
1 
 

Improved prediction of solvation free energies by machine-learning polarizable continuum 

solvation model 

Amin Alibakhshi1,*, Bernd Hartke1 

Theoretical Chemistry, Institute for Physical Chemistry, Christian-Albrechts-University, Olshausenstr. 40, 24118 Kiel, 

Germany 

Corresponding Author’s email: alibakhshi@pctc.uni-kiel.de 

 

 

Abstract 

Theoretical estimation of solvation free energy by continuum solvation models, as a standard approach 

in computational chemistry, is extensively applied by a broad range of scientific disciplines. 

Nevertheless, the current widely accepted solvation models are either inaccurate in reproducing 

experimentally determined solvation free energies or require a number of macroscopic observables 

which are not always readily available. In the present study, we develop and introduce the Machine-

Learning Polarizable Continuum solvation Model (ML-PCM) for a substantial improvement of the 

predictability of solvation free energy. The performance and reliability of the developed models are 

validated through a rigorous and demanding validation procedure. The ML-PCM models developed in 

the present study improve the accuracy of widely accepted continuum solvation models by almost one 

order of magnitude with almost no additional computational costs. A freely available software is 

developed and provided for a straightforward implementation of the new approach. 

 

Introduction  

 

Free energy of solvation is one of the key thermophysical properties in studying thermochemistry in 

solution, where the majority of real-life chemistry happens. In theoretical studies of solution chemistry, 

estimation of free energies allows evaluation of reaction rates and equilibrium constants of physical or 

chemical reactions of interest. Nevertheless, direct evaluation of free energies in solution can be quite 

challenging since it sometimes requires appropriate sampling of phase space 1-3 and appropriate 

treatment of the non-covalent interactions between the solvent and solute, which can have a remarkable 

impact on electronic structures of both the solvent and solute and consequently on the microscopic and 

macroscopic observables 4,5.  

Theoretical approaches for evaluating physical chemistry behind solvation free energy can be generally 

divided into two main categories, namely explicit solvent and implicit solvent approaches. In explicit 

solvent approaches, solvent molecules are treated explicitly, and the free energy is typically evaluated 

by analyzing the trajectory of time evolution of phase space obtained via molecular dynamics or Monte 

Carlo simulations. For that end, a number of efficient free energy estimators have been developed in 
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the past decades such as thermodynamic integration, free-energy perturbation, and histogram analysis 

methods 11.  

Despite obvious advantages of applying the explicit solvent methods such as retaining the physically 

proper picture of discrete solvent molecules, they suffer by a number of limitations when applied to 

free-energy estimation. For example, in case of applying methods which evaluate the free energy 

through alchemical transformations (e.g. thermodynamic integration or free energy perturbation), 

defining intermediate states and pathways between the endpoints appropriately can be quite tricky 13. 

Also, necessity of employing appropriate force fields, which for many solute-solvent mixtures requires 

to develop or reparametrize a force field, and running the simulations and trajectory analyses can be 

laborious and time-taking tasks.  

To overcome the mentioned limitations, the implicit solvent approach has been developed and is widely 

applied as standard method for studying solvent effects in computational chemistry. In implicit solvent 

approaches, the solvent molecules are treated implicitly as a continuous medium and the solute is 

placed in a cavity of this implicitly defined solvent. The solute-solvent interactions are then evaluated 

via considering the solvent polarization due to the solute charge distribution and its resulting potential 

field acting on the solute, known as the reaction field 5. For a moderate level of theory and medium-

sized molecules, implicit solvent approaches can yield a reasonable estimation of the solvation free 

energy in few seconds to few minutes on a normal desktop PC, while for explicit solvent approaches 

it might take from hours to days. 

The most widely applied implicit solvent approaches are those based on the so-called polarizable 

continuum model (PCM) proposed by Tomasi and co-workers 14. In polarizable continuum models, the 

solvation free energy is constructed by summing the contributions of electrostatic interactions 

including electronic, nuclear, and polarization interactions (Δ𝐺𝐸𝑁𝑃), changes in free energy by solvent 

cavity formation, dispersion energy and local solvent structure changes (𝐺𝐶𝐷𝑆), and corrections for 

differences in molar densities in the two phases compared with the standard state (𝛥𝐺𝑐𝑜𝑛𝑠
∘ ). The 

contributions of electrostatic interactions are evaluated by iteratively solving the following 

relationship: 

 Δ𝐺𝐸𝑁𝑃 = 〈𝛹(1) | 𝐻 +
1

2
𝑉 |  𝛹(1)〉 − 〈𝛹(0)| 𝐻 | 𝛹(0)〉,  (1) 

