCN 25 ℃ 

2 2pyMe 19.5 3.30x10-2 MeCN 25 ℃ 

3 5im 25.5 1.20 x 10-6 MeCN 25 ℃ 

4 16d 4-CF3 21.9 4.93x10-4 MeCN 25 ℃ 

5 17d 2-OMe 23.9 1.73 x 10-5 DMSO 25 ℃ 

6 35d 2,4-diF 23.3 5.43x10-5 MeCN 25 ℃ 

7 36d 2,5-diF 20.6 4.72x10-3 DMSO 25 ℃ 

8 4pzH-F2 30.1 4.80x10-10 DMSO 25 ℃ 

9 2 25.6 1.07x10-6 DMSO 25 ℃ 

10 1j 24.3 9.63x10-6 DMSO/H2O 

11 15h 25.1 2.50x10-6 MeCN 25 ℃ 
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      We translated the cited molecule name from the original reference into numbers for clarity. 

The experimental ΔGexpt
‡ ranges from 19.7 to 30.1 kcal mol–1, spanning 7 orders of magnitude for 

rate constants. The large range of rate constants supports our claim of a sufficiently diverse set of 

azoarenes for a benchmarking study. Next, we begin to assess the performance of all included 

model chemistries on predicting azoarene Z → E thermal isomerization barriers. 

 

Overall performance 

      Figure 1 summarizes the MAEs for ΔGcomp
‡ for each of the 140 model chemistries. The 

different shapes are organized by basis set; the red shapes correspond to basis sets with diffuse 

functions (6-31+G(d,p) and aug-cc-pvdz),  and the black unfilled shapes correspond to 6-31G(d) 

(black circles) and cc-pvdz (black triangles). The filled black squares correspond to the 6-

311+G(d,p) triple-ζ basis set. The functionals are distributed based on MAE, going from largest to 

smallest. 

  

 
Figure 1. Scatter plot of 140 model chemistries (28 functional and 5 basis set combinations). The 

6-31G(d), 6-31+G(d,p), cc-pvdz, aug-cc-pvdz, and 6-311+G(d,p) basis set MAEs are shown as the 

black circles, red circles, black triangles, red triangles, and black squares, respectively. The dotted 

black line represents the cutoff of chemical accuracy (1.0 kcal mol–1). 
 

      The MAEs across all functionals ranged from 1.0 kcal mol–1 to 7.2 kcal mol–1. The best overall 

performance was achieved by mPWPW91/6-31+G(d,p) and the worst overall performance was 
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achieved by M06-HF/aug-cc-pvdz. A visual inspection of the data presented in Figure 1 suggests 

that the choice of density functional affects MAEs more strongly than the basis set. The MAEs 

have a relatively narrow range across the five basis sets; the APFD functional yields the smallest 

range of 0.1 kcal mol–1, while the M06-HF functional affords the largest range (1.6 kcal mol–1). 

Further, increasing the basis set size from double-ζ (6-31G(d)) to triple-ζ (6-311+G(d,p)) does not 

affect average MAE (both have an average of 2.2 kcal mol–1). We next analyzed the performance 

of the density functionals with the 6-311+G(d,p) basis set from high to low MAEs. The 10 worst-

performing functionals have MAEs that range from 2.0–5.9 kcal mol–1.  The M06-HF functional 

gave the highest MAEs, significantly higher than the other functionals. The high MAEs of M06-

HF are consistent with respect to basis set; the MAEs ranged from a low of 5.9 kcal mol–1 (6-

311+G(d,p) basis set) to 7.2 kcal mol–1 (aug-cc-pvdz basis set). After M06-HF, the second-worst 

model chemistry was SVWN-5/cc-pvdz with an MAE of 4.5 kcal mol–1.   

      The best-performing functionals show an MAE range of 1.0–1.9 kcal mol–1. These functionals 

are PBE0, MN12-SX, cam-B3LYP, mPWPW91, mPWB95, B3LYP, OHSE2PBE, mPW1PBE, 

mPW1PW91, PBEh1PBE, M11-L, LC-wHPBE, MPWb95, BHandH, BMK, BB1K, and APFD. 

