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Abstract. We report a new multi-GPU capable ab initio Hartree-Fock/density functional theory implementation integrated into the 
open source QUantum Interaction Computational Kernel (QUICK) program. Details on the load balancing algorithms for electron 
repulsion integrals and exchange correlation quadrature across multiple GPUs are described. Benchmarking studies carried out on 
up to 4 GPU nodes, each containing 4 NVIDIA V100-SMX2 type GPUs demonstrate that our implementation is capable of achiev-
ing excellent load balancing and high parallel efficiency. For representative medium to large size protein/organic molecular sys-
tems, the observed efficiencies remained above 86%. The accelerations on NVIDIA A100, P100 and K80 platforms also have real-
ized parallel efficiencies higher than 74%, paving the way for large-scale ab initio electronic structure calculations.  

1. Introduction 

At the dawn of the exascale computing era, multiple graphics 
processing unit (multi-GPU) execution has become inevitable 
for high performance computing applications. Software pack-
ages from various fields such as artificial intelligence1 and 
numerical weather prediction2 are already harvesting the pow-
er of hundreds and thousands of GPUs. While a single GPU is 
capable of performing trillions of floating point operations per 
second outperforming single or even multiple modern central 
processing units (CPUs), properly engineered scientific appli-
cations are able to exploit an enormous amount of computa-
tional power on multi-GPU platforms.  

The power of multi-GPUs has been harnessed into a range of 
traditional computational chemistry tools,3–12 however, only a 
handful of ab initio quantum chemical packages9–13 are among 
them. Meanwhile, with multi-GPU nodes increasingly becom-
ing common in contemporary supercomputer centers, open-
source quantum chemical codes that can fully exploit their 
power are in demand. Perhaps the lack of multi-GPU capable 
quantum chemical packages is mainly due to the complexity 
of load balancing and performance tuning on GPU hardware. 
To fill this void, we have further improved our open source 
quantum chemical package called QUantum Interaction Com-
putational Kernel (QUICK) software14–16 by incorporating 
multi-GPU capabilities. QUICK is capable of performing effi-

cient ab initio Hartree-Fock (HF) and density functional theo-
ry (DFT) energy and gradient calculations. For instance, the 
realized speed-ups for computing B3LYP energy and gradi-
ents of small to medium size molecular systems on a single 
NVIDIA V100 GPU were ca. 30 to 90-fold and 35 to 60-fold 
with respect to a Skylake CPU platform.16 In QUICK, the 
most time-consuming tasks of HF/DFT calculations, electronic 
repulsion integral (ERI), exchange correlation potential (only 
in the case of DFT, XC) and their derivatives are computed on 
the GPU. The ERIs are computed using vertical and horizontal 
recurrence relationships reported by Obara, Saika, Head-
Gordon and Pople (OSHGP algorithm).17,18 The XC contribu-
tions are calculated based on a scheme developed by Pople 
and co-workers.19 In addition to computing the above quanti-
ties, assembling the Fock matrix and gradient vector are also 
done on the GPU.  

Among the few publications found in the literature regarding 
the multi-GPU implementation of ERIs, Ufimtsev and Mar-
tinez’s work9 is perhaps the earliest. In this implementation, 
the Coulomb and exchange ERIs are first organized into two 
matrices in which the rows and column indices correspond to 
bra and ket pairs of primitive integrals. The matrices are then 
sorted based on 1) the angular momentum of each bra and ket 
pair, 2) each pair’s contribution to the Schwarz upper bound. 
Next, different rows of the matrices are cyclically mapped to 
available GPUs such that each GPU computes a subset of the 
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Coulomb and exchange integrals. A similar approach is used 
for parallelizing ERI gradient calculations.13 The observed 
speed-ups using this approach were reasonable, for instance 2 
to 2.8-fold for computing ERIs on 3 GTX280 cards and 3 to 
3.5-fold for computing ERI gradients on 2 GeForce 295GTX 
cards each having 2 graphics processors. A second, but a hy-
brid ERI engine, has been developed by Kussman and Ochsen-
feld,10 and quite recently, a fragmentation based Fock build 
algorithm with dynamic load balancing has been reported by 
Gordon and coworkers.12 In the context of XC parallelization 
on multi-GPUs, Williams-Young et al.11 has documented a 
three level parallelization scheme. In such a scheme, the load 
balancing is achieved by pre-estimating the FLOPs incurred 
by batches of grid points.  

