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This work presents the first implementation of the full optical rotation (OR) tensor at coupled cluster with
single and double excitations (CCSD) level in the modified velocity gauge (MVG) formalism. The CCSD-
MVG OR tensor is origin independent, such that each tensor element could be in principle compared with
experimental measurements on oriented systems. However, such measurements are not available for the
small/medium size molecules that can be treated at CCSD level. Therefore, we compare the CCSD results with
those from two density functionals, B3LYP and CAM-B3LYP, on a test set of 22 chiral molecules. The results
show that the functionals consistently overestimate the CCSD results for the individual tensor components and
for the trace (which is related to the isotropic OR), by 10-20% with CAM-B3LYP and 20-30% with B3LYP.
The data show that the contribution of the electric dipole-magnetic dipole polarizability tensor to the OR
tensor is on average twice as large as that of the electric dipole-electric quadrupole polarizability tensor. The
difficult case of (1S,4S)-(–)-norbornenone also reveals that the evaluation of the former polarizability tensor
is more sensitive than the latter. We attribute the better agreement of CAM-B3LYP with CCSD to the
ability of this functional to better reproduce electron delocalization compared with B3LYP, consistently with
previous reports on isotropic OR. The CCSD-MVG approach allows the computation of reference data of the
full OR tensor, which may be used to test more computationally efficient approximate methods that can be
employed to study realistic models of optically active materials.
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I. INTRODUCTION

Optical rotation (OR) is one of the manifestation
of the optical activity of chiral systems, where the plane
of polarization of light incident onto an active sample
is rotated clockwise or anti-clockwise depending on the
enantiomeric excess.1 This property can be useful for the
assignment of the absolute configuration of a chiral sam-
ple, which is essential for applications in biochemistry
and drug design. Although most measurements and sim-
ulations of optical rotation focus on isotropic systems,
e.g. in solution and in gas phase, it is also interesting to
investigate oriented systems. In fact, for the latter it is
possible to measure each individual element of the ten-
sor, which can provide more information about the prop-
erties of the system.2,3 From the experimental point of
view, such measurements can only be performed on crys-
tals because of the limited intensity of the signal. These
solid-state measurements are still difficult because they
require a very smooth surface to distinguish the optical
rotation signal (circular birefringence) from more intense
signals (linear birefringence), and only a limited amount
of experimental data is available.2,3

Theoretical simulations are of paramount impor-
tance for the correct assignment of the absolute con-
figuration of chiral molecules, and many methods have
been developed mostly based on density functional the-
ory (DFT) and coupled cluster (CC) theory.4–19 However,
the majority of these studies focuses on the isotropic OR
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because these methods were developed for molecules, not
solid materials, and because of the predominance of ex-
perimental data in gas and solution phase. Thus, only
few studies report the full OR tensor.20–24 The simula-
tions of the isotropic OR are less computationally de-
manding than those for the full OR tensor, but they are
also more prone to numerical errors that make the com-
parison with experimental measurements more uncertain
even when highly accurate methods are employed.15 The
former issue is due to the fact that forming the full
OR tensor requires the evaluation of the mixed elec-
tric dipole-magnetic dipole and electric dipole-electric
quadrupole polarizability tensors, while the isotropic OR
only requires the former tensor.25 This is because the
isotropic OR is computed as the trace of the full OR
tensor, which is equal to the trace of the electric dipole-
magnetic dipole polarizability tensor. In other words,
the electric dipole-electric quadrupole polarizability ten-
sor contribution to the full OR tensor is traceless and
does not need to be evaluated. On the other hand, since
the diagonal elements of the OR tensor are signed quan-
tities, their sum is consistently one or two orders of mag-
nitude smaller than their individual values. This means
that a relatively small error in each element may lead to
a significantly larger error in the trace and thus in the
isotropic OR. Therefore, it is desirable to be able to eval-
uate the full OR tensor using highly accurate levels of
theory despite the extra computational effort.

