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Abstract

High performance electronic components are highly sought after in order to pro-

duce increasingly smaller and cheaper electronic devices. Drawing inspiration from

inorganic dielectric materials, in which both polarizability and polarization contribute,

organic materials can also maximize both. For a large set of small molecules drawn

from PubChem, a Pareto-like front appears between polarizability and dipole moment

indicating the presence of an apparent trade-off between these two properties. We

tested this balance in π-conjugated materials by searching for novel conjugated hex-

amers with simultaneously large polarizabilities and dipole moments with potential use

for dielectric materials. Using a genetic algorithm (GA) screening technique in con-

junction with an approximate density functional tight binding method (GFN2-xTB)

for property calculations, we were able to efficiently search chemical space for optimal

hexamers. Given the scope of chemical space, using the GA technique saves consider-

able time and resources by speeding up molecular searches compared to a systematic

search. We also explored the underlying structure-function relationships, including

sequence and monomer properties, that characterize large polarizability and dipole

moment regimes.

Introduction

The impact of electronics on twenty-first century life is hard to overstate, as they drive every-

thing from personal communication devices to battery-powered automobiles. In the current

age of rapid technological advancement, electronic components are continuously improved to

facilitate the production of smaller, cheaper, faster, and more efficient products. Component

improvement is facilitated in large part by the discovery and use of novel high dielectric

materials.1,2 While inorganic dielectrics often possess both high polarization and high po-

larizability, organic materials often focus on either high polarizability or high polarization.

For example, the well-known organic polymer dielectric, polyvinylidene difluoride (PVDF)
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and its copolymers, exhibits a relatively large dielectric constant (ε 10 − 12) due to polar-

ization due to aligned C-F bonds across the chain and in polar domains.3–5By maximizing

both properties to yield high dielectric constants in organic materials would be advantageous

to the development of high-performance capacitors,6 transistors,7 and organic photovoltaics

(OPVs),8 among other applications.1,2

Recent computational work has successfully used various strategies, including high through-

put screening9,10 and machine learning,11,12 to examine and predict polymer dielectric prop-

erties. Computational discovery of novel high dielectric materials has employed a variety

of methods,13 often either systematically altering known molecular structures,14–16 or using

some combination of inverse design strategies, including high-throughput screening, evolu-

tionary algorithms, and/or machine learning.17–19 Similar computational discovery in the

related field of polarizable materials has been conducted through the lens of discovery of

materials with high refractive indices through similar inverse design approaches, including

machine learning20and high throughput virtual screening.21 Other computational studies

searching specifically for novel OPV conjugated polymer structures tend to focus structural

motifs optimizing properties such as energy levels and band gaps.22–24

In this study, we searched for novel high dielectric constant materials, focusing on π con-

jugated materials because of their high polarizability and proven utility for this application.

While much of the previous work in the field of dielectric materials discovery has focused

on directly optimizing dielectric constant or the related polarizability, we approached this

search from a dual property optimization perspective. Because the macroscopic dielectric

constant of a polar material is related to both the polarizability and the dipole moment

by the Debye equation, we sought molecular candidates which maximized both of these

properties simultaneously for integration into intrinsically polar organic materials.

In an isotropic or non-polar medium, the relative dielectric is related to the molecular

polarizability per unit volume through the Clausius-Mossotti relation. With a polar solid, the

polarization from the dipole moment is included. Thus, as a starting point, we computed
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the isotropic polarizability and dipole moment terms from the Debye equation using the

semi-empirical tight-binding method GFN2-xTB25 for the PubChemQC data set.26

As shown in Figure 1, there is an absence of species possessing both both high polariz-

ability and high dipole moment terms. Perhaps for a molecule with high polarizability per

unit volume, a high permanent dipole moment is unlikely, and for a molecule with high per-

manent charge separation (e.g., a zwitterion), polarizability would cause an induced dipole

moment in opposition. These plausible arguments suggest a potential Pareto trade-off in

these known small molecules.

Figure 1: An apparent trade-off is evident between the Debye equation polarizability and
dipole moment terms calculated for the PubChemQC data set.

