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Abstract:  Heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several 
processes, e.g., the different surface chemical reactions, and the dynamic re-structuring of the catalyst material at reaction conditions. 
Modelling the full catalytic progression via first-principles statistical mechanics is impractical, if not impossible. Instead, we show here 
how a tailored artificial-intelligence approach can be applied, even to a small number of materials, to model catalysis and determine the 
key descriptive parameters (“materials genes”) reflecting the processes that trigger, facilitate, or hinder catalyst performance. We start 
from a consistent experimental set of “clean data”, containing nine vanadium-based oxidation catalysts. These materials were 
synthesized, fully characterized, and tested according to standardized protocols. By applying the symbolic-regression SISSO approach, 
we identify correlations between the few most relevant materials properties and their reactivity. This approach highlights the underlying 
physicochemical processes, and accelerates catalyst design. 

Introduction 

The identification of physicochemically meaningful, descriptive 
parameters that are correlated with catalyst performance is a key 
step for modelling and understanding heterogeneous catalysis 
and finding new and more efficient catalytically active materials. 
These parameters, which characterize the materials and the 
processes triggering, facilitating or hindering the reaction, might 
be called the materials genes of heterogeneous catalysis. These 
catalyst genes can be used to construct maps of catalysts, i.e., 
materials charts that highlight the small interesting regions of the 
(huge) space of all possible materials, where the search for high-
performance catalysts should be focused.1, 2 However, finding 
such descriptive parameters is challenging because the 
outcomes of interest (e.g., product selectivity) in reactions 
catalyzed by solids result from the concerted and intricate 
interplay of several processes. These are related to the material 
itself but also to the reaction conditions, for instance the 
temperature and gas-phase in contact with the solid. Some of 
these processes are: multiple bond-breaking and -forming 
reactions occurring on the catalyst surface, the coverage of 
adsorbates on those surfaces, the catalyst re-structuring in the 
reaction environment, referred to as the catalyst dynamics,3 and 
the diffusion of reactants and products within the porous 
structure of the catalyst.3, 4    

One approach for describing heterogeneous catalysis is the 
theoretical, multi-scale modelling by first-principles simulations.4-

6 Nevertheless, the atomistic modelling of the full catalytic 
progression under realistic conditions is impractical because it 
requires computationally prohibitive methods for the accurate 
evaluation of large, interconnected networks of surface 
reactions7, 8 and complex statistical-mechanical treatments of the 
catalyst dynamics.9 Additionally, mesoscale (e.g., adsorbate-

adsorbate) and transport phenomena need to be taken into 
account as well. Finally, the coupling of all these phenomena, 
occurring at very different time and length scales is highly 
complex (see references 4, 5 and references therein). While 
experiments, for example spectroscopic studies under reaction 
conditions, can point to the specific processes governing the 
reactivity on the particular systems under investigation, it is not 
obvious how to derive general and quantitative relationships 
between materials physicochemical properties (and reaction 
conditions) and the catalyst performance that go beyond the 
classical Sabatier principle of optimal binding strength between 
reacting species and the catalyst.4, 10, 11 

In this paper, we demonstrate how a tailored artificial-
intelligence (AI) approach, even when applied to only a small 
number of materials and materials functions, but billions of 
quantitative materials features, can determine the key 
physicochemical descriptive parameters characterizing the 
catalyst performance. This method is used to address the 
challenging propane selective oxidation reaction. We start from 
a consistent experimental set of “clean data”, containing nine 
vanadium-based oxidation catalysts (Fig. 1A). Here, the term 
“clean data” refers to the fact that these materials were carefully 
synthesized and tested in catalysis according to standardized 
protocols.12 Importantly, these nine catalysts were also 
characterized in detail, resulting in more than forty measured 
properties per material. To this data set, we applied the 
compressed-sensing symbolic-regression sure-independence-
screening-and-sparsifying-operator (SISSO)13, 14 approach (Fig. 
1B). We thus identified the few most relevant parameters that are 
correlated, in a possibly complicated way, with the selectivity 
towards acrylic acid and with catalyst activity.  
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Figure 1. (A) Vanadium-based selective oxidation catalysts used in this work. (B) Schematic workflow of the proposed approach 

combining clean experiments and AI for the identification of “materials genes” of heterogeneous catalysis. Here GHSV means “gas 
hourly space velocity”, and f(id) means “function of interpretable descriptors”. The “catalyst preparation” step consists in catalyst 

synthesis, calcining, pressing and sieving. 

 

Alkane selective oxidation  

The selective oxidation reaction performed with mixed-metal-
oxide heterogeneous catalysts enables the transformation of 
abundant light-alkanes (e.g., ethane, propane and n-butane) into 
the valuable products olefins and oxygenates.15 However, the 
initial alkane might undergo multiple reactions on the surface of 
the catalyst in the presence of oxygen molecules (O2),7, 16 leading 
not only to the desired molecules but also to several by-products, 
including CO2. The chemical equations describing the formation 
of propylene (C3H6, olefin), acrylic acid (C3H4O2, oxygenate), and 
CO2 (combustion or total-oxidation product) in propane (C3) 
oxidation, for instance, are: 
 
2	C$H&(() + 	O,(() → 2	C$H. ( + 2	H,O / 	 −162	kJ ∙ mol9: 	 (eq. 1), 
C$H&(() + 2	O,(() → C$H;O,(/) + 2	H,O / −852	kJ ∙ mol9: 	(eq. 2), 

and 
C$H&(() + 5	O,(() → 3	CO, + 4	H,O(/)	 −2220	kJ ∙ mol9: 	(eq. 3). 