This work presents the implementation of the full
OR tensor at CC level with single and double excita-
tions (CCSD) using the modified velocity gauge (MVG)
formalism.14,16 To the best of our knowledge, this is the
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first report that presents this implementation and cor-
responding numerical results; the only other example we
are aware of where the electric dipole-electric quadrupole
polarizability tensor was evaluated at CC level was in a
study by Crawford and Ruud on Raman optical activity,
but the tensor was evaluated in the length gauge, thus
providing inherently origin dependent results.26 Using
our implementation, we can compare all of the elements
of the OR tensor between CC and DFT methods, and
even decompose the tensor in terms of the electric dipole-
magnetic dipole and electric dipole-electric quadrupole
contributions. Although CCSD can currently be used
only on small/medium size molecules, not amenable to
experimental measurements in a fixed spatial configura-
tion, these results can provide reference data for the as-
sessment of more approximate but more efficient meth-
ods that can be used for comparisons with real oriented
systems.

The paper is organized as follows: the theory for the
evaluation of the OR tensor in the MVG formalism is
described in section II, the details of the calculations are
reviewed in section III, the results of the simulations are
presented in section IV, a discussion of these results and
concluding remarks are reported in section V.

II. THEORY

The oriented Buckingham/Dunn optical activity
tensor B̃ is defined as:20,24,25

B̃αβ =
1

2
[Tr(B)δαβ −Bαβ] (1)

Bαβ =
1

2

⎡
⎢
⎢
⎢
⎢
⎣

βαβ + ββα +
1

3
∑
δ,γ

(εαγδAγ,δβ + εβγδAγ,δα)

⎤
⎥
⎥
⎥
⎥
⎦

(2)

where ε is the Levi-Civita operator, β is the electric
dipole-magnetic dipole polarizability, and A is the elec-
tric dipole-electric quadrupole polarizability:
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are respectively the electric dipole, the magnetic dipole,
and the traceless electric quadrupole operators, with the
position r and gradient ∇ operators implicitly summed
over all the electrons of the molecule. The Greek in-
dices denote Cartesian coordinates, ω is the frequency of
the incident electromagnetic radiation while ∣ψj⟩ and ωj
are the jth excited state wave function and excitation fre-
quency, respectively. We use atomic units throughout the
paper, except when otherwise specified. These definitions
are valid for non-resonant optical activity (ωj /≈ ω) calcu-
lations; resonant optical activity is discussed in greater
detail elsewhere.1,21,25

For isotropic media, the observed optical rotation
(OR) is commonly reported as a normalized quantity in
units of deg [dm (g/mL)]−1, known as specific rotation:

[α]ω =
−(72 × 106)h̵2NAω

2

c2m2
eM

Tr(β) (6)

where β and ω are given in atomic units, h̵ is the reduced
Planck’s constant (J s), NA is Avogadro’s number, c is
the speed of light (m/s), me is the electron rest mass
(kg), and M is the molecular mass (amu). In Eq. 6, we
used the fact that the A contribution to B̃ is traceless
so that Tr(B̃) = Tr(β). Therefore, in OR simulations of
molecules in isotropic media, the A tensor is not evalu-
ated.

On the other hand, for oriented materials, it is pos-
sible to measure the OR along an arbitrary axis, cor-
responding to the various elements of the B̃ tensor.2,3
Thus, it becomes necessary to also compute the A ten-
sor to make meaningful comparisons with experiment.
The formal, sum-over-states definitions of β and A given
in Eqs 3 and 4 are generally not used in practice, due to
their slow rate of convergence.27 Instead, these polariz-
abilities are calculated using linear response (LR) theory,
wherein the electronic density is relaxed with respect to
an external perturbation.14,18–20,28 For instance, the β
tensor is obtained as:

βαβ =
1

ω
⟪µα;mβ⟫ω (7)