There is also a second tier of functionals, which contains the worse performing ones (MAEs of 2.0 

kcal mol–1 and above). The functionals here include SVWN, SVWN-5, M06-2X, M06-HF, N12-

SX, B3P86, ωb97, ωb97x, ωb97xD, TPSSh, and tpsskcis. Next, we will rationalize these tiers of 

MAEs across all density functionals. Figure 3 shows the MAE of each density functional used 

with the 6-311+G(d,p) basis set. We use only this triple-ζ basis set for this analysis, as it afforded 

the lowest MAE when averaged across all functionals. 
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Figure 2. MAE values for each functional with the 6-311+G(d,p) basis set and the two accuracy 

tiers observed for tested functionals. The MAEs in the first tier are all below 2.0 kcal mol–1, and 

the MAEs in the second tier are above 2.0 kcal mol–1. The dotted black line represents the cutoff 

of chemical accuracy (1.0 kcal mol–1). 

 

      Both LSDA functionals (SVWN and SVWN-5) are among the highest MAEs (4.4 and 4.5 kcal 

mol–1, respectively). The LSDA exchange was developed to approximate HF-exchange. However, 

because it was derived from the HF-density matrix constructed with the plane wave orbitals of the 

uniform electron gas, the LSDA exchange functional typically underestimates the exchange energy 

by 10–15% for inhomogeneous many-electron systems,44, 103 such as azoarenes.  

      The range separated functionals (N12-SX, ωB97, ωB97X, and ωB97XD) were all present in 

the 2nd tier, with ωB97 giving the highest MAE (3.2 kcal mol–1). The standard long-range 

correction of range separated functionals features a two-electron operator that is separated into the 

short-range and long-range parts, where conventionally the short-range part is described with 

GGA, while long-range is described with HF-exchange integral.104, 105 The relatively poor 

performance of all considered range separated functionals is a result of long-range corrected 

functionals being parameterized in a way that allows for correcting the long-range charge transfer 

errors in Time-Dependent DFT without contaminating the short-range part of exchange-

correlation potential with extra HF-exchange. Such choice is motivated by the observation that 
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only full HF-exchange properly describes the distance dependence of long-range charge-transfer 

excitation energies. However, Rohrdanz and Herberta showed that a single range-separation 

parameter could not provide reasonable accuracy in the prediction of both ground-state properties 

and vertical excitation energies. As stated by the authors, the reasonable errors in atomization 

energies and barrier heights are achieved only at the expense of excessively high excitation 

energies and vice versa.106  

      The two global hybrid-GGA functionals that belong to tier 2 and perform poorly relative to the 

other global hybrids are M06-2X (2.2 kcal mol–1) and M06-HF (5.9 kcal mol–1). The connection 

between these functionals is the high percentage of Hartree-Fock HF-exchange as compared to the 

other global hybrids that performed well. To explore the effects of HF-exchange on MAE, we 

evaluated five hybrid functionals that do not contain dispersion corrections (M06-2X, M06-HF, 

BHandH, PBEh1PBE, and mPW1PW91). The PBEh1PBE and mPW1PW91 functionals have 

25% HF-exchange, while the BhandH, M06-2X, and M06-HF have 50%, 54%, and 100% of HF-

exchange, respectively.  

 
Figure 3. MAE for five hybrid functionals as a function of Hartree-Fock exchange. MAEs are 

evaluated for the 6-311+G(d,p) basis set. The green bars represent the amount of HF-exchange in 

each functional, and the black dots represent the MAE in kcal mol–1. 