 
Here, the values in parenthesis are the standard reaction 
enthalpies.17 Selectively forming the desired products, and, in 
particular the value-added oxygenate, is therefore a challenge. 
The “seven pillars” of oxidation catalysis indicate the several 
factors contributing to reactivity in oxidation reactions: 1. lattice 
oxygen, 2. metal–oxygen bond strength, 3. host structure, 4. 
redox properties, 5. multifunctionality of active sites, 6. site 
isolation, and 7. phase cooperation.18, 19 In the case of vanadium-
based oxide catalysts, selectivity has been also related to surface 
enrichment of one of the metal ions in the presence of reaction 
feed containing steam20-22 and the associated surface potential 
barrier,20, 23, 24 highlighting that the catalyst dynamics also plays a 
role. Due to the multiple requirements and the intricacy of the 
underlying processes, the theoretical description of selective 
oxidation and the search for new catalysts is extremely 
challenging. Alternative approaches for modeling and designing 
new catalysts are thus required. Here, we propose a combination 
of standardized experiments and AI to address this problem. 

Experimental handbooks for the generation of “clean data” 

The identification of reactivity descriptors by AI relies on the 
consistency of the input data. Therefore, we developed 
standardized protocols for catalyst synthesis, characterization 
and testing, described in experimental handbooks,12 which enable 
the generation of consistent and annotated data, according to 
the FAIR principles (Findable, Accessible, Interoperable and Re-
purposable/Re-usable).1 The establishment of minimum 
requirements for performing and reporting measured reactivity 
is a crucial aspect in heterogeneous catalysis research. Because 
kinetic effects play a dominant role in catalysis, the reactivity is 
not only sensitive to the catalyst synthesis procedure and to the 
resulting as-synthesized, fresh catalyst, but also to the conditions 
to which the material is exposed prior to and during the reaction, 
for instance the temperature and the composition of the gas-
phase (feed) in contact with the solid.2 

In this work, we focus on nine common vanadium-based 
oxidation catalysts (Fig. 1A). These materials were prepared, in a 
reproducible manner, in large batches (15-20 g) to guarantee that 
comprehensive catalyst characterization and testing is 
performed using samples from the same batch. The catalyst 
preparation consists on the catalyst synthesis itself, plus 
calcining, pressing and sieving. The materials resulting from the 
catalyst preparation are called fresh catalysts. After catalyst 
preparation, all the catalysts were tested for the C3-oxidation 
reaction using a fixed-bed reactor (Fig. 1B). The catalyst test starts 
with an activation procedure during which the synthesized 
materials are exposed to the reaction feed and rather high 
temperature (e.g., 450 ºC) for 48 hours. The activation condition 
is that the conversion of either propane or oxygen is 85%. The 
materials resulting from the activation procedure are called 
activated catalysts. The goal of the activation procedure is to 
obtain samples as similar as possible to the catalytically active 
materials formed during the induction period of the reaction.  
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Figure 2. (A) Propane conversions (𝑋BCDBEFG)	and (B) acrylic acid 
selectivity (𝑆EICJ/KI	EIKL) of the vanadium-based catalysts measured 
in the catalyst test, evidencing the diverse types of behavior in 
the data set. (C) 𝑆EICJ/KI	EIKL  dependence on 𝑋BCDBEFG, showing that 
acrylic acid, as a consecutive product, is only formed at 
intermediate conversion levels. The MoVOx catalyst performance 
was not measured at temperatures above 300 ºC due to its 
limited thermal stability in the feed. Only the catalysts that 
produce acrylic acid are shown in (C). 
 

Indeed, some catalysts undergo structural modifications during 
the activation procedure. For this reason, their properties differ 
significantly between fresh and activated catalyst samples (see 
data set provided in Electronic Supporting Information, ESI).  

Following the activation step of the catalyst test, the temperature 
is brought to 225 ºC in lean air and gradually increased, in steps 

of 25 ºC, in the reaction feed up to 450 ºC, to enable the 
conversion of propane and oxygen. If the propane and/or the 
oxygen (molar) conversion exceeds 85%, the increase in 
temperature is stopped to prevent catalyst decomposition. At 
each of the temperatures, the steady-state operation is reached 
and the reaction mixture at the reactor outlet is collected and 
analyzed, providing the measures of catalytic performance. 
Catalyst activity and selectivity are evaluated in terms of propane 
conversion (𝑋BCDBEFG) and product selectivity (𝑆BCDLMIN), 
respectively. The propane conversion indicates the molar 
fraction of oxidized propane, i.e. propane converted to any of the 
possible products. The selectivity indicates the molar fraction of 
a specific product with respect to all products formed from 
propane. The gas hourly space velocity (GHSV), the ratio between 
the volumetric flow and the catalyst volume, is kept constant for 
all catalysts during the test (at 1000 h-1) to ensure a consistent 
comparison among materials. After the temperature variation, 
the GHSV and feed are varied and the spent catalyst is further 
analyzed. These steps beyond temperature variation are not 
discussed in this paper. The raw data used here are provided as 
ESI and the detailed experimental procedure is explained in the 
handbook.12 

