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ABSTRACT: We report a method to prepare α-chiral carboxylic acid derivatives, including those bearing all-carbon quaternary 
centers, through an enantioselective CuH-catalyzed hydrocarboxylation of allenes with a commercially available fluoroformate. A 
broad range of heterocycles and functional groups on the allenes were tolerated in this protocol, giving enantioenriched α-
quaternary and tertiary carboxylic acid derivatives in good yields with exclusive branched regioselectivity. The synthetic utility of 
this approach was further demonstrated by derivatization of the products to afford biologically important compounds, including the 
antiplatelet drug indobufen.  

    All-carbon quaternary stereocenters, a structural feature that 
can impart significant chemical and biological impact to a 
molecule, are critical to many synthetic and medicinal applica-
tions.1 Consequently, catalytic and enantioselective approach-
es for constructing all-carbon quaternary centers, especially 
functionalized stereocenters, are highly desirable.2 Carboxylic 
acids, a chemically versatile functional group, that can bear an 
α-stereogenic center often serve as useful synthetic intermedi-
ates.3 More importantly, α-chiral carboxylic acid derivatives 
themselves constitute an essential class of compounds in 
pharmaceutical, agrochemical, and natural product arenas 
(Figure 1A).4 Methods for generating enantioenriched α-chiral 
carboxylic acids have long been sought after.5 Prominent syn-
thetic strategies targeting α-chiral carboxylic acids or esters 
via asymmetric catalysis include hydrogenation of α,β-
unsaturated carboxylic acids,6 carbene-induced C−H insertion 
with diazoacetates,7 enantioselective protonation8 or hydrogen 
atom transfer9 processes, and α-functionalization of carboxylic 
acid derivatives.10-12 Nonetheless, catalytic access13 to enanti-
oenriched acyclic carboxylic acids or esters featuring an all-
carbon α-quaternary stereocenter remains challenging.2a-b In 
this regard, common synthetic methods include allylic alkyla-
tion of geometrically pure alkenes,14 often with superstoichi-
ometric organometallic reagents, and α-functionalization of 
carboxylic acid derivatives,11,12f which typically necessitates a 
β-directing group or electron-withdrawing group (Figure 1B).  
    As an alternative, the hydrocarboxylation15,16 of prochiral 
unsaturated substrates represents a straightforward approach 
for preparing carboxylic acids. Asymmetric hydrocarboxyla-
tion has typically17 been achieved through palladium-catalyzed 
hydroxy- and alkoxycarbonylation processes using CO gas or 
a carbon monoxide surrogate.18,19 Despite significant advances 
in this area, the vast majority of the methods can only synthe-
size α-tertiary acids or esters from vinyl arenes, and a highly 
enantioselective technique for the assembly of α-quaternary 
carboxylic acids through a hydrocarboxylation or hydroesteri-
fication of unsaturated substrates is still unknown.17a 

    Based upon our research program in copper hydride (CuH)- 
catalyzed asymmetric hydrofunctionalization of unsaturated 
substrates,20 we sought to develop a hydrocarboxylation meth-
od for constructing enantioenriched carboxylic acids, especial-

ly α-quaternary acids. Specifically, we envisioned that a chiral 
organocopper species, generated in situ from the hydrocupra-
tion of an unsaturated substrate, could engage a suitable car-
boxylation reagent to afford enantioenriched carboxylic acids. 
Previously, when CO2 was used as an electrophile in CuH-
catalyzed olefin hydrofunctionalization reactions, the initially-
formed silylated carboxylic acid intermediates underwent fac-
ile reduction and led to the formation of hydroxymethylene 
products.21 To circumvent this reduction pathway, we targeted 
the CuH-catalyzed hydroesterification, as the products are 
unreactive under the reaction conditions and can be readily 
hydrolyzed to give the corresponding carboxylic acids. An 
ester directly attached to a leaving group is proposed as the 
electrophile for realizing the hydrocarboxylation process (Fig-
ure 1B). In order to obtain α-quaternary esters and acids, we 
sought to perform a regioselective hydrocarboxylation of al-
lenes as the unsaturated substrate. Herein, we report a highly 
enantioselective CuH-catalyzed hydrocarboxylation to furnish 
both α-quaternary and tertiary carboxylic acid derivatives. 