 

which is known as the self-consistent reaction-field (SCRF) calculations 5. Here, superscripts (0) and 

(1) refer to the gas and solution phases, respectively, and 𝑉 is the potential energy operator resulting 

from the reaction field. Various constructions of the potential energy operator as well as 𝐺𝐶𝐷𝑆 have 

resulted in different continuum solvation models. The parallel existence of several continuum solvation 

models is a good indicator that each of them has its own strengths and weaknesses, and choosing a 

single, optimal model is not trivial. It is totally impossible to provide a detailed overview here; a 2005 

review of implicit solvation models 15 covered 95 pages and cited 936 references. In the present study, 

we only consider the most widely used PCM-based models.  
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One of simplest and yet successful continuum solvation models is CPCM which implements the 

conductor-like screening solvation boundary condition within the PCM framework. In CPCM, the 

following correction of the polarization charge densities by the scaling factor x is employed 16: 

 f(ε) =
ε−1

ε+x
 , (2) 

 

where ε is the solvent dielectric constant. One main advantage of CPCM is its much simpler defined 

boundary conditions. More importantly, unlike more advanced PCM-based models which require the 

normal component of the solute electric field as input, CPCM only requires the solute electrostatic 

potential; for this reason it is much less affected by outlying charge errors (OCE) 17 ,18. A more versatile 

model exploiting the conductor-like screening solvation boundary condition is COSMO-RS, developed 

by Klamt and co-workers 19,20, which although initially proposed in 1995, still is one of the most 

accurate available continuum solvation models. A more sophisticated treatment of the boundary 

condition is implemented in the integral equation formalism of PCM (IEF-PCM) taking into account  

apparent surface charge isotropic 25 or anisotropic26 dielectric continuum solvation. Another 

extensively used continuum solvation model is the SMx family of methods which specifically focuses 

on more accurate estimation of the solvation free energy 4,5.  

We already discussed the main advantages of continuum solvation models such as their efficiency in 

terms of computational cost. Nevertheless, it should be noted that all this has become possible for a 

considerable amount of assumptions and simplifications on the physics of the problem, such as 

overlooking the conformational entropy of solvent and solute which can have a significant contribution 

on the total free energy 35, neglecting the site-specific solute-solvent interactions and decoupling the 

polar and nonpolar components of free energies and considering them independent, linear and additive 
36,37. The inaccuracies resulting from such simplifications are commonly compensated for via 

incorporating additional macroscopic observables as well as adjustable parameters in the solvation 

models. In the CPCM model for example, this is achieved by implementing an ad hoc modification of 

the atomic radii via defining a number of adjustable parameters and empirical descriptors, such as the 

number of bonded hydrogens and the number of bonded active atoms 16. In the COSMO-RS model, it 

is achieved by ad hoc modification of the interaction energies and effective contact area via some 

adjustable parameters 20. 

In contrast, in the SMx family of methods, to provide a more accurate estimation of the solvation free 

energy, an ad hoc modification of the 𝐺𝐶𝐷𝑆 term in (1) has been proposed. For that end, employing 

additional macroscopic observables in the model has been considered 4, including the refractive index, 

Abraham’s hydrogen bond acidity and basicity of the solute, macroscopic surface tension of the solvent 

at the air/solvent interface at 298.15 K, the square of the fraction of solvent atoms that are aromatic 

carbon atoms, and the square of the fraction of solvent atoms that are F, Cl, or Br. Although these 

employed macroscopic observables indirectly introduce more physics into the model and hence provide 

the chance to make predictions of solvation free energies more universal, except for the last two they 

are not readily available for many new compounds and their experimental or theoretical evaluation is 

not straightforward. 
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In a number of recent studies, Machine Learning (ML) has been exploited to map the highly 

complicated relationship between solvation free energy and potentially relevant macroscopic or 

microscopic observables.  

Wang et al. employed a pool of 30 molecular representations which all are either per atom reaction 

field energies or partial charges, as the input of the learning-to rank (LTR) machine learning algorithm, 

resulting in a root mean squared error (RMSE) of 1.05 kcal/mol 36. Borhani et al. developed a QSPR 

model which requires 12 experimentally determined properties of solvent and 9 QM derived 

representations of solute as model input, yielding a Mean Unsigned Error (MUE) of 0.43 kcal/mol 38. 

Hutchinson and Kobayashi proposed a structure property relationship for prediction of hydration free 

energy which yields a RMSE of 1.65 kcal/mol 39. 

The most recent example is the kernel-based machine learning model of  Rauer and Bereau which is 

developed to predict the free energy of solvating small organic molecules containing C, H, O, and N 

atoms in pure water via implicit-solvent molecular dynamics simulations 40.  For a 39-parameter model 

they reported a MUE of 1.06 kcal/mol.  

