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Rationale: Low speed and flexibility of most LC-MS/MS approaches in early drug discovery 

delays sample analysis from routine in vivo studies within the same day of measurements. A high-

throughput platform for the rapid quantification of drug compounds in various in vivo assays was 

developed and established in routine bioanalysis. 

Methods: Automated selection of an efficient and adequate LC method was realized by 

autonomous sample qualification for ultrafast batch gradients (9 s/sample) or for fast linear 

gradients (45 s/sample) if samples require chromatography. The hardware and software 

components of our Rapid and Integrated Analysis System (RIAS) were streamlined for increased 

analytical throughput via state-of-the-art automation while keeping high analytical quality. 

Results: Online decision-making was based on a quick assay suitability test (AST) based on a 

small and dedicated sample set evaluated by two different strategies. 84% of the acquired data 

points were within ±30% accuracy and 93% of the deviations between the lower limit of 

quantitation (LLOQ) values were ≤2-fold compared to standard LC-MS/MS systems while speed, 

flexibility and overall automation was significantly improved. 

Conclusions: The developed platform provided an analysis time of only 10 min (batch-mode) and 

50 min (gradient-mode) per standard pharmacokinetic (PK) study (62 injections). Automation, 

data evaluation and results handling were optimized to pave the way for machine learning based 

decision-making regarding the evaluation strategy of the AST. 
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1 Introduction 

Modern drug discovery processes are based on the close collaboration of various disciplines from 

the fields of biology, chemistry and medicine. Already early topics like efficacy and toxicology 

must be addressed in order to diminish potential compound dropouts at later stages and thus the 

rapid assessment of the compound’s pharmacokinetic (PK) and pharmacodynamic (PD) properties 

is key. Since more than two decades the standard technology to analyze samples from PK and PD 

studies is liquid chromatography coupled to triple quadrupole mass spectrometers (LC-MS/MS). 

The progress of mass spectrometry (MS) techniques regarding high-speed approaches for label-

free assays already demonstrated the capabilities and developments towards sub-second sample 

cycles. RapidFire (RF) systems provide a medium throughput capacity with cycle times of 7-20 s, 

including a quick solid-phase enrichment/cleanup step1–6 or in BLAZE-mode 2.5 s via direct 

injection.7 Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) MS with a 

sample throughput of up to 0.4 s/sample8–11 and acoustic droplet ejection open port interface 

(ADE-OPI) MS with up to 6 samples/s are pushing the speed limits even further.12–15 

Over the years, for the measurement of samples from in vitro studies, the RF-based initial RIAS 

system proved the suitability for this type of samples5,6. Reaching further, we aimed at the transfer 

of this technical set-up to the measurement of samples from in vivo studies, albeit slower 

chromatographic steps are often still a required standard procedure. Hence, combining the speed, 

automation and flexibility of the first RIAS system with the option of liquid chromatography (LC) 

for samples from specific in vivo assays offers the chance to accelerate the whole in vivo pipeline. 

However, a fast decision finding is needed to direct samples either to fast detection methods 

without chromatography, or to the slower path with applied LC. 

To cope with the tremendously increasing sample numbers for general LC-MS applications, 

multiple methodologies around the whole LC-MS pipeline were developed in the last decades. The 

utilization of pooling methods for samples,16–18 UTLC,19–21 monolithic columns,18,22,23 multiplexed 

approaches23–27 and finally faster and more sensitive mass spectrometry systems28,29 paved the way 

for automated high-throughput LC-MS setups. 

The goal was to achieve lower sample cycle times and the reduction of human interference with 

the analytical system while being supported by an automated bioanalytical state-of-the-art 

workflow management system. This system should support the entire workflow, from the 

experimental design (e.g. compound selection, sample ID assignment) throughout the in vivo 
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experiments (e.g. compound administration and sampling), sample preparation (e.g. dilution 

factors, calibration and QC samples), analytical processes (e.g. SPE, chromatography, MS 

parameters), and subsequent data evaluation and determination of PK parameters. 

As previously proved, for routine in vitro applications the major key factors, reliability and 

throughput were already addressed by our initial RIAS platform.5,6 This existing platform 

combined a modified high-throughput liquid handling LC-MS/MS system with a customized 

master software merging tailor made databases, data processing and reporting options. The herein 

reported second generation of the RIAS platform (RIAS 2) was developed in order to extend the 

range of applications to in vivo pharmacokinetic and pharmacodynamics samples. The 

development was intended to involve chromatography when needed and to solve the next hurdles 

in lab automation, namely real time monitoring, online decision-making and validation procedures.  