 

Figure 1. A. Overview of bioactive α-chiral carboxylic acid de-
rivatives. B. Previous strategies and our approach to synthesize 
acyclic α-quaternary carboxylic acid derivatives. 
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    We chose 1-phenyl-1-methylallene (1a) as our model sub-
strate since the branched selective hydrocarboxylation of 1-
aryl-1-alkylallenes would produce valuable acyclic quaternary 
α-vinyl-α-aryl carboxylic acids that have been used as inter-
mediates in the preparation of (+)-epilaurene3d and several 
pharmaceutical ingredients.3b,14a We began our investigation 
with diphenyl carbonate (2a) as the reagent for carboxylate 
introduction. A series of chiral bisphosphine ligands were 
evaluated in the hydrocarboxylation of 1a with diphenyl car-
bonate (Table S1), and the highest level of enantioselectivity 
was obtained with (R,R)-Ph-BPE (L1). Under these conditions, 
the ester product was formed in 42% yield (90:10 er) exclu-
sively as the branched isomer (Table 1, entry 1). In addition to 
the moderate level of enantioselectivity that was observed, the 
use of 2a appeared to result in a sluggish reaction rate. We 
next attempted to improve the activity of electrophile by re-
placing 2a with Boc2O (2b) or methyl chloroformate (2c), 
which resulted in no desired hydroesterification product being 
formed (Table 1, entries 2−3). With 2c, we needed an alkoxide 
base to regenerate LCuH from a LCuCl intermediate,22 and we 
ascribed the low yield to the incompatibility between the base 
and methyl chloroformate. Since LCuH regeneration from 
LCuF complexes can proceed in the absence of a base addi-
tives,23 we investigated the use of fluoroformates as potential 
carboxylation reagents. When commercially available 1-
adamantyl fluoroformate (2d) was employed, product 3 was 
obtained in 83% yield (Table 1, entry 4). Upon reexamining 
the suitability of different ligands in reactions with 2d (Table 1, 
entry 5−6, and Table S2), we found that when (R)-DTBM-
SEGPHOS (L2) was used (Table 1, entry 5), the branched 
product was obtained as a single regioisomer in 92% yield and 
99:1 er.  
Table 1. Evaluation of Reaction Conditions for the CuH-
Catalyzed Hydrocarboxylation of Allenea 

 

Entry Ligand Electrophile Temp (°C) Yieldb 
(%) erc 

1 L1 2a 40 42 10:90 
2 L1 2b 40 <5 - 
3d L1 2c 25 <5 - 
4 L1 2d 25 83 13:87 
5e L2 2d 25 92 99:1 
6f L3 2d 25 77 96:4 

 

aConditions: 0.10 mmol 2 (1.0 equiv), 1a (2.0 equiv), copper 
(II) acetate (5.0 mol%), ligand (5.5 mol%), di-
methoxy(methyl)silane (3.0 equiv) in THF (0.5 M). bYield was 
determined by 1H NMR spectroscopy of the crude reaction mix-

ture, using 1,3,5-trimethoxybenzene as an internal standard. 
cEnantiomeric ratio was determined by SFC analysis. dEither Li-
OMe (1.1 equiv) or CsOBz (1.1 equiv) was used as an additive; 
1a (1.5 equiv) was used. e1a (1.2 equiv) was used.  f1a (1.0 equiv) 
and 2 (1.2 equiv) were used. 

Table 2. Substrate Scope for the CuH-Catalyzed Hydro-
carboxylation of Allenesa 

     
aConditions: 0.50 mmol 2d (1.0 equiv), 1 (1.2 equiv), copper 

(II) acetate (5.0 mol%), L2 (5.5 mol%), dimethoxy(methyl)silane 
(3.0 equiv) in THF (0.5 M); workup A: NH4F/MeOH workup 
followed by hydrolysis using TFA; workup B: NH4F/MeOH 
workup; yields refer to average isolated yields of two runs; see the 
Supporting Information for details. bReaction was carried out at 
40 °C. cReaction was carried out at 30 °C. dL3 was used as the 
ligand instead. e1 (1.1 equiv) was used. fReaction was carried out 
at 0 °C in 1,2-dimethoxyethane (DME, 1.0 mL). 