The performance of the nine catalysts in C3-oxidation, in terms of 
propane conversion and acrylic acid selectivity (Fig. 2), shows a 
wide range of behaviors in the nine selected vanadium-based 
catalysts. These catalysts have different activity, i.e., they react 
with propane in different amounts, as indicated by the different 
propane conversions profiles (Fig. 2A). MoVOx is much more 
active than the other catalysts and converts 58.8 % of the initial 
propane at 300 ºC. At higher temperatures, MoVTeNbOx, a-VPP, 
VPP and V2O5, achieve conversions higher than ca. 20 %, with 
MoVTeNbOx being the most active catalyst among them. β-
VOPO4, α-VWOPO4, α-VOPO4 and VWPOx achieve significantly 
lower conversions (below ca. 10 %), even at the highest applied 
temperature. These catalysts are therefore the least active 
materials. Several products are formed from the initial propane 
on each catalyst, including the value-added acrylic acid and 
propylene, as well as the undesirable CO2. In our analysis, we 
focus on acrylic acid because the formation of this product 
involves a complex interplay of processes. The acrylic acid 
selectivity measured at each temperature of the catalyst test is 
shown in Fig. 2B. Acrylic acid is a consecutive product of the 
propane oxidation reaction. It is formed after propane 
transformation to propylene, but before the total oxidation 
product CO2 (see eq. 1-3). For this reason, its formation is only 
observed at intermediate propane-conversion levels (Fig. 2C). 
MoVTeNbOx is, by far, the most selective catalyst towards acrylic 
acid and achieves a maximum of 71.3 % selectivity at 350 ºC at 
propane conversion of 26.1%. MoVOx, VPP and a-VPP reach 
significant, although lower, acrylic acid selectivities (7.2, 18.6, and 
14.2 %, respectively). The maximum selectivity for MoVOx occurs 
at 225 ºC. For VPP and a-VPP the optimal temperatures with 
respect to selectivity are 400 and 350 ºC, respectively. This is in 
line with the fact that MoVOx is active at lower temperatures, 
while VPP and a-VPP require higher temperatures to convert 
propane (Fig. 2A). Finally, V2O5 achieves a much lower acrylic acid 
selectivity of 2.3%. The catalysts β-VOPO4, α-VWOPO4, α-VOPO4 
and VWPOx are unselective towards acrylic acid under the 
reaction conditions considered. The presence of such diverse 
scenarios in the dataset is crucial for the success of the AI 
approach. 
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Table 1.  Catalyst properties and reaction parameters used as primary features for the SISSO analysis. The subscripts on the atomic 
compositions (𝑥) and oxidation states (Ω) indicate if the value concerns the bulk (b) or surface (s). The subscripts	fr, and act	indicate if 

the property concerns a fresh or activated sample, respectively. The subscript	rxn, dry; rxn, wet; and rxn, C3 indicate properties 
measured with in situ NAP-XPS under dry, wet or C3-rich gas-phase feeds, respectively.  

 

symbol unit description technique 

𝑇 ºC temperature (of reactivity measurement) - 

𝑉EINIG// Å3 normalized unit cell volume XRD (ex situ) 

𝑠bC, 𝑠EIN m2∙g-1 specific surface area 
N2 ads. (ex situ) 

𝑉bC
BDCG, 𝑉EIN

BDCG cm3∙g-1 pore volume 

𝑥c,bCd , 𝑥c,EINd  % atom bulk atomic content XRF (ex situ) 

𝑥e,bCd ,	𝑥e,EINd , 𝑥e,bCf ,	𝑥e,EINf , 𝑥e,bCg ,	𝑥e,EINg  % atom surface atomic content 

lab-XPS (ex situ) 

Ωe,bCd ,	Ωe,EINd  e oxidation state 

𝜆d,	𝜆f,	𝜆g nm inelastic mean free path 

𝑎bCg9g,	𝑎bCg9f,	𝑎bCgjf 
𝑎EINg9g,	𝑎EINg9f,	𝑎EINgjf 

% area relative amount of carbon 1s  components 

𝑢l,bC
fm  µmol O2∙g-1 O2 uptake per mass  TPRO (ex situ) 
𝑢e,bC
fm  µmol O2∙m-2 O2 uptake per surface area  

𝑥e,CnF,LCJd , 𝑥e,CnF,LCJf  
𝑥e,CnF,oGNd ,	𝑥e,CnF,oGNf  
𝑥e,CnF,g$d ,	𝑥e,CnF,g$f  

% atom surface composition 

NAP-XPS (in situ) Ωe,CnF,LCJd ,	Ωe,CnF,oGNd , Ωe,CnF,g$d  e oxidation state 

𝜆CnFd , 𝜆CnFf  nm inelastic mean free path 

𝑉𝐵CnF,LCJ, 𝑉𝐵CnF,oGN, 𝑉𝐵CnF,g$ eV valence band onset 

𝑊CnF,LCJ, 𝑊CnF,oGN, 𝑊CnF,g$ eV work function 

𝜎EINCGb S∙m-1 reference conductivity 

MCPT (in situ) 