Using this example of the PubChemQC data set as a motivator, we examined whether

the perceived Pareto front between the isotropic polarizability and dipole moment terms

among small molecules hold for optimized conjugated oligomers. Perhaps a targeted search

through a large chemical “design space” can find candidates which simultaneously maximize

both properties. To make our search efficient and effective, we employed the principles of

inverse design through a genetic algorithm.
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Computational Methods

Genetic Algorithm

In the field of computational chemistry, genetic algorithms (GAs) implement inverse design

principles by applying concepts from evolutionary biology to find molecular structures with

increasingly more desirable features by evolving generations of structures over time.27,28 In

an evolutionary scheme, a population of possible solutions to an optimization problem are

generated and then run through selection, crossover, and mutation operators to produce a

new population of children.29 Each successive population is known as a generation and can

contain increasingly better solutions; generations are generated until a level of convergence

is reached among the top solutions. GAs have been proven as efficient methods for finding

molecules with a wide variety of tailored properties in the vastness of chemical space by

exploring a small subset.23,30–34 This is in large part due to the many paths a GA may take

through chemical space to a target molecule, and therefore the high probability of quickly

finding a species on one of these paths by random chance.35 GA searches through chemical

space have also been found to be faster in some cases than generative machine learning

models.36

The GA we implemented is capable of searching for oligomers with optimal molecular

properties of given specifications: length, number of monomer types, and specific end groups.

In this work, we evaluated hexamers containing one or two monomer types, and chose to use

one of three pairs of end groups for each run.

The workflow of the GA (Figure 2) begins by initializing the first of each 32-member

generation with a randomly-constructed population of oligomer candidates. The selection

operator determines each oligomer candidate’s property values and uses a fitness function

to rank the candidates. The top half proceeds to the next operator, while the bottom half

is discarded. The crossover operator takes the top half of the current generation and uses

them as “parents” which are combined to produce “children” that replace the previously
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Figure 2: The genetic algorithm (GA) uses operators borrowed from Darwinian evolution to
find optimal hexamers, as demonstrated by this simplified schematic.

discarded half of the population. A child is produced by randomly choosing two parents,

then randomly selecting monomer species from one or both parents and randomly selecting

the sequence of one parent. The mutation operator performs point mutations on a subset

of the population determined by a 40% mutation rate. Candidates randomly selected for

mutation have either one of their monomer species or their sequence randomly chosen and

changed to another randomly selected monomer species or sequence, respectively. After the

mutation operation, the cyclic transformation of one generation into another is complete. In

each run, the GA performs 400 cycles, after which the data is analyzed to determine whether

general convergence has been reached.

Oligomer Composition and Representation

Within the GA, each oligomer candidate is represented as a list containing a tuple of digits

indicating its sequence and two integers representing the indices of each of its monomer

species from a master list of monomers. For example, [(0,1,0,1,0,1), 10, 20] would be a

co-oligomer with an alternating sequence of the monomer at index 10 and the monomer at

index 20 in the monomer list.
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The monomer data set used by the GA is composed of 1,235 SMILES strings representing

various small monomers selected from literature reports and their obvious synthetic mod-

ifications.37 The monomers, chosen because of their likely utility in organic photovoltaics,

represent a broad array of aromatic and conjugated species and primarily contain combina-

tions of the elements C, H, N, O, S, and F and are encoded with explicit polymerization

sites. All SMILES are included in the supporting information.

The oligomer sequences used by the GA consist of all 64 possible sequences of hexamers

made up of one or two monomer species. This includes some redundant possibilities such as

111111 or 000000.

In each run, every candidate is assigned the same endgroups, either amino and nitro,

methoxy and cyano, or dimethyl amino and trifluoromethyl. These endgroup pairs were

chosen to qualitatively maximize molecular dipole moment along the polymer chain, with

each pair containing an electron donating group paired with an electron withdrawing group.

Using three different endgroup pairs allowed us to determine if different endgroups produced

a substantial effect on the GA search and resulting properties, as discussed below..

Electronic Property Calculations

The three-dimensional structure of each oligomer candidate is geometrically optimized prior

to running property calculations, ensuring the most probable physical conformations are

represented. After each generation, candidates are converted into SMILES strings, then into

a 3D geometry using Open Babel, followed by optimization using MMFF9438 or UFF,39

then further optimized using the semi-empirical tight-binding method GFN2-xTB.25

Property calculations are also performed with GFN2-xTB, chosen for its time efficiency.

As discussed below, comparing the GFN2 method to calculated polarizabilities using the

density functional ωB97X in the cc-pVTZ basis set, the GFN2-xTB polarizabilities tend to

be an underestimate, likely due to the method’s minimum basis set. Our work suggests that

this underestimation is fairly systematic and generally increases with increasing π-system
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size (see Figures S1 and S2). The relative ordering of molecules based on their polarizability

appears to remain similar to the density functional predictions. For this reason, we believe for

this study GFN2-xTB provides sufficient electronic property values to search for oligomer

candidates with relatively high polarizability and dipole moment terms compared to one

another. A more detailed investigation of GFN2-xTB polarizabilities and dipole moments

using the large π-conjugated systems from this work is in progress.