The elements of the β and A tensors are ori-
gin dependent, but their combination in the Bucking-
ham/Dunn tensor in Eqs. 1-2 is origin invariant,25 as
it should be for a quantity directly related to an exper-
imental measurement. In the same way, the traces of B̃
and β are also origin invariant. Unfortunately, this desir-
able property is strictly satisfied only when these tensors
are evaluated using the exact wave function. In practical
calculations, approximate methods and finite basis sets
lead to values of the OR tensor that are origin depen-
dent even when the full B̃ tensor is evaluated. For vari-
ational methods such as Hartree-Fock (HF) and Kohn-
Sham density functional theory (DFT), origin invariance
is obtained using London atomic orbitals, also known as
gauge-including atomic orbitals (GIAOs).18,29 However,
GIAOs are not useful for non-variational approaches like
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standard coupled cluster (CC) theory methods. For the
latter, origin invariance for the isotropic OR can be ob-
tained using a different choice of gauge for the electric
dipole. Specifically, one can compute the LR function
using the velocity gauge, where the electric dipole is rep-
resented by the momentum operator, µV = −p:14,16

⟪rα;mβ⟫ω →
i

ω
⟪pα;mβ⟫ω (8)

The two sides in Eq. 8 are equal only for exact methods
or for approximate variational methods with an infinite
basis set, otherwise, the length and velocity gauges rep-
resent distinct approaches to evaluate these tensors and
provide different numerical values of the OR. A compli-
cation for the VG approach is that ⟪pα;mβ⟫0 ≠ 0 for
finite basis sets. Coupled with the ω−2 factor that comes
from Eqs. 7 and 8, this issue leads to an unphysical static
limit for the OR with this choice of gauge. Pedersen et
al. proposed to sidestep the issue by shifting the VG
β tensor (βV ) by an amount equal to the static limit,
an approach that is commonly known as modified veloc-
ity gauge (MVG).16 For variational methods, the MVG
approach is more computationally demanding than the
LG-GIAOs and the latter is usually preferred. However,
for standard CC methods the MVG approach has rep-
resented the only viable way to obtain origin invariant
isotropic OR values, until we recently introduced an ori-
gin invariant formulation of the LG method.30

In order to obtain an origin invariant B̃ tensor at CC
level, one can evaluate the A tensor using the VG electric
dipole operator and the electric quadrupole operator in
the form:
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Similar to Eq. 7:
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which is satisfied for exact calculations, but is only an
approximation in practice. The ω−2 factor in Eq. 10
comes from using the momentum operator twice (once
for the dipole and once for the quadrupole operators).
The βV and AV tensors become:
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but the B̃ tensor remains as in Eqs. 1-2. As for the
length gauge, the tensors in Eqs. 11-12 can be evaluated

with LR methods rather than with these sum-over-states
formulas. The form of the quadrupole operator in Eq.
9 ensures that the origin dependence of the βV and AV

tensors is related to the VG electric dipole-electric dipole
polarizability,31–33 such that these terms cancel out in
the B̃ tensor. The AV tensor computed with finite ba-
sis sets also has an unphysical static limit that needs to
be subtracted out as was the case for the βV tensor.
Therefore, the MVG approach needs to be employed to
evaluate the B̃ tensor correctly, but the result is a fully
origin invariant Buckingham/Dunn tensor.

We implemented the MVG B̃ tensor in
GAUSSIAN34 at CC level with single and double
excitations (CCSD). To the best of our knowledge, this
work presents the first implementation of the origin
invariant B̃ tensor at this level of theory, which can
provide reference data for the comparison with more
approximate methods. Because of the non-Hermitian
nature of the CC Hamiltonian, computing the B̃ ten-
sor requires the evaluation of a set of perturbed CC
amplitudes for each unique Cartesian component of
the perturbation operators at three frequencies: 0, +ω,
and −ω. This results in 9 sets of amplitudes for the
electric dipole, 9 for the magnetic dipole, and 15 for
the electric quadrupole. However, in practice we use
the non-traceless version of the quadrupole operator in
Eq. 9 as available in GAUSSIAN, therefore we have
six independent electric quadrupole terms (leading to
18 sets of pertubed CC amplitudes). In summary, the
CCSD-MVG B̃ tensor requires 36 sets of perturbed
amplitudes (33 if we had used the traceless quadrupole
form). We also implemented the DFT-MVG B̃ tensor for
the comparison discussed in section IV, which was not
available in GAUSSIAN. However, the DFT implemen-
tation is considerably simpler than that for CC, as one
only needs to solve the LR equations for the VG electric
dipole perturbation, and contract the corresponding
perturbed density with the magnetic dipole integrals to
obtain the β tensor and with the electric quadrupole
integrals for the A tensor. Our contribution is limited
to the implementation of the latter contraction, which
was the only piece missing to obtain the full B̃ tensor.
Therefore, computing the DFT-MVG B̃ tensor costs
essentially the same as computing only the βV tensor
as long as the electric dipole perturbation is used in the
LR equations. On the other hand, the evaluation of the
B̃ tensor at CC-MVG level is approximately twice as
expensive as computing just the βV tensor.