∆𝜎EINt  S∙m-1 conductivity stoichiometry-dependence 

∆𝜎EINu  S∙ms-1 conductivity retention-time-dependence 

∆𝜎EINt  % ∆𝜎vwxy  normalized by 𝜎EINCGb 

∆𝜎EINu  %∙s-1 ∆𝜎vwxz  normalized by 𝜎EINCGb 

𝐸|,EIN}  kJ∙mol-1 activation energy of conductivity 
 
The algorithm indeed needs to be informed about materials with 
different performance (in particular both desirable and 
undesirable types of behaviors) in order to identify the reactivity 
patterns we are searching for.  
To gather information characterizing the catalysts and reflecting 
the potentially relevant processes governing selective oxidation 
within our AI approach, we measured a wide range of bulk and 
surface properties of both fresh and activated catalyst samples. 
We used the following common characterization techniques: x-
ray diffraction (XRD), N2 adsorption (ads.), x-ray fluorescence 
(XRF), laboratory x-ray photoelectron spectroscopy (lab-XPS), 
temperature-programmed reduction/oxidation (TPRO). 
Additionally, we measured properties of the activated catalyst 
samples under the reaction conditions (temperature and gas-
phase feed) by the advanced techniques near-ambient-pressure 
XPS (NAP-XPS) and microwave cavity perturbation technique 
(MCPT). These advanced techniques, referred to as in situ (as 
opposed to the ex situ common techniques above), provide 
properties of the “working catalyst”, which therefore take into 
account the catalyst dynamics. In particular, NAP-XPS, which 
provides surface properties, was carried out in three different 
feeds: dry, wet and C3-rich. These conditions are used to probe 
the influence of surface composition and its electronic 
properties, which depends on the feed due to catalyst dynamics, 

on reactivity. Regarding MCPT, it is a technique for contactless 
determination of the conductivity, free of electrode effects.25 
Finally, we note that microscopic as well as mesoscopic 
properties of the catalysts are included in our analysis, which can 
be related to phenomena at different length (and time) scales. 
For instance, the surface atomic composition (from lab-XPS and 
NAP-XPS) might characterize a molecular-level process whereas 
the pore volume (from N2 ads.) may be associated to the diffusion 
of reactants and products on the catalyst pores, a transport 
phenomenon occurring at a larger length scale. The 
characterization of these catalysts, also performed following 
standardized protocols (described in ref. 12) represents an 
unprecedented effort to acquire a consistent and detailed set of 
more than fourty catalyst bulk and surface properties. An 
overview of the measured properties is shown in Table 1 (the full 
data set is available in ESI). 

AI approach 

The identification of correlations between materials and process 
properties on one side and the catalytic performance towards 
selective oxidation on the other was done by the SISSO 
approach.13, 14 SISSO identifies descriptors in the form of typically 
complex, nonlinear analytical expressions depending on input 
parameters, called primary features. In the machine-learning 
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nomenclature, these descriptors are representations. Thus, 
SISSO is also an efficient “representation-learning” algorithm.  

The SISSO approach starts with the collection of its input 
parameters, called primary features. These include all possibly 
relevant physicochemical parameters that may relate to the 
processes governing the catalysis question of interest. 
Concerning these parameters, it is better to offer many 
possibilities, and it does not matter if some of these “primary 
features” are correlated with others. Our choice of primary 
features for this work is given in Table 1. They correspond to the 
measured materials properties as well as reaction parameters 
such as the temperature. Altogether, these are fifty. In the second 
step, we construct the descriptor candidates. For this, the 
primary features are systematically combined using 
mathematical operators such as addition, multiplication, 
difference, etc. (see details in ESI). Thus, we follow a symbolic 
regression approach.26-28 This step results in the generation of 
billions of descriptor candidates. Each of them provides different 
numerical values for the different materials and/or processes. 
Thus, the big data challenge is related to the intricacy of the 
underlying physics and chemistry. From the large number of 
candidate descriptors, and using the provided values of the 
targets properties for the materials in the data set, SISSO selects 
very few, typically just 𝐷	= 1, or 2, or 3 best descriptor candidates, 
whose linear combination, with weighting coefficients, provides 
the best fit to the target property. 𝐷 is referred to as the 
descriptor dimension. The final selected descriptor is thus the 
vector containing the selected candidate descriptors as individual 
components. The selection of descriptors and the identification 
of the coefficients is done by compressed sensing.29-31 The 
resulting models for the target property 𝑃 have the form 

 