State-of-the-art bioanalytical systems should take advantage of a well-defined system suitability 

test (SST) to check the validity of the MS compound tuning process and the entire sample 

processing procedure in a fully automated way. Various software tools for compound optimization 

and data processing were reported and contributed to a streamlined process.29–31 The RIAS 2 

system provides several functionalities: 96-well and 384-well sample plates handling, switching 

automatically between various ADME assay properties, optional MS compound optimization if 

required and an automatic so called assay suitability test (AST). This AST is crucial to enable a 

robust operation of the RIAS system, while minimizing measurement time via fully automated 

batch/gradient decision. Therefore, a series of test injections was used to determine signal quality 

in both, batch and gradient mode. Two strategies were developed and investigated to compare a 

conventional approach and an advanced approach based on various machine learning (ML) 

tools.33,34 
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2 Experimental 

2.1 Chemicals and materials 

Acetonitrile (gradient grade), Ammonium acetate (p.a.) and ammonia solution (25%, p.a.) were 

purchased from Merck (Darmstadt, Germany), methanol (gradient grade) from J.T. Baker 

(Deventer, Netherlands), formic acid (FA, p.a.) and trifluoroacetic acid (TFA, reagent grade) from 

Sigma Aldrich (St. Louis, MO, USA). Purified water was prepared via Elgastat Maxima HPLC 

(Elga Ltd., High Wycombe Bucks, UK). The 0.8 mL 96 well plates and the “Easy Peel” sealing 

mats were obtained from Thermo Scientific (Hamburg, Germany). An aqueous mobile phase was 

prepared of 99.9% water, 0.09% FA and 0.01% TFA and an organic mobile phase of 99.9% 

acetonitrile–methanol (1:1, V/V), 0.09% FA and 0.01% TFA. 

2.2 Validation experiments 

25 in vivo studies (44 different compounds from Boehringer Ingelheim research projects) were 

randomly selected from our routine drug discovery process to cover a broad range of analytes and 

sample matrices. Typical studies were executed based on sampling from plasma, cerebrospinal 

fluid, brain, and muscle after peroral (p.o.), intravenous (i.v.) or subcutaneous (s.c.) compound 

administration to rats (Wistar Han and Lister Hooded Crl:LIS) and mice (C57BL/6 and NMRI). 

For sample preparation, 5 µL plasma (blank plasma for quality controls and calibration levels) was 

transferred to a V-bottomed 96-well plate (AB-1058, Thermo Scientific). An ECHO 550 (Labcyte, 

San Jose, California) liquid handler was used to spot the respective volume of DMSO stock 

solutions to obtain typical calibration levels between 0.5 nmol/L and 20 µmol/L as well as the 

quality control levels. Protein precipitation was initialized by adding 70 µL acetonitrile–methanol 

(50:50, V/V) via the Microlab STAR liquid handling platform (Hamilton, Bonaduz, Switzerland) 

in mixing mode. After freezing at -20 °C for 10 min and centrifugation at ~3,200 × g for 5 min, 

30 µL of the supernatant was transferred into 270 µL aqueous formic acid (0.1%) placed in a 96-

deepwell plate (AB-0859, Thermo Scientific). After shaking for 1 min on a VARIOMAG 

Monoshake (Thermo Scientific), the plate was centrifuged at ~3,200 × g for 5 min and was ready 

for check-in at the plate-hotel of the RIAS 2 platform. 

2.3 Conventional LC-MS/MS setup for comparison 

The comparative LC-MS/MS systems consisted of a binary pump (G1312A, Agilent), a CTC HTS 

PAL autosampler (CTC Analytics AG, Zwingen, Switzerland), and an API 4000 Triple 
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Quadrupole mass spectrometer (SCIEX, Darmstadt, Germany) which we used as our “workhorse” 

analytical system. 

Samples for the validation experiments were chromatographed via a 2.0 min linear gradient from 

0.1% aqueous formic acid to 0.1% formic acid in acetonitrile–methanol (50:50, V/V) on a Kinetex, 

2.6 µm, 30x2.1 mm C18 column (Phenomenex, Aschaffenburg, Germany). 

2.4 RIAS 2 hardware setup 

The RIAS 2 system (Figure 1) is a further development of our initial RIAS system which was 

described in detail in previous studies.5,6 It is based on the RapidFireTM system (Agilent, 

Waldbronn, Germany) equipped usually with C4 solid phase extraction (SPE) cartridges (4 µL bed 

volume, G9203A, Agilent) for batch mode. In order to achieve maximum sensitivity a 

6500 QTRAP mass spectrometer (SCIEX) was implemented into the system. 

To enable the gradient mode, the isocratic pump 3 of the initial RIAS system (Agilent 1200, 

Agilent, Waldbronn, Germany) was replaced by a low delay volume pump (Agilent 1290). 

Directly before the MS system ion source, a column selection valve (Cheminert C5-1006D, VICI 

International, Schenkon, Switzerland) and a Expedite 10x2.1 mm column packed with Alltima 

5 µm C18 (GRACE, Worms, Germany) was installed (Figure 3d). 