III. COMPUTATIONAL DETAILS

The molecules used in the test set are reported in
Figure 1. The geometries were taken from Ref. 35 for
molecules 1 and 2, from Ref. 36 for molecules 3-7, 12, 13,
15, and 18-20, from Ref. 37 for molecules 8-11, 16, and
17, and from Ref. 30 for molecules 14, 21, and 22. The
B̃ calculations were performed with the MVG approach
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FIG. 1. Structures of the molecules in the test set.

as discussed in the previous section at the sodium D line:
589.3 nm, because this is a typical wavelength used in
experiment and it is far from resonance for all molecules.
The OR calculations were performed with three meth-
ods: CCSD, B3LYP,38,39 and CAM-B3LYP.40 The for-
mer functional was chosen as the most popular choice in
quantum chemistry, and the latter because it showed very
good performance in specific rotation calculations.36 The
aug-cc-pVDZ41 basis set was used for the OR calculations
with all methods because it represents a reasonable cost-
accuracy compromise.

We assume that the CCSD results can be used as
reference, and errors are defined with respect to this ref-
erence. Obviously, there is no guarantee that CCSD pro-
vides the results most in agreement with hypothetical
experimental measurements. However, since CC theory
provides a systematically improvable hierarchy of meth-
ods and CCSD is the best we can do at the moment, we
consider it the “theoretical reference”. Furthermore, in
order to simplify the comparison between methods, the
molecules were oriented along the principal axes of their
CCSD-MVG B̃ tensor, and the rotated structures are re-
ported in Tables S1-S22 of the supporting information
(SI). In this way, the off-diagonal elements of this tensor
are zero and the corresponding values for the DFT-MVG
tensor should be rather small. This allows us to con-
centrate our analysis on the diagonal elements of the B̃
tensor and evaluate absolute errors for the off-diagonal el-
ements. We also compare the β and A tensors, which are
not diagonal even at CCSD level, to investigate to what
extent the agreement between levels of theory is similar
for these two components of the full B̃ tensor. All of
these tensors are extensive quantities, but it is better to
compare intensive quantities like the specific rotation in
Eq. 6. Therefore, the correlation plots in section IV use
mass-scaled tensor values:

TMαβ =
Tαβ

M
× 103 (13)

were Tαβ is an element of tensor T in a.u., M is the
molar mass of the molecule in amu, and 103 is a scal-
ing factor used for clarity. The data for the β and A
tensors are reported in terms of their linear combina-
tions to form the B̃ tensor, see Eqs. 1-2, rather than
the actual tensor elements. The Tαβ and M values, to-
gether with the isotropic specific rotation of all molecules
are reported in Tables S23-S32 of the SI. The corre-
lation plots also include linear fits of the data with a
zero-intercept constraint (an achiral molecule has zero
trace with all methods). The fits are evaluated with and
without molecule 14, (1S,4S)-(–)-norbornenone, because
this is a notoriously difficult molecule for optical rotation
calculations.42–44

IV. RESULTS

FIG. 2. B3LYP vs CCSD correlation plots for the mass-
normalized diagonal elements and trace (a.u. ×103) of the
B̃ tensor, see Eq. 13. The linear fit was performed with
(cyan) and without (yellow) molecule 14.