      The PBEh1PBE and mPW1PW91 functionals both contain 25% HF-exchange and have MAE 

values of 1.7 and 1.8 kcal mol–1, respectively. From there, the MAEs generally increase along with 

the amount of HF-exchange. The only exception to this is the BHandH functional, which contains 

50% HF-exchange, and has an MAE of 1.7 kcal mol–1. As the amount of HF-exchange is increased 

to 54% in the M06-2X functional, the MAE increased significantly by 0.5 kcal mol–1 (2.2 kcal 

mol–1). Finally, the M06-HF functional (100% HF-exchange) had an MAE of 5.9 kcal mol–1, 
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indicating that the large increase of HF-exchange causes a significant increase in MAEs. This was 

also the result found in 2017 by Rietze and co-workers, where the exchange-only HF-method gave 

the largest error in predicting azobenzene thermal reaction kinetics (5.0 kcal mol–1). Moreover, 

Brothers and coworkers have shown computationally that a large percentage of HF-exchange 

contribute to increasing error for reactions where there is a rehybridization of bonds in the 

transition state.107 

      We now move to an analysis of the first tier (MAEs of 1.9 kcal mol–1 and below) of functional 

performance. The best performing functionals in this tier approached chemical accuracy (1.0 kcal 

mol–1) for predicting azoarene thermal isomerization barriers. Some functionals included here are 

CAM-B3LYP, LC-wHPBE, MN12-SX, and M11-L. As mentioned earlier the MN12-SX 

functional performs well (MAE of 1.5 kcal mol–1) because this functional is a range separated 

meta-GGA functional that uses screened exchange (SX) version of range separation, which allows 

it to overcome the compromise between the accuracy of prediction of excited states energies and 

ground state barriers that arise for conventional long-range corrected range separated functionals. 

The LC-wHPBE functional provides accurate MAE (1.5 kcal mol–1). This functional has a lower 

percentage (20%) of long-range correction compared to other range separated functionals. 

Although CAM-B3LYP has a high percentage (33%) of long-range correction, the reasonable 

performance of this functional in predicting reaction barriers was demonstrated before in a study 

by Handy and coworkers where they demonstrated that MAE obtained for BH42/04 dataset74 is as 

low as 2.1 kcal mol–1, which is in agreement with MAE of 1.4 kcal mol–1 obtained in the present 

study. The relatively low MAE of 1.6 kcal mol–1 calculated with M11-L is most likely due to the 

high parametrization of this functional compared to the other functionals and the rest of the 

functionals in the Minnesota family. The M11-L functional has 49 parameters, while B3LYP, 

ωB97X, M05, M06, and M08-HX functionals have 3, 14, 22, 38, and 44 parameters, respectively.69 

      Other functionals that are in the top tier are PBE0, PBEh1PBE, OHSE2PBE, mPW1PBE, 

mPW1PW91, mPWPW91, and B3LYP. Hybrid meta-GGA functionals of MPW and MPW1 type 

are among the best performing functionals, with a range of calculated MAEs between 1.0-1.8 kcal 

mol–1. These results are supported by the work of Zhao and Truhlar in which they demonstrated 

that MPW1B95 and MPWB1K total mean unsigned errors (TMUE) for thermochemistry of 

multiple test sets (AE109/3 atomization energy database,108 BH42/04 barrier height database,74 

AE6 representative atomization energy database,109 BH6 representative barrier height database,109 

SPG15/02 saddle point geometries database,110 ZPE13/99 zero-point energy database,111 HB4/04 

hydrogen bonding database, WI4/04 weak interaction database) are as low as 1.2 and 1.7 kcal mol–

1, respectively.70 Finally, the class of functionals that performs consistently well in this study are 

the global hybrid GGA functionals which include PBE0, PBEh1PBE, OHSE2PBE, B3P86, and 

B3LYP.  