2.5 RIAS 2 hardware operations 

During the whole process of sample sipping, SPE and batch/gradient mode, a constant mobile 

phase flow to the MS system was provided by pump 3 (red flow, Figure 3). The sample aspiration 

time was set to 250 ms to sip the sample into the sampling loop, while the SPE cartridge was 

equilibrated via aqueous mobile phase from pump 1 at a flow rate of 1.5 mL/min (green flow, 

Figure 3a). 

By switching valve 1, the sample portion was transferred to the SPE cartridge by pump 1 via 

aqueous mobile phase. Due to the high mobile phase flow, this 3000 ms solid phase extraction step 

also provided a quick sample clean-up (blue flow, Figure 3b). 

For batch mode and gradient mode, the sample loop and capillaries between valve 1 and valve 2 

were flushed via pump 2 (orange flow, Figure 3c/d). In batch mode, the analytes were eluted for 

3000 ms with a simple step gradient to 100% organic mobile phase via pump 3 (Figure 2) from 

the SPE cartridge. The transfer to the MS system was realized directly via bypass on the column 

selection valve 5 at a flow rate of 1.25 mL/min (Figure 3c). Batch mode resulted in a total cycle 

time of ~9 s/sample. 
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In gradient mode, the analytes were eluted from the SPE cartridge and separated on the C18 

column after switching of valve 5 (Figure 3c). Using a 36 s linear gradient from 95% aqueous to 

100% organic mobile phase (Figure 2) via pump 3 at a reduced flow rate of 0.6 mL/min resulted 

in a total cycle time of ~45 s/sample. 

2.6 Software architecture 

The RIAS master software written in LabVIEW v8.6 and later LabVIEW 15 SP1 (National 

Instruments, Austin, TX) controlled the entire RIAS 2 platform. The modified RapidFireTM as well 

as the customized plate handling robot Katana 450 (Neuronics, Zurich, Switzerland) were 

controlled to pick 96 well or 384 well sample plates from one of the hotels (total capacity: 36 

plates). Likewise, the RIAS software controlled the additional gradient pump and the new column 

selection valve for gradient mode. 

A customized version of DiscoveryQuant 2.3 (Sciex) controlled the 6500 QTRAP mass 

spectrometer (SCIEX). System parameters were optimized for each of the compounds prior to 

sample analysis in MRM mode with nominal resolution (Q1 and Q3 at 0.7 Da). After successful 

compound optimization MS parameters DP, CE, EXP, Q1 and Q3 were stored in our central tuning 

database and can be re-used when the compound enters again the analytical process in another 

study. Tuning parameters from different MS systems and vendors were adjusted empirically by 

the in-house software AIMS (Automated In vivo Mass spectrometry Software) to enable a common 

database and an easy exchange between all instruments and platforms. 

According to the “active barcoding” principle5 the barcode automatically provides all necessary 

information for the analytical process. Active barcoding was used for the processing of in vivo 

samples and facilitated the utilization of the RIAS 2 platform for both, in vivo and in vitro samples 

either in batch mode or in gradient mode. To enable the data input/output of the complete in vivo 

sample pipeline (e.g. sample plate layout, sample lists and parameters for MS data acquisition and 

processing), the master software uses the connection to the AIMS software and its database. To 

process and evaluate the MS data acquired in the high-throughput (HT) mode32 an advanced 

version of the GMSUTM software v.8.4.22 (Gubbs Inc., Alpharetta, GA) was used. This software 

combined sample injection time points (timestamp of valve switching events) with the MS raw 

data and outputs the signal area values corresponding to the respective sample and assay 

parameters. 
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The RIAS 2 hardware and software was based on in-house customized solutions of commercially 

available components from different vendors. Nevertheless, the scientific and automation 

background of the presented investigations can be transferred to any other similar platform. 

2.7 Conventional AST evaluation 

For efficient utilization of the fast batch mode (whenever possible) or gradient mode (as second 

choice), an assay suitability test (AST) was established. Conventional processing algorithms were 

applied to evaluate the AST test injection series (Figure 4). Therefore, the area under the curve 

(AUC) for the main peak of each injection was calculated. Additionally, the AUC of the second 

largest peak in the “Unknown” sample injection of the gradient mode was calculated to trace 

potential interferences of metabolites from the compound of interest. Due to the lack of 

chromatography in the batch mode, the AUC of a metabolite could be erroneously summed up 

with the main peak and thus alter the respective signal. Subsequently, the resulting quality criteria 

were evaluated to determine whether to run batch or gradient mode (Table 1). In this approach, an 

empirical threshold had to be found for each criterion to manage a suitable online decision-making. 