Because a single point calculation providing both polarizability and dipole moment values

can be performed immediately following geometry optimization in GFN2-xTB, only one job

external to the GA script is necessary for each candidate. To increase efficiency, optimized

geometries and associated property values are retained after the first time they are calculated.

Since each successive generation retains half of the members of the previous generation,

after the first generation the number of calculations necessary is no greater than half the

population size.

Candidate Evaluation

A key component of the GA selection step is the fitness function, which provides each

member of a generation a quantitative score by which it can be ranked. Our premise is

to search for oligomers with optimized dielectric constants by simultaneously optimizing

their isotropic polarizability and dipole moment terms as given in the Debye equation. This

equation modifies the Clausius-Mossotti relation to make it appropriate for polar molecules

by including an additional term for the effects of dipole moment. Thus it relates both

isotropic polarizability (α) and dipole moment (µ) to the bulk phase dielectric constant

(εr), where N is the number of molecules, ε0 is vacuum permittivity, V is the volume, kb is

Boltzman’s constant and T is temperature:40–42

εr − 1

εr + 2
=
N

V

α

3ε0
+
N

V

µ2

9ε0kbT
(1)
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As shown by the Debye equation, to maximize the dielectric constant in a polar solid, both

polarizability per unit volume and dipole moment must likewise be maximized. In principal,

the full polarizability tensor should be used, though the isotropic polarizability will be an

underestimate. Moreover the gas-phase molecular dipole moment will be an overestimate of

the dipole moment in a polar, polarizable solid, but should correlate well with the latter.

Using the sum of the Debye equation polarizability and dipole moment terms then as the

scoring mechanism for the GA fitness function, both calculated properties are represented

by a single quantitative value, facilitating optimization.

Results and Discussion

The main barrier to generating novel materials for electronic application is finding the best

molecular structures in the vastness of chemical space, estimated to include 1020 to 1060 possi-

ble structures.43 Coupled with the need to run quantum calculations for electronic properties

which take minutes to hours per structure, this makes a systematic brute-force search im-

possible, with a lower time bound on the scale of millions of hours. Like many previous

dielectric materials searches, we employed an inverse design strategy to make our search

through chemical space efficient and effective. Inverse design is an alternative approach in

which target features are determined first, then molecular structures which optimize these

features are found. It has proven useful through many implementations which use opti-

mization, sampling, and search procedures to efficiently traverse chemical space to find ideal

molecular targets.44,45 Implementing inverse design using a GA allowed us to perform global

optimization without the guarantee of stopping in local extrema traps,27 it did not require the

start-up time of database compilation or machine learning training, it was straightforward

to implement, and it provided a proven speed up of 6,000-8,000 times over an exhaustive

search method.37
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Initial Runs

For our initial searches, we performed three 400 generation GA runs. To examine the con-

vergence behavior of the GA, we observed the polarizability and dipole moment terms of

the highest scoring candidate from each generation over time for each run (Figure 3). The

dipole moment term of the highest scoring candidate gradually increased and appeared to

approach asymptotic behavior over 400 generations, while the polarizability term of the same

candidate did not have the same increasing trend across the three runs. This is likely due

to the difference in order of magnitude of the two terms. The dipole moment term is two to

three orders of magnitude larger than the polarizability term and, therefore, dominates the

scoring function (the simple sum of these two terms) in the initial runs to favor the dipole

moment. The difference in order of magnitude is likely due to evaluating the dipole moment

of an individual oligomer molecule, whereas in the bulk phase, the net dipole moment of the

material would likely be less.

Figure 3: Initial 400 Generation Runs: The top row of plots shows the Debye equation
polarizability term value for the best scoring candidate for each generation. The bottom row
of plots shows the Debye equation dipole moment term for the same best scoring candidate
for each generation.
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While the three runs with different end groups yielded slightly different results, all pro-

duce a similar shape when the Debye equation polarizability term of each member of each

generation was plotted against the dipole moment term of each member of each generation

(Figure 4). In the top row of Figure 4, the points representing candidates are rendered

translucent to display the scale of the quantity of data. The bottom row of the figure shows

the data color-coded by generation, where earlier generations are darker and later gener-

ations are lighter. While even in the most recent generations, the candidates found vary

greatly in property values, over time it is possible to see the GA pushing further into the

search space, especially in maximizing the dipole moment which dominated the scoring of

these initial runs.