Comparisons of the diagonal elements and trace of
the B̃ tensor between the density functionals and CCSD
are reported in Figures 2-3. For B3LYP, the data falls
fairly well on a straight line for all components and trace,
but the slope is consistently larger than 1, indicating that
this functional tends to overestimate the magnitude of
the values compared to CCSD. The individual tensor ele-
ments (TMαβ in Eq. 13) are spread out over a large range of
positive and negative values, but the spread of their sum
(the Trace plot) is significantly smaller, which confirms
the notion that in general the isotropic OR is consider-
ably smaller than what could be measured for an oriented
system. The big outlier among the data is molecule 14,
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FIG. 3. CAM-B3LYP vs CCSD correlation plots for the mass-
normalized diagonal elements and trace (a.u. ×103) of the B̃
tensor, see Eq. 13. The linear fit was performed with (cyan)
and without (yellow) molecule 14.

as can be seen by the difference in the fit lines in Figure
2 and a comparison of the raw data in Tables S24-S26
in the SI. However, the difference in slope between the
fit lines for the individual tensor elements is considerably
smaller than for the trace, which indicates that the er-
ror propagation for the isotropic OR is larger than that
for the individual tensor elements. The results for CAM-
B3LYP are qualitatively the same as those for B3LYP,
but the agreement with the CCSD results is better for the
former functional. This can already be observed directly
in the correlation plots in Figure 3.

FIG. 4. Slope and R2 correlation parameters of the linear fits
for the diagonal elements of the B̃ tensor including (left-hand
side plots) and excluding (right-hand side plots) molecule 14.

The data for the slope and R2 correlation param-
eter for the linear fits are reported in Figure 4. These
plots indicate that B3LYP tends to overestimate CCSD

by about 20-30% for the individual elements of the B̃
tensor, but significantly more for the trace, at least when
molecule 14 is included. This overestimation goes down
to a consistent 20% without this difficult molecule. The
correlation (R2) also improves when molecule 14 is ex-
cluded. The YY and Trace R2 values are significantly
smaller than the others because the range of values is
smaller, so numerical noise affects the correlation of the
data more significantly. The CAM-B3LYP results are
considerably better than those from B3LYP across the
board. The former functional overestimates CCSD by
10% for the individual tensor elements and very little for
the trace when 14 is not included in the fitting (the bet-
ter agreement for the trace is this time a sign of favorable
cancellation of errors between the tensor elements). The
R2 values are consistently above 0.98 for the individual
tensor elements (-14) but only about 0.94 for the trace,
indicating that the data correlation is worse for the B̃
tensor trace.

FIG. 5. Mean absolute error (MAE) and error standard de-
viation (σ) for the off-diagonal elements of the B̃ tensor in-
cluding (left-hand side plots) and excluding (right-hand side
plots) molecule 14.

The off-diagonal elements of the B̃ tensor cannot be
reported in correlation plots because they are all equal
to zero for CCSD given the choice of orientation of the
molecules. Therefore, in Figure 5 we report the mean
absolute error (MAE) and the error standard deviation
(σ), while the raw data can be found in Tables S25-S26
of the SI. The first thing to notice is that although the
diagonal elements are not exactly zero, their magnitude
is very small compared to that of the diagonal elements.
This further confirms the overall good agreement between
the CCSD and DFT results for the entire B̃ tensor. The
performance of both functionals is comparable, and the
agreement with the CCSD results improves across the
board if molecule 14 is removed from the analysis.

Although the B̃ tensor is diagonal (or quasi-diagonal
for DFT), the contributions from the β and A tensors
are not. Therefore, we can compare the diagonal and off-
diagonal elements in correlation plots, reported in Fig-
ures S1-S4 of the SI. Note that these plots report the
contributions of the β and A tensors to the B̃ tensor
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FIG. 6. Slope and R2 correlation parameters of the linear fits
for the elements of the contributions of the β tensor to the
B̃ tensor, see Eqs. 1-2, including (left-hand side plots) and
excluding (right-hand side plots) molecule 14.

