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ABSTRACT

Relative free energy calculations are fast becoming a critical part of early stage pharmaceu-

tical design, making it important to know how to obtain the best performance with these

calculations in applications which could span hundreds of calculations and molecules. In

this work, we compared two different treatments of long-range electrostatics, Particle Mesh

Ewald (PME) and Reaction Field (RF), in relative binding free energy calculations using a

non-equilibrium switching protocol. We found simulations using RF achieve comparable re-

sults as those using PME but gain more efficiency when using CPU and similar performance

using GPU. The results from this work encourage more use of RF in molecular simulations.
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INTRODUCTION

The lead optimization stage is an important part of pharmaceutical drug discovery, involving

optimization of several key chemical and biophysical properties in order to ensure candidate

compounds have adequate selective binding to their target while also having appropriate

other properties to potentially become a new pharmaceutical. Lead optimization efforts

always require adequate ligand binding affinity for the target, making this a critical design

criterion, and one which is a target for predictive methods. Alchemical relative binding free

energy (RBFE) calculations based on molecular dynamics (MD) simulations and statistical

mechanics have shown promise in providing reliable predictions to guide experimental work

in the context of real drug discovery projects.1–3

RBFE calculations compare the potency of two structurally related ligands by transform-

ing one ligand into another via an unphysical or alchemical pathway. This transformation

is performed in both the protein-ligand complex and in the solution state to form a closed

thermodynamic cycle. The RBFE of the ligands simulated can be calculated through two

opposite legs in this cycle.4

To calculate free energies, these alchemical transformations can be performed via either

an equilibrium or non-equilibrium protocol. In general, a number of intermediate simula-

tions are conducted along an alchemical path between the two physical end states, with

these simulations being either equilibrium or nonequilibrium depending on the approach

chosen. While the free energy difference of interest depends only on the physical end states

in the limit of adequate sampling, these intermediate states serve to help obtain converged

results and provide sampling which is hopefully adequate. Equilibrium free energy calcu-

lations run an equilibrium simulation at each intermediate state as well as the end states

which are physically meaningful. In contrast, the non-equilibrium protocol simulates the

end states at equilibrium, potentially spending considerably more time there, and only runs

short simulations to switch between end states. However, running a large number of switch-

ing trials is critical in this case. It is still under debate which of the two protocols is more
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efficient, with different studies drawing different conclusions,5–8 and the choice of protocol

is beyond the scope of this paper. This work follows the protocol deployed in a previous

work9 in which a non-equilibrium approach was used, though our results may generalize to

equilibrium approaches as well.

Generally, modern MD engines (e.g., AMBER, GROMACS, CHARMM, etc) support dif-

ferent approaches for simulations, including RBFE calculations. Among these software pack-

ages, GROMACS is an open source package which is widely used for molecular simulations

and achieves a reasonable level of reproducibility in RBFE calculations.10 Moreover, tools

(e.g., pmx11,12) allow easy high-throughput applications of GROMACS RBFE simulations,

providing a workflow spanning from initial coordinate files to final free energy estimates.

This leads to reproducible and easier conduction of RBFE calculations using GROMACS.

Long-range electrostatics interactions are critical in modeling molecular motions in sim-

ulations. Due to the computational complexity of such long-range interactions, it becomes

challenging to design accurate and efficient methods to describe such interactions. An excel-

lent review of methods for computing the long-range electrostatics interactions in biomolec-

ular simulations can be found here.13

Among a number of existing methods, Particle Mesh Ewald (PME) is perhaps the most

broadly used. It is based on the Ewald approach which is a classic method to exactly calculate

the electrostatic potential14 and is chosen as a starting point for further adjustments for

better efficiency. In Ewald summation, the interaction potential is split into a short-range

term (direct sum) and a long-range term (reciprocal sum). The direct part converges fast

using a fixed cutoff, and the efficiency of the method is determined by the reciprocal part. In

PME, the reciprocal sum is computed by solving Poisson’s equation for a charge distribution

on a mesh via two Fast Fourier transform (FFT) which accelerates the calculation. The PME

method finds a balance between the accuracy and efficiency and is widely used in molecular

simulations. Additionally, a number of other approaches to long-range electrostatics use

similar adaptations of Ewald-based techniques.
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Another popular option to compute electrostatics interactions is Reaction Field (RF).