      The trends established in this study show that the meta-GGA density functionals afford 

relatively low MAEs (1.4–1.6 kcal mol–1), with M06-2X, TPSSh, and TPSS1KCIS being 

exceptions (2.2, 2.3, and 2.4 kcal mol–1, respectively). The M06-2X functional contains 54% HF-

exchange, whereas the other surveyed meta-GGA functionals contain 42% (BB1K), 25%(MN12-
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SX), and 0% (M11-L and TPSS1KCIS). This also aligns with the effects of HF-exchange that were 

established in global hybrid GGA functionals utilized in this study (Figure 3). LSDA functionals, 

along with functionals containing a high percentage of HF-exchange, gave high MAEs. We also 

found that the range separated functionals afforded relatively large errors. GGA functionals also 

generally gave lower MAEs than meta-GGA functionals. All of these results are for the 6-

311+G(d,p) basis set, and the results follow similar trends for the other basis sets (6-31G(d), 6-

31+G(d,p), cc-pvdz, and aug-cc-pvdz). 

      Next, we evaluate the performance of our functionals and basis sets in predicting the reactivity 

of azoarenes used for this study. The purpose of this analysis was to compare the ability of the 

functionals to measure the relative reactivity of photoswitches. Figure 4 shows the top-performing 

functionals for each of the first four rungs on Jacob’s ladder, and their computed and 

experimentally measured ΔG‡ values. The lines of best fit are presented on each graph, along with 

their equations, and R2 values. 
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Figure 4. Experimental vs. theoretical half-life comparison of photoswitches benchmarked in 

this study. We’ve included SVWN-5 (LSDA functional, top-left), N12-SX(GGA-functional, top-

right), MN12-SX (meta-GGA functional, bottom-left), and PBE0 (global hybrid functional, 

bottom-right). The lines on each graph represent the line of best fit. 

 

 

      Of the top-performing functionals from each rung on Jacob’s Ladder, the SVWN-5 LSDA 

functional (first rung) had the worst performance in predicting azoarene reactivity, with an R2 

value of 0.42. The N12-SX GGA functional (second rung) offered a large performance 

improvement, with an R2 value of 0.74. The MN12-SX meta-GGA functional (third rung) 

performed worse in predicting azoarene reactivity than the N12-SX GGA functional, giving an R2 

value of 0.69. This result contrasts the improvement in MAE of the MN12-SX functional over 

N12-SX. The PBE0 density functional (fourth rung) had the best overall performance, giving an 

R2 value of 0.78. This functional also gave the best overall performance with respect to MAE. We 

assessed the qualitative performance of the PBE0 functional to determine if adding diffuse 

functions to the basis set would improve performance. Figure 5 shows the experimental vs. 

theoretical half-life comparison for the PBE0 functional with the 6-31G(d), 6-31+G(d,p), cc-pvdz, 

and aug-cc-pvdz basis sets. 
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Figure 5. Experimental vs. theoretical half-life comparison of azoarene photoswitches 

benchmarked in this study. The graphs represent the best performing functional, PBE0, used with 

the 6-31G(d) (top left), 6-31+G(d,p) (top right), cc-pvdz (bottom left), and aug-cc-pvdz (bottom 

right) basis sets. The lines on each graph represent the lines of best fit. 

 

      Figure 5 shows the basis set effects on the performance of PBE0 in predicting azoarene 

photoswitch reactivity. We first assess the Pople basis sets (top row). The 6-31G(d) basis set 

performed the worst in predicting reactivity with an R2 value of 0.65. The 6-31+G(d,p) basis set, 

which adds diffuse functions, offered a significant improvement over 6-31G(d), with an R2 of 0.78. 
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The 6-311+G(d,p) triple-ζ basis set (Figure 4) performed identically to the 6-31+G(d,p) basis set, 

giving an R2  of 0.78. Next, we examine the correlation consistent basis sets cc-pvdz and aug-cc-

pvdz. The cc-pvdz basis set had an R2 value of 0.71. The aug-cc-pvdz basis set adds diffuse 

functions to cc-pvdz, and offers an improvement, with an R2 value of 0.78 compared to 0.71. This 

value is on par with the 6-31+G(d,p) and 6-311+G(d,p) basis sets. We then compared the 

performance of the model chemistries which gave the lowest 10% of MAEs with respect to the 

computational times for the frequency calculation of the transition structures (Figure 6). 