2.8 Online decision-making 

The complete model consists of two signal-processing steps, followed by two machine learning 

(ML) classifiers (Figure 5). In the first pre-processing step, the signal peaks are excised from the 

chronogram to extract the sparse information from the complete signal. Subsequently, a set of 

features was calculated for each injection, including e.g. AUC and maximum peak height. The 

resulting 10 feature vectors were fed into a Random Forrest Classifier, to obtain an intermediate, 

10-dimensional decision vector.33 A subsequent Multi-Layer perceptron makes the final decision 

by mapping this vector to one of the three above-mentioned categories.34  
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3 Results and Discussion 

3.1 Strategy for RIAS 2 

The RIAS 2 platform was introduced as an further development of the initial RIAS platform6 to 

meet all demands regarding in vivo sample processing in a streamlined process. The extension 

from previously demonstrated applications of ADME assays (e.g. metabolic stability, CaCo-2 or 

PAMPA permeability and CYP450 inhibition) including assay type recognition and MS 

compound optimization with the initial RIAS platform under real-life conditions,5 to in vivo assays 

was an important step to take for routine high-throughput bioanalysis. Challenges were the sample 

data input, access to a centralized MS tuning database and the optimization of the whole hardware 

setup. This comprised the expansion to sensitive, selective and fully automated MS data 

acquisition with ML decision-making for the most efficient sample analysis strategy.  

The two investigated decision-making processes, if a sample can be analyzed in the 9 s batch mode, 

the 45 s gradient mode or has to be rejected by RIAS 2 and then is transferred to conventional LC-

MS/MS mode, was the most critical step to achieve overall fast cycle times for all samples in the 

analytical pipeline. Thus, a robust and fast decision-finding has been investigated regarding two 

different approaches. 

3.2 Platform development 

The RIAS 2 platform and its RIAS master software were designed to communicate according to 

handshake principles. Including the plate handling robot, the LC column selection valve, and the 

6500 QTRAP mass spectrometer (Sciex), all hardware was precisely timed and triggered 

according to the sample and assay demands. This data input was realized by the connection to the 

PIDS (in-house in vivo laboratory information management system, LIMS) and AIMS software 

instances. 

Fast in vivo bioanalysis requires an efficient process, including a reliable data handling process: 

Active barcoding triggers not only the hardware settings, but in regard of the different assay 

demands, also the layout of data input and output for MS data evaluation. Thus, a clear distinction 

between tuning and different sample plates just randomly put in the plate hotel after check-in via 

barcode scan was most important to guarantee a stable, unattended operation for up to 36 plates. 

The clear decision if compound tuning parameters were already available in the database or a 

complete compound tuning was necessary was one critical aspect in order to accelerate this 

procedure.6 
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The RIAS software combined all involved software and database instances in an automated and 

user-friendly process, from assay layout and data acquisition parameters to MS data processing 

and evaluation with GMSU (Gubbs Inc.). Moreover, the compound optimization (tuning) or 

sample measurement mode as well as sequences of multiple sample plates and assays can be 

submitted and controlled via remote access. The unattended operation and the general suitability 

and flexibility for various assays and compounds was most important to meet the demands of a 

high-throughput environment. 

For the conventional AST, samples were grouped into PK studies and PD studies. For PK studies 

the aspired LLOQ threshold of a compound was defined to be ≤10 nmol/L to cover the terminal 

phase. Additionally, for PD studies, a sample of the minimal dose of compound administration 

was tested to confirm sufficient sensitivity of the method. Information about the respective studies 

was sourced from AIMS, our central database gathering all workflow information (e.g. dose of 

compound administration, sampling timepoints, dilution factors, calibration levels, and MS 

parameters). Additional criteria on ion suppression were determined: the signal area of the internal 

standard in the “unknown” sample must be between 50% and 150% of its signal area in a 

representative calibration level (C06 ref, Figure 4). To confirm a suitable carry-over state of the 

system, this value was also recognized for each blank sample. 

3.3 Online decision-making via AST 

The most critical time aspect was the decision whether a sample could be processed in batch mode, 

gradient mode or had to be rejected to be measured by conventional LC-MS/MS. To avoid the 

cumbersome and time-consuming tuning process of the conventional AST evaluation, a new 

approach was developed by utilizing machine learning (ML). This approach combines the 

knowledge of the expected measurement signals, used in the pre-processing and feature extraction, 

with the flexibility of ML. The ML approach was trained on an existing, labelled database 

comprising 1873 results of individual in vivo samples. From this set the machine-learning approach 

assigned the samples to batch mode (51%), to gradient mode (34%), and to conventional LC-

MS/MS (none, 15%). This sample set was split randomly in a ML-typical ratio of 80/20 ratio: 1500 

samples were subjected to the ML training and 373 samples to the validation. A classifier was used 

to sort the acquired AST series (Figure 4) into one of the three different categories: batch, gradient 

or none. This fully automated batch/gradient decision was established to implement a robust 

operation of the RIAS system. Subsequently, signal quality of only 10 test injections was required 
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for decision-making to route the sample analysis strategy to batch mode, gradient mode or to send 

the respective sample to conventional LC-MS/MS. Thus, the overall measurement time was 

minimized at still highest data quality. The training results based on the 1500 pre-labelled samples 

are indicated by the confusion matrix (Figure 5). 