The RF method only computes the interactions up to a cutoff distance and implicitly treats

any interactions beyond the cutoff in a mean-field manner using an appropriate dielectric

constant. In this way, electrostatics interactions can be calculated efficiently while hopefully

maintaining enough accuracy. However for relatively inhomogeneous systems (e.g., mem-

branes), using RF may introduce artifacts and lead to incorrect modeling of the system. For

example, lattice sum electrostatics can be used to represent effectively infinite membranes

when simulating membrane proteins, but RF requires a continuum treatment of long-range

interactions. Still, RF sees considerable use in the field and can be appealing for suitable

system geometries.

In this work, we compare the performance of PME and RF methods in RBFE calculations.

While the PME method is widely used in RBFE simulations, it is still unclear how the RF

method performs in such calculations.

METHODS

Selected targets. We selected the targets TYK215 and CDK216 for benchmark. For

the TYK2 system (∼ 60000 atoms), 24 perturbations were simulated. Simulations of some

perturbations crashed due to a combined effect of force field parameters, construction of

hybrid topologies and the simulation engine. This issue is beyond the scope of this paper

and will be further explored in the future work. For the larger system CDK2 (∼ 110000

atoms), a smaller set of 6 perturbations was selected to validate the system independence of

the former results. Both targets are part of several RBFE benchmark studies.2,17,18 A table

of successfully simulated perturbations can be found in Table S1, S2, S3, S4, S5.

Molecular Dynamics Simulations. The simulations were performed using GROMACS

(2021-dev-20200320-89f1227-unknown) with a patch optimizing PME performance on GPU

(https://gerrit.gromacs.org/c/gromacs/+/13382).
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For each perturbation, two sets of simulations were prepared: solvated ligands and ligand-

protein complexes. The initial ligand and protein structures were obtained from a previous

published work.9

The ligand was parameterized using Open Force Field version 1.0.0 (codenamed ”Pars-

ley”).19 Hybrid structures and topologies for the ligand pairs were generated using pmx fol-

lowing a single topology approach.11,12 The workflow established a mapping between atoms

of two ligands based on the maximum common substructure and conformational alignment

while minimizing perturbation and stabilizing the system.

The AMBER ff99sb*ILDN force field20–22 was used for protein parameterization. Do-

decahedral boxes were filled with TIP3P explicit solvent model solvated ligand pairs/ligand-

protein complexes and counterions (150 mM NaCl).

For each perturbation, two states were prepared for both in-solution/bound state ligands:

state A and state B, representing ligand 1 and ligand 2, respectively. An energy minimization

was first performed, followed by a 10 ps NVT equilibration at 298K. Then the production

equilibrium simulation (in the NPT ensemble) was performed for 6 ns at 298 K and a pressure

of 1 bar. 80 snapshots were extracted from the production simulation. For each snapshot,

a non-equilibrium transformation from state A to B (and vice versa) was performed during

50 ps. For each perturbation, 3 replicas of the series of simulations described above were

performed leading to a total of 60 ns simulation data to calculate the free energy differences

for the ligands in their in-solution/bound states.

The stochastic dynamics thermostat was used to control the temperature in the simu-

lations. The Parrinello-Rahman barostat23 was applied to keep the pressure constant. All

bond lengths were constrained using the LINCS algorithm.24 The van der Waals interactions

were smoothly switched off between 1.0 and 1.1 nm. A dispersion correction for energy and

pressure was used. The non-bonded interactions for the alchemical transitions were treated

with a modified soft-core potential.25

Two different methods implemented in GROMACS were used to treat long-range electro-
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static interactions: Particle Mesh Ewald (PME) and Reaction Field (RF). For simulations

using PME, a direct space cutoff of 1.1 nm and a Fourier grid spacing of 0.12 nm were used.