 
 

Figure 6. Top 14 performing model chemistries for ΔGcomp
‡. The green bars represent the wall 

CPU time to complete a vibrational frequency analysis of the transition structures (in hours), and 

the black dots represent the MAE for a given model chemistry in kcal mol. 

 

      We further examined this set of 14 model chemistries because they had the lowest MAEs 

across all 140 computational methods. The range of MAE values in this subset is 0.3 kcal mol–1. 

The mPWPW91/6-31+G(d,p) model chemistry gave the lowest MAE value overall (1.0 kcal mol–

1). The highest MAE (1.3 kcal mol–1) of these top-performing methods corresponds to B3LYP/cc-

pvdz. Four of the five basis sets (6-31+G(d,p), 6-311+G(d,p), cc-pvdz, and aug-cc-pvdz) and eight 

of the 28 functionals (PHEh1PBE, BB1K, mPWPW91, PBE0, B3LYP, MPWB95, MPWb95, and 

MN12-SX) used in our study are represented in the lowest 10%. The green bars represent the 

average CPU time for the frequency calculation for each respective model chemistry, ordered from 
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fastest to slowest along the x-axis. The black dots represent the average MAE for each model 

chemistry in kcal mol–1. The shortest average time of 1.9 hours was for the B3LYP/cc-pvdz model 

chemistry. The longest average time of 17.8 hours was for the PBEh1PBE/aug-cc-pvdz model 

chemistry. The three shortest average CPU times (1.9 - 3.6 hours) were for model chemistries 

including the cc-pvdz and 6-31+G(d,p) basis sets. The seven longest average CPU times (7.1 hours 

– 17.8 hours) were all for model chemistries including the 6-311+G(d,p) or aug-cc-pvdz basis sets. 

The model chemistry with the lowest average MAE (mPWPW91/6-31+G(d,p)) had an average 

CPU time of just 5 hours, one of the lowest times out of all 14 model chemistries depicted in Figure 

6. We conclude that while adding diffuse functions to increase basis set size or adding triple- ζ 

functions can afford a slightly more accurate model chemistry, the computational cost grows 

exponentially.  

 

Conclusion 

      We provide an automatic framework (EZ-TS) to handle 1000s of quantum mechanical 

computations towards predicting azoarene Z → E isomerization activation free energies. We have 

performed a benchmarking of 28 density functionals and 5 basis sets for predicting the ΔGexpt
‡. 

We included LSDA-type functionals, GGA-functionals, meta-GGA functionals, and hybrid 

functionals with diffuse functions, double-ζ, and triple-ζ basis sets (Pople and correlation-

consistent). We compared our ΔGcomp
‡ with ΔGexpt

‡ and calculated the MAE for each model 

chemistry and molecule. The MAEs ranged from 1.0 kcal mol (PBEh1PBE/aug-cc-pvdz) to 7.0 

kcal mol (M06-HF/6-31G(d)). The hybrid functionals afforded the lowest MAEs out of all that 

were tested, The PBE0 functional with the 6-31+G(d,p), 6-311+G(d,p), and aug-cc-pvdz basis sets 

best predicted the relative azoarene reactivity (R2 value of 0.78). We identified 14 model 

chemistries that approach chemical accuracy with MAEs ranging from 1.0-1.3 kcal mol–1, with the 

mPWPW91/6-31+G(d,p) model chemistry giving the lowest MAE (1.0 kcal mol–1). The range 

within the set of lowest 14 model chemistries was small (0.3 kcal mol–1), indicating that any of 

them would be adequate in predicting ΔGexpt
‡. With our most accurate model chemistries, we were 

able to predict azoarene Z → E activation barriers within a single order of magnitude and 

accurately predict the thermal reactivity of the meta-stable azoarene Z isomers. An analysis of the 

frequency calculation job times for the best performing model chemistries also indicated that using 

basis sets containing diffuse and triple-ζ basis functions increased the computational time by nearly 

tenfold, while only offering a relatively small (0.30 kcal mol–1) improvement in MAEs.  
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