Figure 4: Initial 400 Generation Runs: In the top row, each point represents a candidate’s
polarizability and dipole moment terms from the Debye equation. In bottom row the same
data is color coded to show the age of various candidates where darker is older and lighter
is newer.

Among all three of the runs, no Pareto front trade-off was immediately obvious in the

plots of polarizability term vs. dipole moment term. To analyze these plots, we created a

binning scheme in which each plot was divided into six equally sized bins. The bins were
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created relative to the data itself, using the median polarizability term value as the horizontal

division between the three upper and three lower bins and placing two vertical divisions in

equal thirds between 0 and the maximum dipole moment term value. The bins were labeled

left to right C, B, A above the median line and left to right F, E, D below the median

line. This labelling scheme emphasizes our interest in the top right-hand bin, A, where

candidates have the largest simultaneous polarizability and dipole moment terms. Setting

the bins relative to each plot’s data allowed us to monitor the region where both properties

are maximized, regardless of the size of the search space the GA explored at any given point

in its run.

In early generations, the vast majority of polymer candidates found did not fall into bin

A, where both terms of the Debye equation are maximized. This seemed consistent with the

presence of a potential Pareto front in the data. By the 400th generation, however, all three

runs showed multiple candidates in the top bin A, indicating that the GA was able to break

through the perceived front and find candidates optimized to its criteria. The progression

of both the size and content of the bins in the run with dimethyl amino and trifluoromethyl

endgroups is shown as an example in Figure S3.

Focusing on the best regions (bin A) of the initial run plots at the end of 400 generations,

we examined the trends in popular sequences and monomers. Of the 64 possible sequences

available to the GA for hexamers composed of one or two monomer species, only four or

five sequences were present in any of the runs’ bin A regions (Figure S6). The top three

sequences which accounted for the majority of candidates in each of the bin A regions were all

“segregated”, with one monomer species on one side of the polymer and the other monomer

species on the other side. The limited number of sequences and the similarity of the most

numerous sequences in bin A across end groups suggests that sequence plays a strong role

in determining the value of a candidate’s properties. Because the dipole moment term was

favored in the scoring mechanism of these runs, the popularity of segregated monomer species

supports the näıeve design principle that separation of monomer species aids in separation
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of partial charges to form a strong permanent dipole.

Due to the large number of individual monomer species found in candidates in the bin

A region, the top ten most numerous monomer species were analyzed and found to share

similarities (Figure S4). In all three runs, one monomer species accounted for 40% of all

monomer instances. Of the 30 total “top” monomer species across the three initial runs,

12 were shared top monomers between one or more of the runs, and of those, three top

monomers were found in all three runs. These existence of common top performers in multiple

independent runs supports the GA’s ability to quickly and consistently locate candidate

components which optimize the desired properties.

Among the top monomer species, two distinct groups were found: those that preferen-

tially occur on the side of candidates with an electron donating end group (amino, methoxy,

or dimethyl amino), and those that preferentially occur on the side with an electron with-

drawing end group (nitro, cyano, or trifluoromethyl). The monomer species themselves fall

into the same category as the end group toward which they gravitate (Figure 5). Paired

with the prevalence of monomer species segregation among sequences, this reinforces the de-

sign principle that separating donor and acceptor monomer types reinforces the molecule’s

permanent dipole moment.

Eleven candidates were found in one or more of the bin A regions of the initial runs,

differing only by the end groups specific to each run (Table S3). These candidates reinforce

the desirable qualities of segregated monomer species and grouping electron donating and

withdrawing groups (Figure S5). Finding common candidates structures varying only by

end groups indicates that specific end groups do not have as great an effect on the electronic

properties of polymer candidates as do their constituent monomer species and sequences.

This also indicates that the GA is effective at finding top candidates given specific proper-

ties to optimize, since it is capable of finding the same top candidates in independent runs.

Given the tiny proportions of candidates found in the bin A region of each run as compared

with the total number of candidates found, as well as the even smaller proportion of candi-
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Figure 5: Common monomer species found among top candidates from initial GA runs.

dates found by each run compared to the total possible structures in the search space, the

GA’s effectiveness at implementing the inverse design approach to quickly find proven best

solutions is further supported (Table S1).