𝑃(����f) = 𝑐� + 𝑐�𝑑��
�j:  (eq. 4), 

 
where 𝑑� are the descriptor components selected from the many 
billions of candidates, and 𝑐� are the fitting coefficients. 
Importantly, only few primary features, out of the fifty offered 
ones, appear in the finally selected descriptor. The SISSO-derived 
descriptors are interpretable in the sense that one can identify 
the key primary features by simply inspecting the output 
expressions. These primary features are the relevant “catalyst 
genes”.  
Because the functional forms of the immensity of descriptor 
candidates offered to the SISSO analysis are very flexible, it is 
important to avoid overfitting, i.e., to avoid models that fit the 
provided data but are not generalizable. Two parameters control 
the model complexity:  𝐷 (see Eq. 4) and the number of times the 
mathematical operators are iteratively applied to the features 
(depth of symbolic-regression tree) in order to generate the 
descriptor candidates, called hereafter rung, and denoted by 𝑞. 
The model complexity is assessed using leave-one-material-out 
cross-validation (CV). This CV procedure consists of training 
models with a data set in which one of the catalysts is removed, 
and then using the so-obtained ensemble of best models to 
predict the property of the left-out material. This procedure is 
iterated until all the catalysts are left-out once. The root mean 
squared errors (RMSEs) averaged over all CV iterations (averaged 
CV-RMSEs) are used as our performance metric. The optimal 
complexity is considered the one with the lowest CV-RMSE. 
Further details on the CV procedure are provided in ESI. 
In this work, we use the multi-task version of SISSO (MT-SISSO).14 
In the context of SISSO, multi-task refers to a transfer-learning 

approach for the identification of a single multi-dimensional 
descriptor for a target property across different material classes 
or external conditions, each of them corresponding to different 
fitting coefficients (𝑐� in Eq. 4). MT-SISSO thus provides a single 
descriptor for the property and different models for each class of 
materials or external condition. In the case of this work, such 
different external conditions correspond to the different reaction 
temperatures applied in the catalyst test.  Predicting the target 
property at each of the measured temperatures is therefore a 
different task. We stress that, in addition to allowing for the 
simultaneous modelling of the catalytic performance at different 
temperatures, MT-SISSO also enables us to efficiently exploit the 
experimental data available, increasing the effective number of 
data points. This is because every material is measured in a large 
range of temperatures, providing multiple data points per 
material. The multi-task approach thus improves the reliability of 
the identified descriptors. 
In spite of the application of MT-SISSO, the number of data points 
in our experimental data set is very small and by no means 
comparable to the amount of data needed for widely used 
machine-learning approaches as, e.g., kernel ridge regression or 
artificial neural networks. The latter typically requires >103 data 
points. However, we stress that for the SISSO approach a large 
amount of physicochemical information about the considered 
materials is provided by the immense number of descriptor 
candidates considered, with their quantitative values. The AI 
strategy of SISSO enables the identification of descriptors that 
capture the intricate underlying processes without the need for a 
large amount of experimentally characterized materials. The big-
data aspect is thus in the intricacy of the materials functions as 
the signal to be reconstructed (using the language of compressed 
sensing). It does not focus on the number of materials (or 
observations). We nevertheless point out that the more 
experimental data are available, the more generalizable the 
SISSO-derived models will be. Obviously, SISSO can only capture 
processes that are governing the target properties in the 
employed experimental data. 
 

Identifying catalyst genes of the selective C3-oxidation 

To identify descriptors indicating the catalyst performance in C3-
oxidation, we use the acrylic acid selectivity (𝑆EICJ/KI	EIKL) as target 
property. With the exception of MoVOx, which was only 
measured at 4 temperatures (vide supra), 9 different 
temperatures in the range 225-425 ºC are considered per 
catalyst. Altogether, 76 data points are used. Even though the 
temperature is offered as a primary feature in our analysis and it 
can therefore be used to construct the descriptor expression, by 
using MT-SISSO we are also able to capture the effect of 
temperature via the coefficients used to fit the models (𝑐� in Eq. 
4). This is because such coefficients are functions of the task, in 
this case the different temperatures. Indeed, SISSO captures the 
temperature effect only by the fitted coefficients. The best 
descriptor expressions identified do not contain the temperature 
as a parameter (vide infra).  
The errors obtained when 𝑆EICJ/KI	EIKL is estimated using the MT-
SISSO model trained on the whole data set, i.e., the training 
errors, decrease as the rung 𝑞 and the dimension 𝐷 increase 
(dashed lines in Fig. 3).  The training RMSEs are practically zero at 
𝐷 = 3 for the three considered 𝑞. This evidences the flexibility of 
expressions selected by SISSO to fit the input data. The average 
CV-RMSEs (solid lines in Fig. 3), however, do not decrease 
monotonically with rung and dimension. Instead, the average CV-
RMSEs achieve a minimum value of 6.76% at 𝑞 = 3, 𝐷 = 2 with 



 
 

6 

respect to an optimal predictability. This is therefore the 
identified appropriate complexity. The training error for such 
model is 1.46%.  We note that a large fraction of the CV-RMSE is 
associated to the CV iteration in which the MoVTeNbOx catalyst is 
left-out. Since this catalyst achieves a much higher 𝑆EICJ/KI	EIKL 
compared to the remaining ones in the data set (Fig. 2B and Fig. 
2C), it is probably dominated by a different process and therefore 
it is hard to correctly predict its performance based only on the 
remaining materials.  
 