    With the optimal reaction conditions identified, we first 
examined the substrate scope using 1,1-disubstituted allenes 
(Table 2).  We found that a broad range of 1,1-disubstituted 
allenes in combination with 2d were transformed to the de-
sired products in good yields and with excellent enantioselec-
tivity. Moreover, the ester products could be easily hydrolyzed 
to carboxylic acids in the presence of trifluoroacetic acid 
(TFA) in near quantitative yields. To demonstrate the feasibil-
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ity of this in situ hydrolysis protocol, half of the ester products 
in Table 2 were isolated as carboxylic acids (3a−c, 3i−l) with-
out any purification of the intermediate esters.24 1-Aryl-1-
alkylallenes bearing an electron-withdrawing (3b) and -
donating group (3c) on the arenes were both compatible. Addi-
tionally, reactions of arenes substituted with para- (3b, 3c), 
meta- (3d), and ortho- (3e) groups resulted in the formation of 
the products in high yields and enantioselectivity. Functional 
groups such as an acetal (3f), a sulfonamide (3l), and a siloxy 
group (3m) were also well tolerated. Allenes containing heter-
ocycles, including a pyridine (3g) and pyrazole (3h), were 
suitable substrates for the hydrocarboxylation reaction. How-
ever, when an allene substituted with an indole (3i) was uti-
lized, better results were found if ligand L3 was used in place 
of L2. We speculate that this is due to the sterically demand-
ing environment of the substrate that requires the use of a less 
bulky ligand. Allenes containing functionalized primary alkyl 
groups (3j, 3l−m) as well as an exocyclic allene (3k) were also 
accommodated in this protocol. Furthermore, 1-cyclohexyl-1-
methylallene (3n) was efficiently transformed to the hy-
droxycarboxylation product when ligand L3 was employed. 
    We were also interested in expanding this method toward 
the synthesis of α-tertiary esters, which under many conditions 
are difficult to access in high enantioselectivity due to the easi-
ly epimerizable stereogenic center. Thus, we next examined 
the reaction of a monosubstituted allene, phenylallene (1o), 
under our standard reaction conditions. However, the product 
ester was formed with a poor level of enantioselectivity, 
69.5:30.5 er (Table S4). After reevaluating the reaction pa-
rameters, the carboxylation product 3o could be isolated in 
70% yield and 93:7 er using L3 as ligand (Table 2). A thi-
oether-containing 1-aryl allene (1p) and cyclohexylallene (1q) 
were also converted to the corresponding α-tertiary esters in 
good yields and high enantioselectivity. 
    To further demonstrate the synthetic utility of our method, 
we examined the transformation of the hydrocarboxylation 
products into compounds of interest (Scheme 1). For example, 
chiral α-tertiary amines are found in a variety of natural prod-
ucts and biologically active compounds, and are difficult to 
access in an enantioenriched form by standard hydroamination 
reactions.25 By employing a Curtius Rearrangement, we were 
able to convert α-quaternary carboxylic acid 3a to α-tertiary 
amine 6 in a stereoretentive fashion (Scheme 1a). Additionally, 
we sought to apply our hydrocarboxylation products to the 
synthesis of enantioenriched γ-amino acid derivatives, which 
play an important role as γ-aminobutyric acid transaminase 
inhibitors and in peptide chemistry.26 Derivatization of the 
resulting vinyl group in 3d, an α-quaternary γ-amino ester 8 
could be accomplished using a CuH-catalyzed hydroamination 
reaction27 (Scheme 1b). We also utilized the method for the 
preparation of the pharmaceutical indobufen, a platelet aggre-
gation inhibitor marketed under brand name Ibustrin.28 (S)-
Indobufen, previously prepared by the separation of the 
racemic mixture,29c was found to be far more potent than the 
(R)-enantiomer in terms of its antiplatelet and anti-
inflammatory activities,29 and thus an enantioselective 
synthetic route to (S)-indobufen would be of interest. In our 
approach, CuH-catalyzed hydrocarboxylation of allene 1r 
gave ester 3r, which underwent subsequent hydrogenation and 
hydrolysis to furnish (S)-Indobufen (10) in 76% overall yield 
and 92:8 er, without the need for any chromatographic 
purification. 

Scheme 1. Applications of the CuH-catalyzed 
Hydrocarboxylation Reactionsa 

 
aSee the Supporting Information for experimental details. b1r 
(1.0 equiv) and 2d (1.2 equiv) were used. c2d (1.0 equiv) and 
1r (1.2 equiv) were used. 
    Based on previous DFT calculations on CuH-catalyzed re-
actions involving allenes,30 a plausible mechanism can be pro-
posed for this transformation, as depicted in Figure 2. An al-
lene (1) first undergoes hydrocupration with a CuH catalyst to 
generate a rapidly equilibrating mixture of allylcopper species 
(B and C). The less hindered terminal allylic copper (B) reacts 
preferentially with fluoroformate 2d through an enantio-
determining six-membered transition state (D), to form inter-
mediate E. Subsequent collapse of the tetrahedral intermediate 
by β-fluoride elimination leads to the branched carboxylation 
product 3 and CuF. A σ-bond metathesis reaction between 
CuF and the silane regenerates the CuH catalyst. 

 

Figure 2. Proposed mechanism for the CuH-catalyzed hydrocar-
boxylation of allenes 
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    In conclusion, we have developed a highly enantioselective 
CuH-catalyzed hydrocarboxylation to synthesize α-chiral car-
boxylic acids and esters, in particular α-quaternary ones. A 
commercially available fluoroformate was used as the carbox-
ylation reagent to react with allenes in exclusive branched 
selectivity. The reaction proceeded under mild conditions and 
could tolerate a variety of important functional groups and 
heterocycles. Further derivatization of the carboxylation prod-
ucts provided other pharmaceutically and synthetically useful 
scaffolds. We anticipate that this carboxylation strategy using 
a fluoroformate may be extended to the discovery of other 
types of important asymmetric carboxylation processes. 
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