Reweighting the Fitness Function

After observing the difference in magnitude between Debye equation polarizability and dipole

moment terms, we performed two sets of runs. In both sets, the dipole moment term was

re-weighted in the fitness function to explore the effect on the generated candidates. Each

run was assigned one of the same end group pairs used in the initial experiments, and similar

analysis procedures were performed on these data sets to compare their results to those of

the initial runs. Note that the Debye equation terms were only weighted in the scoring

mechanism of the fitness function to guide the GA’s search, and the terms presented in the

following plots and analysis are unweighted.
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Equalized Scoring Mechanism Runs

In the first set of weighted runs, the dipole moment term was downweighted by multiply-

ing by a coefficient of 0.389/111, to roughly equalize the effects of both terms on the score

assigned to candidates by the fitness function. This coefficient was reached by dividing the

largest polarizability term by the largest dipole moment term that had been observed up to

that point in the data collection. While larger terms were later observed in subsequent gen-

erations, the orders of magnitude for the largest terms remained the same, so this coefficient

remained valid.

Observing the polarizability and dipole moment terms of the highest scoring candidate

from each generation over time for each run, the top candidate’s dipole moment term again

generally increased with increasing generation, albeit more quickly (Figure 6). The top

candidate’s polarizability term also lacked a specific trend among runs for about the first

hundred generations. Unlike the initial runs, however, it established a trend of maintaining

or increasing during the last 300 generations across all runs which supported the reasoning

that re-weighting the dipole term in the fitness function allows both properties to more

equally contribute to top candidate scores. Both the top polymer candidate polarizability

and dipole moment terms also reached plateaus that remained constant for at least the last

200 generations on all three runs, suggesting that the GA converged faster than in the initial

runs.

When comparing the polarizability and dipole moment terms of all oligomer candidates

found over the generations, the trends of each of the three runs were similar (Figure 7). The

bottom row of the figure with data color-coded by generation shows that even in the most

recent generations the candidates found vary greatly in property values. Again, over time it

is possible to see the GA pushing further into the search space.

No Pareto front trade-off was immediately obvious between the polarizability term and

the dipole moment term. The same binning scheme as in the initial runs was used for

analysis. Very few polymer candidates fell into bin A in the initial generations, while later
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Figure 6: Equalized Scoring Mechanism 400 Generation Runs: The top row of plots shows the
Debye equation polarizability term value for the best scoring candidate for each generation.
The bottom row of plots shows the Debye equation dipole moment term for the same best
scoring candidate for each generation.

Figure 7: Equalized Scoring Mechanism 400 Generation Runs: In the top row, each point
represents a candidate’s polarizability and dipole moment terms from the Debye equation.
In the bottom row the same data is color coded to show the age of candidates where darker
is older and lighter is newer.
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generations showed multiple candidates in bin A. This indicates that the GA was able to

maximize both the polarizability and dipole moment terms. The progression of both the size

and content of the bins in the run with dimethyl amino and trifluoromethyl endgroups for

the equalized scoring mechanism runs is shown as an example in Figure S7.

We examined the trends in popular sequences in monomers in the bin A regions of

the equalized scoring mechanism plots after 400 generations. Only four of the possible

64 sequences were represented in bin A in each of the runs (Figure S10). The top three

sequences accounting for the majority of the bin A populations were segregated by monomer

species. This suggests that even when both property terms are weighted equally in the scoring

mechanism, the separation of donor and acceptor monomer species, seemingly beneficial to

increasing the polymer candidate’s permanent dipole moment, is preferred.

The top ten most numerous monomer species found in the top region of the equalized

scoring mechanism plots were again found to share similarities (Figure S8). All three equal-

ized scoring mechanism plots had a clear top performing monomer species, which was the

same species across all three runs. Within the 30 total “top” monomer species across the

three runs, seven are shared top monomers between one or more of the runs, and of those,

three top monomers are found in all three runs.

Top monomer species can be divided into those which are electron donating and those

which are electron accepting, preferentially occurring on the side of polymer candidates

with the same respective type of end group (Figure 8). Additionally, the equalized scoring

mechanism bin A sequences favor monomer species segregation suggesting that for both

maximized polarizability and dipole moment, separating partial charges is an advantage.

Eleven candidates were found in one or more of the bin A regions of the initial runs, with

three candidates occurring in all three runs, all differing only by the end groups specific to

each run (Table S4). These common candidates reinforce the desirable qualities of segregated

monomer species and grouping electron donating and withdrawing groups (Figure S9). The

number of unique polymer candidates found in bin A compared to the total found in each of
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Figure 8: Common monomer species found among top candidates from equalized scoring
mechanism runs.

the runs again reinforces the GA’s ability to find the top candidates consistently (Table S2).