A comparison of performance of state of the art ML models developed for solvation free energy 

prediction provided in table 2 reveals that none of the current ML models yield a remarkable 

improvement compared to the accuracy achievable by successful continuum solvation models, such as 

COSMO-RS. 

In the present study, we propose a machine-learning-based PCM model, which similar to other 

conventional continuum solvation models is based on considering the solvent as a continuous medium 

and calculating the solvation energy components of a solute placed in the cavity of this medium by the 

SCRF procedure. Nevertheless, unlike the conventional PCM models which propose simple and ad 

hoc expressions to integrate and modify those calculated energy components, we employ machine 

learning for this purpose and show its efficiency in substantial improvements of the predictability of 

solvation free energy. 

 

Methods 

Dataset: 

To benchmark our results, we used the solvation free energy data of 2493 binary mixtures of 435 

neutral solutes and 91 solvents from diverse chemical families available in the Minnesota solvation 

database 4. The full list of the studied samples can be found as supplementary material.  

Computational details: 

The performance of models is reported as mean unsigned error (MUE) and root mean squared error 

(RMSE) defined as: 

 𝑀𝑈𝐸 =  
1

𝑁
 ∑(|𝑦𝑖

𝑒𝑥𝑝 − 𝑦𝑖
𝑝𝑟𝑒𝑑|) ,  (3) 

 
𝑅𝑀𝑆𝐸 = (

1

𝑁
 ∑ ((𝑦𝑖

𝑒𝑥𝑝 − 𝑦𝑖
𝑝𝑟𝑒𝑑)

2
))

1

2
  ,  

(4) 
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where 𝑦𝑖
𝑒𝑥𝑝

 and 𝑦𝑖
𝑝𝑟𝑒𝑑

 are experimentally determined and predicted solvation free energies, 

respectively. 

Prior to SCRF computations, all solute geometries were optimized in vacuo at the B3LYP/6-31G*level 

of theory. Using the optimized structures, the SCRF principal energy components listed in table 1 were 

computed for each compound at the B3LYP/6-31G* and DSD-PBEP86-D3/def2TZVP levels of 

theory. The latter method as a double hybrid has been shown to yield more precise charge distributions 

and energy estimations compared to lower-rung DFT or MP2 methods, for a cost comparable to that 

of the MP2 calculation 41.  

 

 

Table 1- The components of the continuum solvation model  

 

 
1  Solvation free energy calculated by the continuum solvation model 

2  <𝛹 (0) |   H    | 𝛹 (0) > 

3  < 𝛹(0) | H+V(0)/2 | 𝛹 (0)>  

4  <𝛹(0) | H+V(1)/2 | 𝛹(0)> 

5  <𝛹(1) |   H    | 𝛹(1)> 

6  <𝛹(1) | H+V(1)/2 | 𝛹(1)> 

7  Interaction energy of unpolarized solute and polarized solvent 

8  Interaction energy of polarized solute and polarized solvent 

9  Solute polarization energy 

10  Total electrostatic interaction energy 

11  Cavity surface area 

12  Cavity volume 

13  Total kinetic energy 

14  Total potential energy 

15  Sum of kinetic and potential energy 

 

 

The SCRF energy components listed in table 1 were computed for two widely accepted polarizable 

continuum models, namely the IEF-PCM and CPCM, as implemented in Gaussian 16 42. For CPCM, 

the default value of zero is considered as the scaling factor 𝑥 in relationship (2). However, a value of 

0.5 has been shown to be a more reasonable choice for this scaling factor 17,43. Therefore, in addition 

to the default implementation of CPCM in Gaussian 16, we also employed a CPCM model with a 

scaling factor of 𝑥=0.5 and denote it by CPCMx=0.5. For that, we replaced the original dielectric constant 

of the solvent with an effective dielectric constant 𝜀̃(𝜀, 𝑥) calculated via: 

 𝜀̃(𝜀, 𝑥) =
ε+x

x+1
 , (5) 
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as suggested by Klamt et al.17. For comparison purposes, we also calculated the solvation free energy 

via the SMD approach.  

We employed feed-forward neural networks to map the relationship between the solvation free energy 

and the calculated SCRF energy components, which in addition to the solvation free energy estimated 

by the applied continuum solvation model and to the dielectric constant of the solvent, comprised our 

model inputs. 