Due to the utilization of this prior knowledge-based ML AST (training based on the labelled 

database), this comparatively small number of samples (n = 1500) is sufficient to achieve an 

accuracy of 98% in the prediction of batch measurements and 96% in the prediction of gradient 

measurements. The conventional AST strategy was compared with the ML AST strategy. This 

revealed that 9% of samples rejected to conventional LC-MS/MS by the conventional AST were 

classified correctly for gradient mode by the ML AST. However, manual inspection of these 

differently labelled ASTs showed that >60% of the samples could be measured in the faster batch 

mode and were mislabeled by the conventional algorithm. This demonstrated that the ML based 

approach could model the conventional approach and even improve its performance. 

3.4 Batch mode versus gradient mode 

To enable the gradient mode, the isocratic pump of the initial version of the RIAS platform was 

replaced by a gradient pump and a column selection valve expanded the flexibility to select one of 

up to five columns between the SPE cartridge and the MS system (Figure 3d). The sixth valve 

channel was used as bypass for the batch mode, where all compounds trapped on the SPE cartridge 

were eluted simultaneously into the MS system, resulting in one injection peak for each sample 

(Figure 3c). In the gradient mode, interfering components were separated by chromatography on 

the additional chromatography column resulting in discrete peak shapes for different components 

of one sample. The batch mode with a cycle time of 9 s was clearly preferred whenever possible, 

compared to the 45 s gradient mode. 

For example, a typical p.o. PK study consists of approximately 60 injections (i.e. unknown samples 

from three animals at six timepoints, including quality control samples, calibration samples, and 

blanks) and can be analyzed within 10 min (batch mode) compared to 50 min if fully measured in 

gradient mode. 

3.5 Comparison of the RIAS 2 setup with conventional LC-MS/MS 

A dataset with 944 data points from various in vivo studies was used to compare RIAS 2 and 

conventional LC-MS/MS (Figure 7). From this dataset, 894 data points (94.7%) were successfully 

generated with the RIAS 2 system. The remaining 5.3% data point are linked to samples with c(t)-
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values of terminal phases of pharmacokinetic (PK) studies. This is actually the case when the 

actual systemic concentration of the compound of interest in the animal is very low. The correlation 

between both methods revealed a R² of 0.9863 (Figure 7a) and a Bland-Altman plot visualized the 

797 datapoints (84.4%) within a ±30% inaccuracy limit, 70 datapoints (7.4%) within a ±50%, and 

27 datapoints (2.9%) within a ±100% (Figure 7b). This performance in combination with the fast 

and flexible RIAS 2 pipeline demonstrated the suitability for routine bioanalytical tasks.  
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4 Conclusions 

In terms of sensitivity and selectivity compared to nowadays standard LC-MS/MS setups, the 

RIAS 2 system combines linearity for a wide concentration range (typically >1 nM to <10 µM) of 

complex in vivo samples where selectivity is most important. The standardization of workflows 

for in vivo samples is a key benefit while maintaining flexibility which is required for an agile 

response on various analytical tasks. 

The AIMS (automated in vivo mass spectrometry software) package enables not only an increased 

process stability and high throughput, but also is the base for automated decision-finding to choose 

the most efficient setup of analysis. The demonstrated machine learning techniques for 

interpretation of the AST was only the first step in the direction of an improved data handling and 

feedback loops to further improve the complete RIAS 2 workflows from sampling to data 

interpretation and reporting. Using the current GMSU HT-mode, data processing was already 

eased and accelerated significantly. 

We demonstrated that a ML approach can be used, to decide the measurement strategy for the new 

RIAS 2 system. This allowed to minimize measurement time, while keeping data quality high and 

at the same time to sort out samples, which must be measured in a conventional LC-MS/MS 

system. The proposed ML model avoided the cumbersome tuning of AST evaluation parameters, 

which allows easy and fast adaption of the system to new requirements imposed by new 

compounds. This enormously reduced the time- and cost-intense setup of the system. 

At a high level of automation, the rapid sample analysis of 9 s for batch mode and 45 s for gradient 

mode outperforms conventional LC-MS/MS and other ESI-based techniques with integrated SPE 

or chromatography. The RIAS 2 platform with its “active barcoding” sample plate check-in 

addresses the need for speed in early research projects and therefore significantly contributes to an 

advanced strategy for in vitro and in vivo samples. 