FIG. 7. Slope and R2 correlation parameters of the linear fits
for the elements of the contributions of the A tensor to the
B̃ tensor, see Eqs. 1-2, (left-hand side plots) and excluding
(right-hand side plots) molecule 14.

according to Eqs. 1-2, rather than the individual tensor
elements in Eqs. 11-12. The slope and R2 values for
these fits are collected in Figure 6 for the β tensor and
in Figure 7 for the A tensor. The β tensor results indi-
cate that B3LYP tends to overestimate CCSD by 30% for
the diagonal elements and by 10-25% for the off-diagonal
elements when molecule 14 is included. The R2 values
are consistently large (around or above 0.98) except for
the YY elements (R2 = 0.94). When molecule 14 is not
included in the fitting, the slope decreases by about 5%
points for the diagonal elements but it stays essentially
the same for the off-diagonal elements. The R2 values
improve slightly for all elements, and significantly for the
YY elements, which now are consistent with the other
values at around 0.98. The CAM-B3LYP data show a
better performance than B3LYP in terms of slope, with
an overestimation of CCSD by about 20% for all elements
except XZ, for which the slope is close to 1. The R2 val-
ues are rather close to those for B3LYP, especially when
molecule 14 is excluded from the fitting; the only excep-
tion is again the XZ elements, which are small in value
and more sensitive to numerical noise.

The slope and R2 values of the linear fits for the
A tensor contributions, shown in Figure 7, indicate that
B3LYP does a better job with this tensor than with the
β tensor. In fact, the slope for the diagonal elements
are significantly smaller (by 5-10% points) for the XX
and YY components, and mostly unchanged for the ZZ
component. The R2 values are still very good, in the
0.96-0.98 range. For this tensor there is little difference
between the fits that include or exclude molecule 14, in-
dicating that the issues for this compound are due to the
evaluation of the β tensor. The CAM-B3LYP results are
very close to those for B3LYP both for the slope and R2

values, except again for the XZ elements (for the same
reason discussed in the previous paragraph). This again
points to the fact that the difference between these meth-
ods in the description of the OR of molecule 14 is due
to the β tensor. The fitting data for the off-diagonal el-
ements are very close but not identical to those for the
β tensor, compare the plots in Figures 6-7. This makes
sense because the sum of the contributions of the off-
diagonal elements to the full B̃ tensor almost cancel out,
leading to similar fits. These contributions would can-
cel out completely if the principal axes of the B̃ tensor
in the DFT calculations would perfectly coincide with
those of the CCSD calculations. An interesting observa-
tion, which is hidden in the data fits of Figures 6-7 but
can be noticed in the correlation plots in Figures S1-S4 of
the SI, is that the range of magnitudes for the A tensor
contributions to the diagonal elements of the B̃ tensor is
smaller by a factor of 2 compared to those of the β ten-
sor. This means that about two thirds of the magnitude
of the diagonal elements of the B̃ tensor tends to come
from the β tensor contributions and one third comes from
the A tensor contributions. This relative partitioning is
lost in isotropic OR calculations because the A tensor is
not evaluated as its contribution to the trace of the B̃
tensor is zero. Finally, we note that the slopes of the fit-
ting for the diagonal elements of the B̃ tensor are slightly
smaller than those for the individual contributions of the
β and A tensors, at least for the data without molecule
14, as shown by a comparison of Figures 4, 6, and 7. The
R2 parameters are in the same 0.96-0.98 range. This in-
dicates that there is a partial cancellation of error when
the β and A tensor contributions are added up to form
B̃.