The obtained pool of model inputs was further screened using the Minimum Redundancy and 

Maximum Relevance (MRMR) algorithm 44 resulting in various 8-16 membered combinations of those 

variables. MRMR is a highly efficient algorithms for selecting most effective sets of variables for 

developing robust machine-learning-based models 45. For each number of selected variables, 25 

different settings of the MRMR algorithm were applied, distinguished by the employed quantization 

level, level of dependency, forward or backward variable selection and considering pseudo-samples 

based on Bayesian statistics or not 44. In many cases, this resulted in diversely selected set of variables, 

even for the same applied level of theory and continuum solvation model.  

In the next step, various configurations of neural network models were set up and their reliability were 

examined with a demanding procedure based on the guidelines presented in a previous study 46. 

Accordingly, we assigned large parts of the dataset for test (25%) and validation (15 %), and only 60% 

of the dataset compounds were used for training the models. We employed Levenberg-Marquardt 

backpropagation and Gradient descent backpropagation training algorithms, and hidden layer transfer 

functions of the logarithm-sigmoid and tangent-sigmoid types 47. We only employed neural networks 

with one hidden layer and set the maximum number of neurons in such a way that the number of 

training samples be at least ten times the number of neural network weights and bias constants, as a 

crucially important consideration in developing reliable models 46,48. For each neural network 

configuration, training was carried out for 60 randomly selected training, validation and test sets, and 

for each one 40 different initializations of weight and bias constants of the neural networks were made. 

Above all, to avoid getting misleading data affected by favorable or unfavorable division of dataset 

into training, validation and test sets, the post validation strategy proposed in a previous study 46 was 

carried out. Accordingly, during the initial training of the neural networks, for the models which 

yielded mean absolute percentage errors lower than 22%, the final optimized weights and bias constants 

of the neural network models were recorded. These recorded constants were used as the initial guess 

to train, validate and test the same neural network configurations but under 100 different randomly 

selected training, validation and test sets. The models for which in at least 80 out of 100 iterations their 

test and training sets errors had the same means and variances as evaluated by the two sample t-test 

method with 5% significance level were considered as reliably trained models. For them, the average 

of the test set results in all repeats were reported as the performance of that model. Setting up and 

running the neural network models were implemented in Matlab software. A freely available C++ code 

for practical use of our new ML-PCM models, with detailed user instructions, is provided as 

supplementary material.  

All the computations were carried out on the High Performance Computing center clusters of the 

Christian-Albrechts-University of Kiel.  
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Results and discussions 

After setting up and training the neural networks and screening the appropriately trained models via 

the post-validation strategy discussed in the previous section, the best results with MUE of 0.5871 and 

0.5303 kcal/mol were observed for the computations at B3LYP/6-31G* and DSD-PBEP86-

D3/def2TZVP levels of theory, respectively. The two models employed SCRF energy components and 

solvation free energy computed via PCM solvation model in both cases and are denoted by ML-

PCM(B3LYP) and ML-PCM(DSD-PBEP86) hereafter, respectively. Details of the selected input 

variables and implementation instructions for all selected models are provided as supplementary 

materials. These results show a substantial improvement compared to the original continuum solvation 

model PCM, which for the same dataset yielded MUE of 2.9054 and 3.1569 kcal/mol, respectively.  

In comparison to the SMD model, which for the same dataset and solvation free energy computations 

at B3LYP/6-31G* and DSD-PBEP86-D3/def2TZVP levels yields MUE of 0.78623 and 0.85396 

kcal/mol, respectively, the obtained results still show a higher accuracy, without requiring additional 

solvent parameters needed in the SMD approach. Although in terms of MUE, the COSMO-RS model 

with 0.4214 kcal/mol still provides better results compared to the ML-PCM models, in terms of 

maximum unsigned error, the two ML-PCM models which yield maximum unsigned error of 6.1383 

and 5.3934 kcal/mol, respectively, are more accurate than that of COSMO-RS for which this value is 

6.8701 kcal/mol. For other continuum solvation models studied for the same dataset, the maximum 

unsigned error of the SMD, PCM, CPCM and CPCMx=0.5 were 11.311, 12.75, 12.2, 12.6 kcal/mol for 

B3LYP/6-31G* and 11.311, 12.83, 12.31, 12.68 kcal/mol for DSD-PBEP86-D3/def2TZVP levels of 

theory, which are all substantially higher than those achievable by the ML based models.  