The platform allows “fast-track” bioanalysis, which is of particular interest in the drug discovery 

process especially in pharmacodynamic (PD) experiments where multiple doses are applied. 

Assuming sample preparation, data handling and processing are adapted to the speed of the 

analytical system, the results from the first dosing event are available before the next dosing 

interval. This enables monitoring whether the active principle of the administered compound meets 

the predicted concentration profile and facilitates a dose adjustment if needed. 

  



 
14 

Acknowledgement 

We greatly acknowledge Andreas Barthold, Chris Cantow and the entire Research Bioanalysis 

Team for their outstanding skills in tuning, running the system, pushing the limits, and of course 

performing all the study measurements. But most importantly for their empowerment to strive for 

the next level of automation and efficiency while keeping high data quality in modern Bioanalysis. 

We also gratefully acknowledge the support from our ISEE colleagues of Boehringer Ingelheim, 

namely Max Link and Michael Haas. 

  



 
15 

References 

1. Sawyer WS, Srikumar N, Carver J, et al. High-throughput antibody screening from complex 

matrices using intact protein electrospray mass spectrometry. Proc Natl Acad Sci U S A. 

2020;117(18):9851-9856. 

2. Veach BT, Mudalige TK, Barnes PJ, Baker CA. Quantitative Screening Method for 

Erythromycin and Tylosin in Honey Using RapidFire Mass Spectrometry. J AOAC Int. 

2019;102(1):297-301. 

3. Hutchinson SE, Leveridge MV, Heathcote ML, et al. Enabling lead discovery for histone 

lysine demethylases by high-throughput RapidFire mass spectrometry. J Biomol Screen. 

2012;17(1):39-48. 

4. Wu X, Wang J, Tan L, et al. In vitro ADME profiling using high-throughput RapidFire mass 

spectrometry: cytochrome p450 inhibition and metabolic stability assays. J Biomol Screen. 

2012;17(6):761-772. 

5. Luippold AH, Arnhold T, Jörg W, Krüger B, Süssmuth RD. Application of a rapid and 

integrated analysis system (RIAS) as a high-throughput processing tool for in vitro ADME 

samples by liquid chromatography/tandem mass spectrometry. J Biomol Screen. 

2011;16(3):370-377. 

6. Luippold AH, Arnhold T, Jörg W, Süssmuth RD. An integrated platform for fully automated 

high-throughput LC–MS/MS analysis of in vitro metabolic stability assay samples. Int J Mass 

Spectrom. 2010;296(1-3):1-9. 

7. Bretschneider T, Ozbal C, Holstein M, et al. RapidFire BLAZE-mode is boosting ESI-MS 

toward high-throughput-screening. SLAS Technol. 2019;24(4):386-393. 

8. Simon RP, Winter M, Kleiner C, et al. MALDI-TOF-Based Affinity Selection Mass 

Spectrometry for Automated Screening of Protein-Ligand Interactions at High Throughput. 

SLAS Discov. 2020;26(1):44-57. 

9. Simon RP, Winter M, Kleiner C, et al. MALDI-TOF mass spectrometry-based high-

throughput screening for inhibitors of the cytosolic DNA sensor cGAS. SLAS Discov. 

2020;24(4):372-383. 



 
16 

10. Winter M, Ries R, Kleiner C, et al. Automated MALDI target preparation concept: Providing 

ultra-high-throughput mass spectrometry-based screening for drug discovery. SLAS Technol. 

2017;2(24):209-221. 

11. Haslam C, Hellicar J, Dunn A, et al. The evolution of MALDI-TOF mass spectrometry toward 

ultra-high-throughput screening: 1536-well format and beyond. J Biomol Screen. 

2016;21(2):176-186. 

12. Zhang J, Zhang Y, Liu C, et al. Acoustic ejection/full-scan mass spectrometry analysis for 

high-throughput compound quality control. SLAS Technol. 

2020;https://doi.org/10.1177/2472630320967625. 

13. Häbe TT, Liu C, Covey TR, et al. Ultrahigh-throughput ESI-MS: sampling pushed to six 

samples per second by acoustic ejection mass spectrometry. Anal Chem. 2020;92(18):12242-

12249. 

14. DiRico KJ, Hua W, Liu C, et al. Ultra-high-throughput acoustic droplet ejection-open port 

interface-mass spectrometry for parallel medicinal chemistry. ACS Med Chem Lett. 

2020;11(6):1101-1110. 

15. Liu C, van Berkel GJ, Cox DM, Covey TR. Operational modes and speed considerations of 

an acoustic droplet dispenser for mass spectrometry. Anal Chem. 2020;92(24):15818-15826. 

16. Tolonen A, Petsalo A, Turpeinen M, Uusitalo J, Pelkonen O. In vitro interaction cocktail assay 

for nine major cytochrome P450 enzymes with 13 probe reactions and a single LC/MSMS 

run: analytical validation and testing with monoclonal anti-CYP antibodies. J Mass Spectrom. 