Our multi-GPU implementation consists of the following fea-
tures. The message passing interface (MPI)20 is used to set up 
the calculation and communicate between compute ranks host-
ing GPUs. The ERI workload is statically distributed among 
the GPUs. The XC workload parallelization is performed in 
two stages, with the second being a load rebalancing stage for 
the XC gradients. The next sections of this manuscript are 
organized as follows: In section 2, we briefly revisit some of 
the theoretical concepts essential to describe the implementa-
tion. Since the practical computational implementation of HF 
and DFT methods are not distinct from each other, we focus 
on the Kohn-Sham formalism to drive the discussion. The 
details of the multi-GPU parallelization are then presented in 
section 3. Here we first discuss the important aspects of multi-
GPU programming and present an implementation that fol-
lows this philosophy. In section 4, benchmarking results are 
presented and discussed. The tests provide insight into the 
scaling of the ERI and XC algorithms on several widely used 
NVIDIA GPU types. Finally, in section 5, we conclude our 
discussion by exploring directions for further improvement. 

2. Theory  

In the Kohn-Sham formalism, the total electronic energy (𝐸) 
of a closed shell system within the generalized gradient ap-
proximation (GGA) is given by,19 
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where the first term is the kinetic energy of the electrons, the 
second is the electron-nuclear interaction energy, the third is 
the Coulomb self-interaction energy of the electron densities 
and the fourth is for the exchange correlation energy. Further-
more, the 𝜓! are spatial molecular orbitals, 𝑍% is the charge of 
nuclei A and 𝜌 is the electron density expressed as, 

𝜌 = ∑ |𝜓!|#$
! .     (2) 

In practice, calculation of the energy using equation (1) re-
quires expressing molecular orbitals and electron density in 
terms of atomic orbitals (𝜙*),  

𝜓! =	∑ 𝐶*!𝜙*+
* , 𝜌 = ∑ ∑ ∑ 8𝐶*!9 ∗ 𝐶,!𝜙*𝜙, =$

!
+
,

+
*

∑ 𝑃*,𝜙*𝜙,*, ,     (3) 

where 𝐶*! and 𝐶,! are molecular orbital coefficients and 𝑃*, is 
the density matrix. Substituting equations (3) into (1) and min-
imizing with respect to the molecular orbital coefficients under 
orthonormality constraints leads to a series of linear equations 
represented by the Kohn-Sham matrix (𝐾*,).   

𝐾*, = 𝐻*,(-./ + 𝐽*, +𝐾*,01,    (5) 

Here 𝐻*,(-./ is the one electron operator matrix, 𝐽*, is the Cou-
lomb matrix given by, 

𝐽*, = ∑ 𝑃23(𝜇𝜈|𝜆𝜎)+
23      (6) 

and 𝐾*,01 is the XC potential contribution to the Kohn-Sham 
matrix expressed as,  

𝐾*,01 = ∫ C4546𝜙*𝜙, + %3
45
47
∇𝜌* . ∇(𝜙*𝜙,)F 𝑑𝑟	.  (7) 

Here  𝛾 = |∇𝜌|#.     (8) 

The computationally most expensive task in building the 
Kohn-Sham matrix is computing the ERIs required in equation 
(6). In practice, atomic basis functions are constructed as a 
linear combination of primitive atom centered Cartesian 
Gaussian functions and the contracted ERIs can be written in 
terms of primitive ones.  