 
Figure 3. CV analysis of models derived by MT-SISSO for the 
acrylic acid selectivity. The CV errors shown correspond to the 
averaged RMSE across leave-one-material-out-CV iterations. The 
optimal complexity is 𝑞 = 3, 𝐷 = 2. The secondary axis (on the 
right) shows the CV-RMSE as a fraction of the standard deviation 
of  𝑆EICJ/KI	EIKL over the whole dataset. The CV-RMSE values shown 
here correspond to an ensemble size of 25 descriptors (see ESI 
for CV details). 
 
The best descriptor identified by MT-SISSO, i.e., the descriptor 
identified using the whole data set at the optimal complexity 
provided the following model 
 

𝑆EICJ/KI	EIKL
����f 𝑇 = 𝑐:� 𝑇 (𝑉bC

BDCG),
𝑊CnF,oGN

𝐸|,EIN}
1

(𝑥e,CnF,g$d − 𝑥e,EINd )𝑎EINg9f𝑥e,bCg  

 

+𝑐,� 𝑇 𝑉bC
BDCG𝑉EIN

BDCG :
��,���
�

��,���,���
�

(��,���,��
� 9��,���

� )(��,���,���
� ���,��

� )
 (eq. 5), 

 
where the coefficients 𝑐:� 𝑇  and 𝑐,� 𝑇  depend on the measured 
temperature. In this expression,	𝑉bC

BDCG and 𝑉EIN
BDCG are the pore 

volumes of the fresh and activated catalysts, respectively, 𝐸|,EIN}  is 
the activation energy of conductivity of the activated 
catalyst,	𝑊CnF,oGN is the catalyst work function under reaction wet 
feed, 𝑥e,EINd , 𝑥e,CnF,LCJd , 𝑥e,CnF,oGNd , and 𝑥e,CnF,g$d  are the V surface content 
of the activated catalyst and of the material under reaction dry, 
wet and C3-rich feeds, respectively, 𝑥e,bCg  is the C surface content 
of the fresh catalyst, and 𝑎EINg9f is the fraction of surface carbon 
assigned to C-O in the activated catalyst. Figure 4A shows the 
model derived by MT-SISSO for	𝑆EICJ/KI	EIKL (eq. 5) evaluated for the 
materials and temperatures measured in the catalyst test 
(crosses) as well as the experimental measurements and 
indicates the good quality of the fit.  
The SISSO-identified primary features are thus	𝑉bC

BDCG,  𝑉EIN
BDCG,	𝐸|,EIN} , 

𝑊CnF,oGN,		𝑥e,EINd , 𝑥e,CnF,LCJd , 𝑥e,CnF,oGNd , 𝑥e,CnF,g$d , 𝑥e,bCg  and 𝑎EINg9f. 𝑉bC
BDCGand 

𝑉EIN
BDCG are associated to the porous structure of the catalyst and 

reflect processes related to the catalyst pores, for instance 
diffusion of reactants and/or products. 𝐸|,EIN}  and 𝑊CnF,oGN 
correspond to the activation energy of charge carrier transport 

and to the electronic surface potential at reaction conditions, 
respectively.  
 

 
Figure 4. Descriptors identified by MT-SISSO for the acrylic acid 
selectivity (𝑆EICJ/KI	EIKL 𝑇 ). (A) Model expression evaluated on the 
nine vanadium-based catalysts of the data set at the measured 
temperatures (crosses), showing the quality of the fit with respect 
to experimental values (other markers).  (B) Values of the best 
descriptor components for each catalyst. (C) Coefficients of the 
best model. The same markers and colors defining the materials 
in Fig. 2 are used in (A). The points in (C) are connected by splines 
(2nd order).  
 
These primary features characterize electronic properties of the 
working catalysts, which can be related to the charge transfer 
from the catalyst to adsorbed reaction intermediates. 𝑥e,EINd ,
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𝑥e,CnF,LCJd , 𝑥e,CnF,oGNd , and 𝑥e,CnF,g$d  indicate the relevance of the 
concentration of the redox-active element, vanadium, at the 
surface of the catalysts. Finally, 𝑥e,bCg  and 𝑎EINg9f are associated to 
the amount and specific types of surface carbon identified by 
XPS. 
They reflect the strength of adsorption on specific catalyst 
surface sites and are thus related to surface site-specific 
processes. Altogether, the identified catalyst genes reflect a 
concerted and intricate interplay of catalyst bulk and surface 
processes that governs the selectivity towards acrylic acid. These 
include the catalyst dynamics, described by properties measured 
in situ, as well as transport phenomena at a higher length scale, 
encoded by the catalyst pore volume.  
The key primary features (genes) identified in the SISSO analysis 
are consistent with previous investigations of selective oxidation 
catalysis in vanadium-based materials. In particular, in both 
descriptor components the difference (𝑥e,CnF,g$d − 𝑥e,EINd ) appears, 
which could be linked to the observed V surface enrichment 
occurring at reaction conditions in selective oxidation catalysts.20-