2007;42(7):960-966. 

17. Kim M-J, Kim H, Cha I-J, et al. High-throughput screening of inhibitory potential of nine 

cytochrome P450 enzymes in vitro using liquid chromatography/tandem mass spectrometry. 

Rapid Commun Mass Spectrom. 2005;19(18):2651-2658. 

18. Peng SX, Barbone AG, Ritchie DM. High-throughput cytochrome p450 inhibition assays by 

ultrafast gradient liquid chromatography with tandem mass spectrometry using monolithic 

columns. Rapid Commun Mass Spectrom. 2003;17(6):509-518. 



 
17 

19. Xu R, Manuel M, Cramlett J, Kassel DB. A high throughput metabolic stability screening 

workflow with automated assessment of data quality in pharmaceutical industry. J 

Chromatogr A. 2010;1217(10):1616-1625. 

20. Bateman KP, Kellmann M, Muenster H, Papp R, Taylor L. Quantitative-qualitative data 

acquisition using a benchtop orbitrap mass spectrometer. J. Am. Soc. Mass Spectrom. 

2009;20(8):1441-1450. 

21. Plumb RS, Potts WB, Rainville PD, et al. Addressing the analytical throughput challenges in 

ADME screening using rapid ultra-performance liquid chromatography/tandem mass 

spectrometry methodologies. Rapid Commun Mass Spectrom. 2008;22(14):2139-2152. 

22. Di L, Kerns EH, Hong Y, Kleintop TA, McConnell OJ, Huryn DM. Optimization of a higher 

throughput microsomal stability screening assay for profiling drug discovery candidates. J 

Biomol Screen. 2003;8(4):453-462. 

23. Deng Y, Wu J-T, Lloyd TL, Chi CL, Olah TV, Unger SE. High-speed gradient parallel liquid 

chromatography/tandem mass spectrometry with fully automated sample preparation for 

bioanalysis: 30 seconds per sample from plasma. Rapid Commun Mass Spectrom. 

2002;16(11):1116-1123. 

24. Kassel DB. Applications of high-throughput ADME in drug discovery. Curr Opin Chem Biol. 

2004;8(3):339-345. 

25. Heinig K, Bucheli F. Ultra-fast quantitative bioanalysis of a pharmaceutical compound using 

liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2003;795(2):337-346. 

26. King RC, Miller-Stein C, Magiera DJ, Brann J. Description and validation of a staggered 

parallel high performance liquid chromatography system for good laboratory practice level 

quantitative analysis by liquid chromatography/tandem mass spectrometry. Rapid Commun 

Mass Spectrom. 2002;16(1):43-52. 

27. Janiszewski JS, Rogers KJ, Whalen KM, et al. A high-capacity LC/MS system for the 

bioanalysis of samples generated from plate-based metabolic screening. Anal Chem. 

2001;73(7):1495-1501. 

28. Yu S, Crawford E, Tice J, Musselman B, Wu J-T. Bioanalysis without sample cleanup or 

chromatography: the evaluation and initial implementation of direct analysis in real time 



 
18 

ionization mass spectrometry for the quantification of drugs in biological matrixes. Anal 

Chem. 2009;81(1):193-202. 

29. Rathore R, Corr JJ, Lebre DT, Seibel WL, Greis KD. Extending matrix-assisted laser 

desorption/ionization triple quadrupole mass spectrometry enzyme screening assays to targets 

with small molecule substrates. Rapid Commun Mass Spectrom. 2009;23(20):3293-3300. 

30. Kieltyka K, Zhang J, Li S, et al. A high-throughput bioanalytical platform using automated 

infusion for tandem mass spectrometric method optimization and its application in a metabolic 

stability screen. Rapid Commun Mass Spectrom. 2009;23(11):1579-1591. 

31. Smalley J, Xin B, Olah TV. Increasing high-throughput discovery bioanalysis using 

automated selected reaction monitoring compound optimization, ultra-high-pressure liquid 

chromatography, and single-step sample preparation workflows. Rapid Commun Mass 

Spectrom. 2009;23(21):3457-3464. 

32. Janiszewski JS, Rogers KJ, Whalen KM, et al. A High-capacity LC/MS system for the 

bioanalysis of samples generated from plate-based metabolic screening. Anal. Chem. 

2001;73(7):1495-1501. 

33. Breiman L. Random forests. Mach Learn. 2001;45(1):5-32. 

34. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal 

approximators. Neu Net. 1989;2(5):359-366. 

  



 
19 

Table 1. The quality criteria of the conventional AST evaluation to decide batch mode versus 

gradient mode for the respective compound (CMPD). 