The higher accuracy of the predicted solvation free energies by COSMO-RS model also motivated us 

to study neural networks which take SCRF energy components computed via PCM or CPCM models 

in addition to the solvation free energies predicted via COSMO-RS as neural network feeds. For these 

updates, the best results with MUEs of 0.3081 and 0.30208 kcal/mol and maximum unsigned errors of  

and 3.9195 and 3.3147 kcal/mol were obtained for energy components again calculated via PCM in 

both cases and computations at B3LYP/6-31G* and DSD-PBEP86-D3/def2TZVP levels of theory, 

respectively. These two models, which are denoted ML-PCM/COSMO-RS(B3LYP) and ML-

PCM/COSMO-RS(DSD-PBEP86) hereafter, respectively, show a remarkable improvement in 

predicted solvation free energy compared to those obtained via the original implementation of 

COSMO-RS. This implies considerable flexibility of the proposed approach in improving accuracy of 

various solvation models.  

The overall results obtained via newly developed ML models are compared with various other models 

proposed in the literature in table 2. Although a more informative comparison would be possible if 

different models are compared for the same dataset and, if applicable, the same level of theory, the 

larger size of the benchmark dataset used in the present study compared to most of the other works 

confirms the superior accuracy of the newly proposed method compared to the majority of the widely 

accepted ones. Furthermore, as can be seen in table 2, the results obtained via ML-PCM/COSMO-RS 
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are the most accurate results ever reported for predicting solvation free energy of diverse solute and 

solvent mixtures.  

 

   

  

Figure 1 comparison of experimentally determined and predicted solvation free energies 

 

 

Conclusion 

In the present study, we demonstrated substantial improvements of continuum solvation models in 

evaluating solvation free energy with the help of machine learning. For that end, we proposed a more 

versatile machine learning assisted integration of the continuum solvation energy components 

calculated in SCRF computations which can be used to modify the predicted solvation free energy by 

various solvation models. It allowed us to achieve accurate predictions of solvation free energy with 

MUE as low as 0.30208 kcal/mol for a large dataset of 2493 binary mixtures of 435 neutral solutes and 

91 solvents from diverse chemical families. 
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Table 2- Comparison of the results of the new method with other models 

 
Method Source Nr. Samples Nr. Solvents Nr. Solutes Deviation 

measure 

Deviation 

(kcal/mol) 

       

ML-PCM/COSMO-RS(DSD-PBEP86) Present study 2224 88 300 MUE 
RMSE 

0.30208 
0.44279 

ML-PCM/COSMO-RS(B3LYP) Present study 2224 88 300 MUE 

RMSE 

0.3081 

0.46284 

ML-PCM (DSD-PBEP86) Present study 2488 91 435 MUE 
RMSE 

0.53029 
0.73558 

ML-PCM (B3LYP) Present study 2493 91 435 MUE 

RMSE 

0.58705 

0.82506 

SMD (DSD-PBEP86) 
 

Present study 2488 91 
 

435 MUE 
RMSE 

0.85396 
1.3362 

SMD (B3LYP) Present study 2493 91 435 MUE 

RMSE 

0.78623 

1.1633 

PCM (DSD-PBEP86) 
 

Present study 2488 91 435 MUE 
RMSE 

3.1569 
3.6445 

PCM(B3LYP) Present study 2493 91 435 MUE 

RMSE 

2.9054 

3.3948 

CPCM(DSD-PBEP86) 
 

Present study 2488 91 435 MUE 
RMSE 

2.9651 
3.4426 

CPCM(B3LYP) Present study 2493 91 435 MUE 

RMSE 

2.6942 

3.1733 

CPCMx=0.5(DSD-PBEP86) 
 

Present study 2488 91 435 MUE 
RMSE 

3.1611 
3.6466 

CPCMx=0.5(B3LYP) Present study 2493 91 435 MUE 

RMSE 

2.913 

3.3985 

COSMO-RS Klamt and Diedenhofen 49 2346 91 318 MUE 

RMSE 

0.42145 

0.69644 

DCOSMO-RS Klamt and Diedenhofen 49 2346 91 318 MUE 

RMSE 

0.6584 

0.99724 

SM12 Marenich et al. 50 2403 91 352 MUE 0.5457-
0.6717 

Structure-Property Relationship Hutchinson and Kobayashi 39 ― 1 (water) ― RMSE 1.65 

atoms-in-molecules neural network Zubatyuk et.al. 51 ― ― 414 MUE 1.1 

kernel-based machine learning Rauer and Bereau 40 355 1 (water) 355 MUE 1.06 

QSPR Borhani et. al. 38 1777 210 295 MUE 

RMSE 

0.43 

0.52 

Feature Functional Theory Wang et. al.36 668 1 (water) 668 RMSE 1.05 

 

 

Data availability 

All data produced in this study are available and can be provided by contacting the corresponding 

author. 

Code availability 

The source file of the C++ code developed for implementing the proposed method with detailed used 

instructions are available as supplementary material or can be provided by contacting the 

corresponding author. 
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