Five very similar candidates were found in two different runs in both the initial set of runs

and the equalized scoring mechanism runs (Table S5). The structure of these oligomers and

their presence as top candidates in both sets of runs suggests that the physical and chemical

properties supporting a strong permanent dipole moment in a polymer also naturally support

large polarizabilities.

Polarizability Favored Runs

In a second set of re-weighted runs, the dipole moment term was decreased by three orders

of magnitude below that of the polarizability term. In this case, the dipole moment term

was multiplied by a coefficient of (0.389/111)², reflecting the largest polarizability and dipole

moment terms observed by that point in the data collection as discussed above. For these

“polarizability favored” runs, the polarizability and dipole moment terms of the highest

scoring candidates for each generation were observed over time (Figure 9). The top candi-

date’s dipole moment term was substantially lower in magnitude than either the initial or
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equalized scoring mechanism runs. The top candidate’s polarizability term increased quickly

with increasing generation and reached maximum values greater than in either of the two

previous sets of runs. Both of these observations support the weighted scoring mechanism

guiding the GA to target the search space where polarizability alone was maximized. Both

terms plateaued and remained constant for at least the last two hundred generations of all

three runs, suggesting relatively strong convergence behavior.

Figure 9: Polarizability Favored 400 Generation Runs: The top row of plots shows the Debye
equation polarizability term value for the best scoring candidate for each generation. The
bottom row of plots shows the Debye equation dipole moment term for the same best scoring
candidate for each generation.

While all three polarizability runs displayed similar results when observing the Debye

equation polarizability and dipole moment terms of each member in each generation, they

varied significantly from either of the two previous sets of runs (Figure 10). Unlike either of

the previous sets of runs, the plots in Figure 10 show only a much small, more concentrated

area of data density, suggesting that the GA was able to locate the desirable area of the search

space almost immediately. The bottom row with data color-coded by generation shows that

even in the most recent generations the candidates found vary widely in polarizability term
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values, but comparitively little in dipole moment term values. These plots show that the

GA is capable of probing different areas of the search space when tasked with optimizing

different properties. These results also suggest that the GA was able to locate candidates

with maximized polarizability terms more easily than those with either maximized dipole

moment terms or with both property terms maximized, since far less of the search space was

probed thoroughly before locating the ideal search area.

Figure 10: Polarizability Favored 400 Generation Runs: In the top row, each point represents
a candidate’s polarizability and dipole moment terms from the Debye equation. In the
bottom row the same data is color coded to show the age of candidates where darker is older
and lighter is newer.

Since the polarizability favored runs had vastly different plot characteristics from either

of the previous sets of runs, we used different binning scheme for analysis. For these runs,

we divided the plots of Debye equation polarizability term vs. dipole moment term into two

bins using a horizontal divider set at the median polarizability term value. Since we were

interested only in high polarizability candidates, we focused the analysis on upper bin.

We examined the trends in popular sequences in monomer species in the best regions of

the polarizability favored plots after 400 generations. Among the top ten most numerous se-
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quences in the upper bin of all three plots, no one sequence clearly dominated (Figure S12).

Instead, primarily homopolymer sequences or sequences with only one differing monomer

species were most prevalent. This suggests that homopolymer, or near-homopolymer, se-

quences are the best for maximizing polarizability. (By simple statistics, far more candidates

exist with one differing monomer than pure homogeneous sequences.)

The top ten most numerous monomer species found in the upper bin of the polarizability

favored plots were found to share similarities (Figure S11). In two of the three runs, there

were two clear top performing monomer species. This is likely due to the prevalence of

candidates in these runs using the same two monomer species with all of the sequence

variations of five of one monomer species, one of the other. Examining the 30 total “top”

monomer species across the three runs, 13 are shared top monomers between one or more of

the runs, and of those, four top monomers are found in all three runs.

Figure 11: Common monomer species found in top homopolymer and near-homopolymer
species from polarizability favored runs.

There was overlap among top candidates found in multiple runs, differing only by their

end groups. In all, 215 polymer candidates appeared in two or more runs, and 18 appeared

in all three runs. Those common candidates substantially shared monomers, with only 25

unique monomer species found among them.