22 We note that the precise mathematical expression and the 
primary features individually contain less physical meaning than 
their collective interplay, since descriptors obtained with 
different mathematical operators or different primary features - 
for instance, correlated with those shown in Eq. 5 - can capture 
the same underlying processes.  
The model identified by MT-SISSO (eq. 5) is based on a 2-
dimensional (2-D) descriptor with components 𝑑:� and 𝑑,�. These 
are different constant values for each material, and they are 
weighted by temperature-dependent coefficients. The descriptor 
components (Fig. 4B) assume non-negligible values for the 
catalysts that produce acrylic acid: MoVOx, MoVTeNbOx, V2O5, 
VPP, and a-VPP. Furthermore, their values are much higher for 
MoVTeNbOx compared to the other materials, in line with its 
much higher selectivity (Fig. 2B). For the catalysts β-VOPO4, α-
VWOPO4, α-VOPO4 and VWPOx, both 𝑑:� and 𝑑,� are practically 
zero. 
The coefficients 𝑐:� 𝑇  and 𝑐,� 𝑇  (in black and green, respectively, 
in Fig. 4C) of the acrylic acid selectivity take up positive and 
negative values depending on the temperature range. 𝑐:� 𝑇  and 
𝑐,� 𝑇 	are positive for high and low temperatures, respectively. 
The signs of the coefficients change at ca. 350 ºC. Therefore, the 
selectivity is described by the model of eq. 5 as a sum of a positive 
and a negative term. This hints at different processes that 
facilitate and hinder the selectivity in a concerted and 
temperature-dependent manner. By fitting smooth functions to 
the coefficients, models for estimating acrylic acid selectivity 
across temperatures, including those not measured 
experimentally, can be obtained. Such models are useful for 
optimizing process conditions. 
In addition to the selectivity, we also identified descriptors for the 
efficiency of propane oxidation, indicated by the propane 
conversion (𝑋BCDBEFG). The SISSO-identified model, which 
corresponds to the optimal predictability of 𝑞 = 1, 𝐷 = 2 is  
 

𝑋BCDBEFG
����f 𝑇 = 𝑐:� 𝑇

� ,��
¡m

¢���,���
+ 𝑐:� 𝑇 𝑢l,bC

£m 	𝑥e,CnF,g$f  (eq. 6). 

 
In this expression, 𝑢l,bC

fm  is the reversible oxygen uptake of the 
fresh catalyst per mass, and 	𝑥e,CnF,g$f  is the O surface content 
under reaction C3-rich feed. 𝑢e,bC

fm  indicates the materials ability to 
reversibly incorporate oxygen on its bulk structure and is related, 
for instance, to the role of lattice oxygen. 𝑊CnF,oGN and 	𝑥e,CnF,g$f , in 
turn, are related to surface processes. While the 𝑐:� 𝑇  in the 

model of eq. 6 is positive for all considered temperatures, 𝑐,� 𝑇  
is always negative (see Fig. S3C). This indicates that the processes 
captured by the first term in eq. 6 facilitate propane conversion 
whereas those associated to the second term hinder it.  
Even though the 2-D descriptor in eq. 6 does reflect an interplay 
of processes governing activity, the descriptor complexity (𝑞 = 1) 
is lower compared to the case of acrylic acid selectivity (eq. 5, 𝑞 =
3). Indeed, it is expected that the selectivity towards the 
oxygenate depends on a more intricate interplay of processes 
compared to the propane conversion to any product, i.e., 
including CO2. We note that 𝑊CnF,oGN is identified as a key 
parameter for both properties, consistent with the fact that the 
acrylic acid selectivity and the propane conversion are related 
(Fig. 2C) and might display some common governing process – 
and thus common materials genes. 
By inspecting SISSO models predicting 𝑆EICJ/KI	EIKL and 𝑋BCDBEFG, we 
observe that the descriptor components 𝑑: and 𝑑, have large 
mutual linear correlation for the materials in the training dataset. 
This can be formalized by noticing that a linear model 𝑑, = 𝛼𝑑: +
𝛽 yields a good approximation of 𝑑, when 𝑑: is known. In other 
words, all the so- far known materials lie close to a straight line in 
the (𝑑:, 𝑑,) space. Since 𝑑: and 𝑑, depend on primary features 
that are measured in experiments for actual materials, it is 
unclear if materials that would land away from the 𝑑, = 𝛼𝑑: + 𝛽 
line actually exist. However, both models are expected to become 
less reliable the further a new tested material lands from the 
𝑑, = 𝛼𝑑: + 𝛽 line. Should this happen for a new tested material, 
the model would need re-training as a more complex model is 
likely needed. This can also be realized when noticing that the 
linear models 𝑋BCDBEFG, 𝑆EICJ/KI	EIKL = 𝑐:𝑑: + 𝑐,𝑑, can predict values 
of 𝑋BCDBEFG and 𝑆EICJ/KI	EIKL outside the physically meaningful 
interval 0-100%, for arbitrary values of 𝑑: and 𝑑,, which are very 
different from the (𝑑:, 𝑑,) values that represent the materials in 
the dataset. We also notice that for 𝑋BCDBEFG,  the model is 
particularly sensitive when 𝑑, departs from the 𝑑,� = 𝛼�	𝑑:� + 𝛽�  
line, which limits its applicability. A deeper analysis of this model 
will be published elsewhere. 
 