For simulations using RF, a dielectric constant (εrf ) of 78.3, the dielectric constant of water

at 298 K was used.26

Both CPU and GPU simulations were performed using PME or RF electrostatics. In the

rest of the paper, we denote CPU-PME, CPU-RF, GPU-PME and GPU-RF to represent

the hardware and methods for long-range electrostatic interactions treatment.

RESULTS

Predicted relative binding free energies from simulations using RF show good

agreement with those from PME. The relative binding free energies (∆∆G) were

calculated for a set of modifications of TYK2 which is also included in a standard test set for

relative free energy calculations (the set commonly referred to as Schrödinger’s ”JACS set”17

from a key paper in JACS on large-scale free energy calculations).2,18 Figure 1 summarizes the

computed values using RF/PME on CPU/GPU. The uncertainty estimates were performed

by 1000 bootstrapping trials and are reported in Figure 1 as x
xhigh
xlow where x is the mean

value, xhigh and xlow indicate 95% confidence intervals. The averaged root-mean-square error

(RMSE) and mean unsigned error (MUE) of ∆∆G for CPU-PME versus CPU-RF are 0.44

and 0.33 kcal/mol and for GPU-PME versus GPU-RF are 0.55, 0.43 kcal/mol, respectively

(Figure 1a-b). A cross-platform (CPU vs GPU) comparison also shows essentially the same

level of agreement between results using RF and PME (Figure 1c-d) suggesting the trend

observed is independent on the hardware.

Simulations using RF are more efficient than using PME. Given that PME and RF

achieve a good level of agreement of calculated ∆∆G values, our focus shifts to computational

efficiency, where RF is generally less computationally demanding than using PME. The

simulation performance (in the unit of ns/day) was analyzed from the 6-ns equilibrium NPT
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Figure 1: Calculated ∆∆G values of TYK2 ligands using RF/PME on CPU/GPU. Overall,
a good agreement is achieved between using PME and RF on CPU/GPU. The uncertainty
estimates are calculated by bootstrapping, using 100 bootstrap samples.

simulation and is summarized in Figure 2 where different colors represent using RF/PME on

CPU/GPU. The uncertainties were estimated using the standard deviations across different

edges. As mentioned in Methods, the simulations were performed in-solution and ligand-

bound state in which 5908 ± 221 atoms and 62290 ± 6 atoms were simulated, respectively.

For the (less costly) in-solution ligand simulations, using RF on CPU is ∼40% faster than

using PME on average (Figure 2a) and is similar to PME when simulated on GPU considering

the uncertainties (Figure 2b). For the more costly bound state simulation, a similar trend is

observed in CPU simulations (Figure 2c). However, using RF on GPU is ∼5% slower than

using PME on average (Figure 2d).

The results from Figure 2 show that using RF is faster than PME in most cases for
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the different system sizes and hardware tested here. It is notable that the GROMACS

version used in these simulations was specifically optimized for PME performance on GPU

(https://gerrit.gromacs.org/c/gromacs/+/13382). Thus, it is not surprising that PME

outperformed RF on GPUs (slightly) in our tests here. However, the difference between

PME and RF on GPU performance is only minor (∼5%). Possibly a similar optimization of

GROMACS for RF on GPUs could yield substantial performance gains.
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Figure 2: Performance difference between using RF/PME on CPU/GPU in TYK2 simula-
tions of (a-b) ligand-only in-solution, (c-d) protein-ligand complex and in CDK2 simulations
of (e-f) ligand-only in-solution, (g-h) protein-ligand complex.

To verify the observed trends in TYK2 simulations, 6 selected edges from CDK2 were

simulated using the same protocol described in METHOD. CDK2 is a larger system than

TYK2 and has 5602 ± 373 and 106908 ± 5 atoms in in-solution and ligand-bound state

simulation, respectively. Similar to the results of TYK2, simulations using RF are also

faster (∼20-40%) than using PME on CPU (Figure 2e,g). Notably, GPU simulations using

RF achieves a similar efficiency to PME (Figure 2f,h) which means even with optimizations,

PME still cannot surpass RF in efficiency (Figure 2d).