To further investigate the homopolymer-like trend among top candidates, we constructed

all 64 possible sequenced versions of a candidate with amino and nitro end groups and the top

two most numerous monomer species (referenced by index as 714 and 98) from that polariz-

ability favored run and calculated their polarizability term values from GFN2-xTB isotropic
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polarizability calculations. Sorted from highest to lowest polarizability term value, the ho-

mopolymer of monomer species 714 is ranked first, while the homopolymer of monomer

species 98 is ranked last. The six polymer candidates with sequences resembling the ho-

mopolymer of monomer species 714 with one substitution of monomer species 98 rank 2-7

(Table S6). This provides evidence that polarizability is best maximized by homogeneous

sequences, despite the greater synthetic diversity of co-polymers. It also suggests that the

reason homopolymer sequences do not always occur with the highest freqeuency in the upper

bin is because single substitution near-homopolymer sequences have polarizability term val-

ues close to the true homopolymer and are six times more likely to occur by random chance.

These sequences therefore appear to occur with near equal frequency to both each other and

the true homopolymer.

Conclusions and Future Work

In this study, the GA search for novel conjugated materials was able to break through an

apparent Pareto front between polarizability and dipole moment terms of the Debye equation,

as seen in the small-molecule PubChemQC data set. Both the initial and equalized scoring

mechanism runs performed similarly, in terms of the number and quality of the hexamers

found in the region of the search space with simultaneously large polarizability and dipole

moment terms. Since the initial runs unintentionally favored the dipole moment term, it is

important to note that those runs still found candidates with large polarizability terms in

addition to candidates where their dipole moment were maximized at the expense of their

polarizability. This is in contrast to runs in which the dipole moment was intentionally

down-weighted, which almost exclusively found candidates with large polarizability terms at

the expense of their dipole moment. Similarly, candidates with both properties maximized

found in runs in which both dipole moment and polarizability terms were roughly equal, had

physical properties (segregated sequences, monomer species of both the electron donating
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and electron accepting types) which tended to fit the design principles of polymers with

maximized dipole moment, rather than with maximized polarizability. This suggests that

the polarizability term is more easily (though not automatically) maximized in conjunction

with maximizing the dipole moment term, than vice versa. Because the same polymer

candidates were found in multiple runs with different end groups in all of the data sets, this

suggests that for conjugated hexamers, end groups do not play a large role in determining

electronic property value but rather in determining the optimal arrangement of monomer

species within the polymer structure.

This work further proved the utility of a genetic algorithm for inverse design of novel

materials. The GA successfully found candidates which maximized the Debye equation

polarizability term, dipole moment term, or both, proving its ability to explore and target

areas within the chemical search space. Additionally, the GA was able to find the same

candidates in different independent runs, illustrating the reliability of this method, despite

the stochastic nature.

Given the emerging links between structure and electronic properties this study indi-

cates, future work needs to be done examining the underlying chemical phenomena to better

understand the link between polarizability and dipole moment when both are maximized

simultaneously in conjugated polymeric materials. The role of charge transfer in particu-

lar is a concept that can be investigated, potentially with energy decomposition analysis,

symmetry adapted perturbation theory (SAPT),46 or other computational tools, to better

understand the relationship between polarizability and electrostatic moments ultimately to

design better materials.

Given the general trend that GFN2-xTB tends to substantially underestimate isotropic

polarizabilities for molecules with increasingly larger π-systems, a more thorough exploration

of the integrity of this method is warranted. An investigation of GFN2-xTB and DFT

polarizabilities is currently underway using the set of highly polarizable compounds generated

in this work.
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While plots of the properties of the best scoring candidates in all of the data sets show

convergence, further work to improve the efficiency of genetic algorithm molecular search

methods can focus on improving convergence rates, determination of convergence, and com-

bination with other search and generative algorithms.
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Supplementary Information

Figure S1: Comparison of isotropic polarizabilities calculated with GFN2 and DFT ωB97X
cc-pVTZ for 8415 PubChemQC molecules.

Figure S2: Comparison of isotropic polarizabilities calculated with GFN2 and DFT ωB97X
cc-pVTZ for 70 conjugated species.
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Table S1: Number of Candidates Found in Initial 400 Generation Runs

End Group Run
Maximum Candidates

Generated by a Random
Search in 400 Generations*

Unique Polymer
Candidates Found

Unique Polymer
Candidates Found

in Bin A
Amino/Nitro 12800 4676 20

Methoxy/Cyano 12800 4737 18
Dimethyl Amino/
Trifluoromethyl

12800 4471 24

Table S2: Number of Candidates Found in Equalized Scoring Mechanism 400
Generation Runs

End Group Run
Maximum Candidates

Generated by a Random
Search in 400 Generations*

Unique Polymer
Candidates Found

Unique Polymer
Candidates Found

in Bin A
Amino/Nitro 12800 4669 21

Methoxy/Cyano 12800 4542 19
Dimethyl Amino/
Trifluoromethyl

12800 4434 27

*Based on a maximum of 32 candidates per generation over a 400 generation simple

random search.