V. DISCUSSION AND CONCLUSIONS

In this work, we present the first implementation of
the full optical rotation tensor, B̃, at CCSD level. The
MVG formalism ensures origin invariance of the tensor,
such that each element is in principle comparable with
experimental measurements of an oriented system. Since
CCSD is applicable only on small/medium size molecules
for which experimental data are not available, we focus on
the comparison of the CCSD results with those obtained
with two density functionals, B3LYP and CAM-B3LYP,
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on a test set of 22 chiral molecules. The results show
an overall good agreement between levels of theory, espe-
cially when the difficult case of (1S,4S)-(–)-norbornenone
(molecule 14 in the test set) is excluded from the analy-
sis. We oriented the molecules along the principal axes of
the CCSD B̃ tensor, so that the tensor is diagonal at this
level of theory and quasi-diagonal for the density func-
tionals. The correlation plots indicate an average over-
estimation of the CCSD results by 20-30% with B3LYP
and 10-20% with CAM-B3LYP with correlation param-
eter R2 > 0.96, see Figure 4. The trace of the B̃ tensor,
which is directly related to the isotropic specific rotation,
is affected by the combination of the errors of the individ-
ual elements such that the slope improves (e.g., becomes
closer to 1 for CAM-B3LYP) but the correlation param-
eter becomes worse (0.94 for CAM-B3LYP). This indi-
cates that although the error cancellation may be overall
favorable passing from the individual diagonal tensor el-
ements to the trace, this trend is not uniform across all
molecules. The overall good agreement between methods
is confirmed by the small errors for the off-diagonal ele-
ments of the B̃ tensor, see Figure 5. These elements at
DFT level are one-two orders of magnitude smaller than
the diagonal elements, which indicates that the principal
axes of the DFT B̃ tensor are reasonably close to those
of the CCSD tensor.

The comparison of the β and A tensor contribu-
tions to the B̃ tensor shows that the A values tend to
be smaller in magnitude than the β values by a factor
of two. The density functionals again overestimate the
CCSD results for both sets of data by about the same
amount, 15-25%, although the CAM-B3LYP results are
consistently better, see Figures 6 and 7. However, the
performance on the individual β and A tensor contribu-
tions is worse than that for the full B̃ tensor (compare
these figures with Figure 4), which points to error can-
cellations when the tensors are combined.

When molecule 14 is included in the analysis, the
agreement between the DFT and CCSD results worsens
for the B̃ and β tensor, but not for the A tensor. This
shows that the issues with the simulations of the opti-
cal activity of this molecules are probably related to the
representation of the response to the magnetic dipole per-
turbation. The CAM-B3LYP results are in better agree-
ment with CCSD than those with B3LYP for the full
OR tensor, which is consistent with previous reports on
the specific rotation of this molecule.36,43,44 This is likely
due to the fact that CCSD and CAM-B3LYP better re-
produce the delocalization of the electron density across
the two chromophoric groups on the molecule compared
to B3LYP. This also explains the better agreement be-
tween CAM-B3LYP and CCSD across the entire test set.
Although we do not explore this issue further in this re-
port, we note that Autschbach and coworkers have shown
that range-separated functionals can provide better opti-
cal activity results when the range-separation parameter
is optimized to reduce the delocalization error.45

In summary, this work provides the first reference

data for the full Buckingham/Dunn OR tensor for ori-
ented systems computed at CC level. It will be interest-
ing to investigate the basis set dependence of the full ten-
sor calculation compared to that of the specific rotation,
which we leave for a future study. Although evaluating
the B̃ tensor is almost twice as expensive as evaluating
only the isotropic specific rotation at this level of theory,
these data can be used as reference for more approximate
but computationally efficient methods used in the study
of oriented systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the geometries
of the test molecules oriented along the principal axes of
the CCSD-MVG B̃ tensor (Tables S1-S22), the molecu-
lar mass and specific rotation for all molecules computed
with all methods (Table S23), all elements of the B̃ ten-
sor for all molecules computed with all methods (Tables
S24-S26), the contributions from the β tensor to the B̃
tensor for all molecules computed with all methods (Ta-
bles S27-S29), the contributions from the A tensor to
the B̃ tensor for all molecules computed with all meth-
ods (Tables S30-S32), and the correlation plots for the
contributions of the β and A tensors to the B̃ tensor
(Figures S1-S4).
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