Figure 2 shows that using RF is more efficient than PME on CPUs and is comparable

to PME in GPU simulations. This is remarkable given the fact the GROMACS used in
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this work is optimized for PME performance on GPU. RF could perhaps become even more

promising with further optimizations.

On average, the protein-ligand complex simulation of each TYK2 perturbation took 31.1

hours using RF and 43.8 hours using PME on 8 CPUs (∼ 30% performance gain using RF),

with the protocol used here. With same setup, the ligand-only simulation of TYK2 took 3.5

and 4.9 hours using RF and PME, respectively (also ∼ 30% performance gain using RF).

When using 1 GPU, a calculation time of 3.4 hours using RF and 3.1 hours using PME

was needed for protein-ligand complex simulations (∼ 10% performance gain using PME).

In ligand-only simulation on 1 GPU, an average time of 1.1 and 1.2 hours was needed using

RF and PME, respectively (∼ 10% performance gain using RF).

Here, while we find that PME and RF achieve comparable results within uncertainty,

this is with present-day force fields, and may not always be the case in future studies.

It is not too difficult to imagine a scenario where force fields might be optimized for the

best performance with a particular model of long range electrostatics, such as a force field

designed for use with PME, or one for use with RF. Once force fields are tuned for specific

electrostatics treatments, it is reasonable to expect that results might differ in quality if the

electrostatics treatment is changed. To some extent, we already see such tuning taking place

for water models (e.g. the SPC/E, TIP4P-Ew, and TIP5P-E models designed for use with

Ewald-based electrostatics27–31), though not yet for other components of the force field to

our knowledge. Still, results from these water studies indicate that electrostatics treatment,

or at least the switch from cutoff based to lattice-sum electrostatics, impacts bulk properties

enough that the choice of electrostatics treatment should perhaps be considered part of the

force field. So, perhaps future force fields should require a particular choice of long range

electrostatics treatment, and separate Ewald-based and RF-based versions should be fitted.
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CONCLUSION

The treatment of long-range electrostatic interactions is critical for a correct modeling of

(bio)molecular systems in molecular dynamics simulations. Due to the long-range nature

and N2-scaling of electrostatic interactions, they are computationally the most demanding

terms in the force field evaluation. Both PME and RF are popular methods of treating long

range electrostatic interactions. PME is widely used and attempts to find a good balance

between efficiency and accuracy, but we find that RF achieves higher efficiency, although

it may have some limitations in relatively inhomogeneous systems such as for membrane

simulations.

This work is focused on comparing the results and performance of PME and RF for

relative binding free energy calculations. We found the calculated ∆∆G values are in good

agreement using PME and RF whereas simulations using RF are comparable or faster than

PME on both CPU and GPU. Taken the results presented here, we suggest that RF may be a

promising option for relative free energy simulations because , at least in GROMACS, it is less

computationally demanding while retaining comparable accuracy to PME. This advantage

may be particularly helpful in cases where a large number of simulations are needed (e.g., in

the lead optimization stage of the drug discovery process). Thus we recommend free energy

calculations with RF be considered as a viable option, at least for homogeneous systems.
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Notes

All input files for simulations, data and scripts for analysis are freely available at https:

//github.com/MobleyLab/PME-RF-benchmark.
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Table S1: Simulated perturbations of TYK2 (CPU-PME) and the number of particles.

Ligand1 Ligand 2 No. atoms (ligand-only) No. atoms (protein-ligand)
ejm-44 ejm-55 5954 62290
ejm-49 ejm-31 6521 62288
ejm-31 ejm-46 5888 62281
jmc-28 jmc-27 5886 62282
ejm-42 ejm-48 6014 62290
ejm-31 ejm-43 5950 62286
ejm-50 ejm-42 5630 62272
ejm-42 ejm-55 5633 62275
jmc-23 ejm-46 5884 62277
ejm-31 ejm-45 5638 62283
ejm-55 ejm-54 5729 62278
ejm-45 ejm-42 5639 62284
ejm-31 ejm-48 5960 62284
ejm-47 ejm-31 5906 62290
ejm-47 ejm-55 5915 62290
ejm-44 ejm-42 5956 62295
jmc-23 jmc-30 5884 62277
jmc-28 jmc-30 5887 62286
ejm-49 ejm-50 6517 62290
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Table S2: Simulated perturbations of TYK2 (CPU-RF) and the number of particles.