Figure S3: Initial 400 Generation Run with Dimethyl Amino and Trifluoromethyl End
Groups: Bin size and population progression is seen with snapshots every 100 generations.
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Figure S4: Initial 400 Generation Runs: The top set of plots shows frequency percentages
of the top ten most numerous monomer species (identified by index in monomer set) from
polymer candidates found in the bin A region of polarizability term vs dipole moment term
plots. The bottom Venn diagram displays the overlap in top monomer species between
independent runs.
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Table S3: Common Polymer Candidates Found in Multiple Initial Runs

Polymer Candidate Runs Containing Polymer Candidate

Monomer 0 Monomer 1 Sequence
Amino/
Nitro

Methoxy/
Cyano

Dimethylamino/
Trifluoromethyl

507 115 000111 X X
1167 90 000111 X X X
1030 90 000111 X X
1030 115 000111 X X
1030 90 001111 X X
1030 90 000011 X X
1030 115 000011 X X
1167 90 001111 X X
1030 212 000111 X X
1030 212 000011 X X
1030 690 000011 X X

Figure S5: Common polymer candidates found in the bin A regions of multiple initial runs.
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Figure S6: Initial 400 Generation Runs: Frequency percentages of sequences from polymer
candidates found in the bin A region of polarizability term vs dipole moment term plots.

Figure S7: Equalized Scoring Mechanism 400 Generation Run with Dimethyl Amino and
Trifluoromethyl End Groups: Bin size and population progression is seen with snapshots
every 100 generations.
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Figure S8: Equalized Scoring Mechanism 400 Generation Runs: The top set of plots shows
frequency percentages of the top ten most numerous monomer species (identified by index in
monomer set) from polymer candidates found in the bin A region of polarizability term vs
dipole moment term plots. The bottom Venn diagram displays the overlap in top monomer
species between independent runs.
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Table S4: Common Polymer Candidates Found in Multiple Equalized Scoring
Mechanism Runs

Polymer Candidate Runs Containing Polymer Candidate

Monomer 0 Monomer 1 Sequence
Amino/
Nitro

Methoxy/
Cyano

Dimethylamino/
Trifluoromethyl

1030 1162 000111 X X
1030 1162 000011 X X
1030 1162 001111 X X
1030 90 001111 X X X
1030 90 000011 X X X
1030 90 000111 X X X
1030 212 000111 X X
507 90 000111 X X
1030 115 000011 X X
1030 788 000011 X X
1030 258 000111 X X

Figure S9: Common polymer candidates found in the bin A regions of multiple equalized
scoring mechanism runs.
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Figure S10: Equalized Scoring Mechanism 400 Generation Runs: Frequency percentages of
sequences from polymer candidates found in the bin A region of polarizability term vs dipole
moment term plots.

Table S5: Common Polymer Candidates Found in Both Initial and Equalized
Scoring Mechanism Runs

Polymer Candidate Runs Containing Polymer Candidate

Monomer 0 Monomer 1 Sequence
Amino/
Nitro

Methoxy/
Cyano

Dimethylamino/
Trifluoromethyl

1030 90 000111 X X
1030 90 001111 X X
1030 90 000011 X X
1030 115 000011 X X
1030 212 000111 X X

Table S6: Top Seven Hexamers Constructed from Monomer Species 714 and 98,
Ranked by Polarizability Term.

Monomer 0 Monomer 1 Sequence Polarizability Term
714 98 000000 0.39992
714 98 100000 0.39944
714 98 010000 0.39941
714 98 001000 0.39939
714 98 000010 0.39936
714 98 000100 0.39934
714 98 000001 0.39931
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Figure S11: Polarizability Favored 400 Generation Runs: The top set of plots shows fre-
quency percentages of the top ten most numerous monomer species (identified by index in
monomer set) from polymer candidates found in the upper bin of polarizability term vs
dipole moment term plots. The bottom Venn diagram displays the overlap in top monomer
species between independent runs.
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Figure S12: Polarizability Favored 400 Generation Runs: Frequency percentages of sequences
from polymer candidates found in the bin A region of polarizability term vs dipole moment
term plots.

Figure S13: Example high-polarizability homopolymer and near-homopolymer structures.
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