Maps of catalysts for guiding the design of new materials 
We used the relationship 𝑑,� = 𝛼�	𝑑:� + 𝛽� to obtain a “map of 
catalysts” (Fig. 5) showing 𝑆EICJ/KI	EIKL

����f 𝑇  as a function of two 
variables, the materials descriptor 𝑑:�	and the temperature. In the 
expression 𝑑,� = 𝛼�	𝑑:� + 𝛽�,  𝛼� and 𝛽� are fitted parameters, with 
values 2.948 10-3 eV-1 and -9.246 10-4 g2∙mol∙cm-6∙kJ-1, respectively. 
The resulting map shows the selectivity, as a color scale from 0 to 
100%, for the temperature range used in the experiment. Every 
material is represented, in this plot, by a horizontal line and the 
black lines indicate the materials in the experimental data set 
that produce acrylic acid and were used for training the model.  
The map of Fig. 5 highlights the different types of behavior 
present in the data set used for the derivation of the descriptor. 
In particular, it shows that the temperature of maximum acrylic 
acid selectivity decreases as one moves from low to high 𝑑:� 
values. The map also evidences the unique and higher 
performance of MoVTeNbOx compared to the other materials. 
Additionally, this materials chart can accelerate the design of new 
catalysts, since it indicates the regions of the materials space 
where high-performant materials are found. In particular, 
catalysts with high 𝑑:� values (regions shown in blue in Fig. 5) are 
associated to high selectivity towards the formation of acrylic 
acid. From eq. 5, the pore volumes and the activation energy of 
conductivity are the key properties that impact the value of 𝑑:�. By 
increasing pore volumes and decreasing activation energy of 
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conductivity, for instance, 𝑑:� is increased. To illustrate how 
materials with “better” parameters will exhibit a better selectivity, 
we imagine a hypothetical catalyst, which would be obtained 
from VPP, increasing its pore volumes by 50 % (in both fresh and 
activated materials) and decreasing its activation energy of 
conductivity by 50 %. The VPPmodified material, shown as the green 
dashed line in Fig. 5, would provide an acrylic acid selectivity ca. 
3 times higher than that for VPP. For this gedankenexperiment, 
we assume that all other primary features of the catalyst remain 
unchanged.  
 

 
Figure 5. Map of catalysts given by the MT-SISSO model for the 
acrylic acid selectivity 𝑆EICJ/KI	EIKL

����f 𝑇 , indicating the regions of the 
materials space corresponding to high selectivity (in blue). The 
materials used for deriving the descriptors that produce acrylic 
acid are indicated by the black lines. The green dashed line 
indicates a hypothetical VPPmodified catalyst. VPPmodified would be 
obtained by increasing 50% VPP’s pore volumes (in both fresh 
and activated materials) and by decreasing 50% its activation 
energy of conductivity. The splines shown in Fig. 4C are used to 
interpolate 𝑐:� 𝑇  and 𝑐,� 𝑇  across temperatures.  
 
Finally, we note that the models derived by MT-SISSO are 
expected to hold for catalysts obtained as modification of the 
vanadium-based catalysts as well for other (new) materials as 
long as the reactivity is governed by the same processes 
governing the catalytic performance in the nine materials of our 
data set. However, for regions of the materials space containing 
catalysts very different from those in the data set, the MT-SISSO 
model might need to be re-trained with more data. This calls for 
a systematic experimental exploration of the materials space, i.e., 
addition information at (𝑑:,	𝑑,) regions whose experimental data 
are missing, at present.  
 
Conclusions 
Our study shows how consistent data in heterogeneous-catalysis 
research, generated according to standardized protocols for 
performing and annotating experiments,12 enable the 
identification of the key descriptive parameters related to 
catalyst performance, the “materials genes of catalysis”, by AI. 
Nine vanadium-based alkane oxidation catalysts presenting 
diverse reactivity towards C3-oxidation were synthesized, 
characterized, and tested according to such procedures. In 
particular, their detailed characterization resulted in more than 
forty measured properties per material. To such data set, 
presenting a small number of materials but a very large amount 

of information for each catalyst, provided in terms of input 
features, we applied the compressed-sensing symbolic-
regression SISSO approach.  Out of billions of descriptor 
candidates, we found nontrivial interpretable expressions 
reflecting the concerted interplay of processes that govern 
catalysis, including the crucial catalyst dynamics. The AI-identified 
descriptors enable us to generate maps of catalysts for guiding 
the search of novel materials and rationalizing the reactivity 
trends. In particular, the key catalysts properties related to acrylic 
acid selectivity include the pore volume, the activation energy of 
conductivity, the work function, the fraction of surface carbon 
species assigned to carbon-oxygen as well as the V and C surface 
contents. These properties, measured by N2 adsorption, in situ 
MCPT and XPS (including in situ NAP-XPS), are thus the key ones 
to be measured and used for the design of selective materials.  
The combination of systematic experiments and AI proposed 
here is suitable for improved materials discovery and the 
modelling of complex materials properties and functions whose 
underlying governing processes are intricate and hard to model 
explicitly by atomistic simulations.  

Supplementary material 
SISSO and CV details as well as additional results for the 
descriptor 𝑋BCDBEFG

����f 𝑇 	are available in ESI.  
The SISSO analysis described in this publication can be found in 
a Jupyter notebook at the NOMAD Artificial-Intelligence Toolkit 
(https://nomad-lab.eu/AIToolkit/), where it can be repeated and 
modified directly in a web browser. 
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