Ligand1 Ligand 2 No. atoms (ligand-only) No. atoms (protein-ligand)
ejm-44 ejm-55 5954 62290
ejm-49 ejm-31 6521 62288
ejm-31 ejm-46 5888 62281
jmc-28 jmc-27 5886 62282
ejm-42 ejm-48 6014 62290
ejm-31 ejm-43 5950 62286
ejm-50 ejm-42 5630 62272
ejm-42 ejm-55 5633 62275
jmc-23 ejm-46 5884 62277
ejm-55 ejm-54 5729 62278
ejm-45 ejm-42 5639 62284
ejm-31 ejm-48 5960 62284
ejm-47 ejm-31 5906 62290
ejm-47 ejm-55 5915 62290
ejm-44 ejm-42 5956 62295
jmc-23 jmc-27 5886 62276
ejm-43 ejm-55 5951 62281
jmc-23 jmc-30 5884 62277
jmc-28 jmc-30 5887 62286
ejm-42 ejm-54 5640 62282
ejm-49 ejm-50 6517 62290
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Table S3: Simulated perturbations of TYK2 (GPU-PME) and the number of particles.

Ligand1 Ligand 2 No. atoms (ligand-only) No. atoms (protein-ligand)
ejm-44 ejm-55 5954 62290
ejm-49 ejm-31 6521 62288
ejm-31 ejm-46 5888 62281
jmc-28 jmc-27 5886 62282
ejm-42 ejm-48 6014 62290
ejm-31 ejm-43 5950 62286
ejm-50 ejm-42 5630 62272
ejm-42 ejm-55 5633 62275
jmc-23 ejm-46 5884 62277
ejm-31 ejm-45 5638 62283
ejm-55 ejm-54 5729 62278
ejm-45 ejm-42 5639 62284
ejm-31 ejm-48 5960 62284
ejm-47 ejm-31 5906 62290
ejm-47 ejm-55 5915 62290
ejm-44 ejm-42 5956 62295
jmc-23 jmc-27 5886 62276
ejm-43 ejm-55 5951 62281
jmc-23 jmc-30 5884 62277
jmc-28 jmc-30 5887 62286
ejm-42 ejm-54 5640 62282
ejm-49 ejm-50 6517 62290
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Table S4: Simulated perturbations of TYK2 (GPU-RF) and the number of particles.

Ligand1 Ligand 2 No. atoms (ligand-only) No. atoms (protein-ligand)
ejm-44 ejm-55 5954 62290
ejm-49 ejm-31 6521 62288
ejm-31 ejm-46 5888 62281
jmc-28 jmc-27 5886 62282
ejm-42 ejm-48 6014 62290
ejm-31 ejm-43 5950 62286
ejm-50 ejm-42 5630 62272
ejm-42 ejm-55 5633 62275
jmc-23 ejm-46 5884 62277
ejm-31 ejm-45 5638 62283
ejm-55 ejm-54 5729 62278
ejm-45 ejm-42 5639 62284
ejm-31 ejm-48 5960 62284
ejm-47 ejm-31 5906 62290
ejm-47 ejm-55 5915 62290
ejm-44 ejm-42 5956 62295
jmc-23 jmc-27 5886 62276
ejm-43 ejm-55 5951 62281
jmc-23 jmc-30 5884 62277
jmc-28 jmc-30 5887 62286
ejm-42 ejm-54 5640 62282
ejm-49 ejm-50 6517 62290

Table S5: Simulated perturbations of CDK2 and the number of particles.

Ligand1 Ligand 2 No. atoms (ligand-only) No. atoms (protein-ligand)
22 1h1r 4978 106892

1oiu 26 5885 106905
26 1h1q 5762 106902
17 1h1q 4987 106904

1oiy 1oi9 5675 106908
17 21 4984 106895
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Graphical TOC Entry

Accuracy: PME ≈ RF Efficiency: RF > PME
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