B
at

ch
 c

ri
te

ri
a Lower level of quantification (LLOQ): 

𝐶𝑀𝑃𝐷(𝐵𝑙𝑎𝑛𝑘 1)

𝐶𝑀𝑃𝐷(𝐶06 𝑟𝑒𝑓)
 

Internal standard suppression (ISSUP): 
𝐼𝑆(𝐶06 𝑟𝑒𝑓)

𝐼𝑆(𝑈𝑛𝑘𝑛𝑜𝑤𝑛)
 

Signal to noise ratio (SNR): 
𝐶𝑀𝑃𝐷(𝑈𝑛𝑘𝑛𝑜𝑤𝑛)

𝐶𝑀𝑃𝐷(𝐵𝑙𝑎𝑛𝑘 1)
 

G
ra

d
ie

n
t 

cr
it

er
ia

 

Lower level of quantification (LLOQ): 
𝐶𝑀𝑃𝐷(𝐵𝑙𝑎𝑛𝑘 1)

𝐶𝑀𝑃𝐷(𝐶06 𝑟𝑒𝑓)
 

Internal standard suppression (ISSUP): 
𝐼𝑆(𝐶06 𝑟𝑒𝑓)

𝐼𝑆(𝑈𝑛𝑘𝑛𝑜𝑤𝑛)
 

Side-peak area: 
𝐶𝑀𝑃𝐷(𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑚𝑎𝑖𝑛)

𝐶𝑀𝑃𝐷(𝑈𝑛𝑘𝑛𝑜𝑤𝑛𝑠𝑖𝑑𝑒)
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Figure 1. RIAS 2 components: Rapid-FireTM injection system (a) with additional plate hotel for 

up to 36 sample plates (b) and optional gradient option (c) with HPLC column and selection valve 

(d) for improved selectivity. The state-of-the art mass spectrometer (e) for improved sensitivity 

and the RIAS master software with additional data processing options for high quality of data 

handling and processing (f). 
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Figure 2. Batch versus gradient mode: The direct shift from solvent A to solvent B during batch 

mode using the cartridge (blue) and the gradient shift for separation on the C18 column (red). 
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Figure 3. Illustration of the RIAS 2 sampling, compound trapping and the switching between batch 

mode and gradient mode. The sample is sipped into the sample loop (on valve 1) via vacuum, 

while the SPE cartridge (on valve 2) is equilibrated via pump 1 (a). The aqueous solvent flow from 

pump 1 transfers the sample to the SPE cartridge and eliminates matrix components (green X 

symbol) not trapped by the cartridge (b). Subsequently, the organic solvent from pump 3 elutes 

the trapped compounds towards the MS system while the sample loop and tubing are rinsed via 

pump 2 (c, d). In batch mode, the isocratic solvent flow from pump 3 just passes the column 

selection valve 5 via bypass directly to the MS system, resulting in one single peak (c). In gradient 

mode, valve 5 is switched to the LC column to perform chromatography before the separated 

compounds enter the MS system (d). 
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Figure 4. Exemplary assay suitability test (AST) injection series in batch mode (0–90 s) and 

gradient mode (300–540 s) for the compound (CMPD, blue) and internal standard (IS, orange). 

Each test series was based on five injections: solvent, blank, C06 reference, unknown sample and 

a final blank to check carry over. After batch mode, the column selection valve was switched to 

gradient mode and the same wells were injected again for chromatography on the analytical 

column. 
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Figure 5. Machine Learning (ML) model for AST evaluation: preprocessing stage for injection 

peak extraction to densify the sparse information and to reduce the noise level (a). Feature 

extraction by conventional signal processing (b). Resulting feature vectors were fed into a random 

forest classifier producing one decision for each feature vector (c). After combination to a 10-

dimensonal decision vector, the final decision-making stage was based on a fully connected, multi-

layer, neural network to map decision vectors to one of the three output classes (d). The two ML 

stages (c) and (d) where trained together on an existing, labelled set of AST data (n = 1500). 
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Figure 6. Confusion matrix for the ML based class prediction revealed the suitability for routine 

analysis. The matrix compares the prediction of the model, trained on 1500 pre-labeled samples 

with the prediction of the conventional algorithm. An accuracy of 98% in the prediction of batch 

measurements and 96% in the prediction of gradient measurements were achieved, while 9% of 

the conventionally None labelled samples were classified as Gradient. 
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Figure 7. From an exemplary dataset (944 data points), we achieved reasonable peak signals from 

894 data points (94.7%), while 5.3% of the datapoints were rejected. All of these 50 c(t)-values 

were linked to the terminal phase of PK studies with lowest c(t)-values. Comparison of 

conventional LC-MS/MS to RIAS 2 in batch mode (n = 894) showing R² of 0.9863 (A). The 

qualification limit of ±30% was reached for 84.4% of data points, while 7.4% reached ±50% and 

2.9% were still below ±100%. 