(𝜇𝜈|𝜆𝜎) = 	∑ 𝐶*8𝐶,9𝐶2(𝐶3:[𝑎𝑏|𝑐𝑑];<.=   (9) 

Primitive ERIs can be computed and assembled into contract-
ed ERIs using an established algorithm such as OSHGP.17,18 
The second most expensive contribution for constructing the 
Kohn-Sham matrix is calculating the XC potential. Due to the 
complexity of XC functionals, this quantity is obtained numer-
ically, involving the formation of a quadrature grid where 
quantities such as electron densities, value of the basis func-
tions and their gradients are computed at each grid point. 

An expression for the molecular gradients can be obtained 
from equation (1) by differentiating with respect to nuclear 
coordinates. 
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Here 𝑆*, is the overlap matrix, 𝑊*, is the energy weighted 
density matrix and 𝑋*, is a matrix element given by,  

𝑋*, = 𝜙,∇(∇𝜙*)? + (∇𝜙*)(∇𝜙*)?.   (11) 

Similar to equation (5), the most expensive terms in equation 
(10) are computing ERI gradients (second term) and XC gra-
dients (fourth term).  
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Fig. 1. Flowchart depicting the multi-GPU workflow of a DFT geometry optimization calculation. Major and sub steps are denoted by 
purple and light blue color boxes, respectively. Steps indicated by green boxes are performed only on the root compute rank. OPT denotes 
optimization and circle arrows indicate iterative steps. Steps marked with yellow boxes containing “GPU” are performed only on the GPU. 
One electron integrals and gradients (not shown) are asynchronously computed on the CPU during ERI and ERI gradient steps respective-
ly. CPUs remain idle during GPU steps 5c, 6c and 6e.  

3. Implementation 

3.1 Key considerations in multi-GPU programming 

GPUs allow massive data parallel computations in comparison 
to classic CPU platforms. However, their hardware architec-
ture is more complex and one needs a proper understanding of 
the execution and memory models and available multi-GPU 
programming models in order to write an efficient application. 
In the context of execution, GPUs use a single instruction mul-
tiple data paradigm for performing work.21 At the microarchi-
tectural level, the graphics processing chip of a GPU consists 
of a series of streaming multiprocessors. A programmer 
should organize and map the work to threads which are then 
assigned to streaming multiprocessors as thread blocks and 
executed as warps of a certain size (32 for recent architec-
tures). The streaming multiprocessors execute warps by issu-
ing the same instruction for each thread. Therefore, branching 
in the code should be minimized to avoid thread divergence 
which leads to performance penalties. A GPU (device) carries 
its own memory spaces which are physically distinct from the 
CPU (or host) memory.21 The main type, called global 
memory, is the largest and accessible to threads located on all 
streaming multiprocessors. Typically, several GBs of global 
memory is available on a GPU, however, global memory 
transactions suffer from high memory latency. A second type 
of memory called shared memory is available on each stream-
ing multiprocessor, but is relatively small and only accessible 
by the threads being executed on the same streaming multi-
processor. The constant and texture memory are read only 

memory types accessible to all threads. These are available in 
small quantities and the transactions are faster than global 
memory transactions. Additionally, a certain number of regis-
ters is available for threads in the same warp. Register transac-
tions are the fastest, however, their number is very limited. 
Careful usage of these memory spaces is essential to write a 
memory efficient GPU application.  

For setting up a multi-GPU program, at least two main options 
are at one’s disposal.22 The first is to use the CUDA streams, 
in which a single or multiple cores can be used to handle mul-
tiple GPUs in a single node. The second, but rather more com-
plex option, is to employ MPI and allow each compute rank to 
handle a GPU. The latter option has the advantage that it al-
lows to utilize devices from multiple nodes. Furthermore, for 
programs already having MPI based CPU parallel implemen-
tations, the latter only requires a moderate coding effort. In 
MPI based multi-GPU programming, one can employ a root-
worker model and design algorithms to eliminate the commu-
nications between devices. Alternatively, algorithms with de-
vice-device communication can be achieved using CUDA-
aware MPI technology which, however, is not currently popu-
lar among many HPC applications due to the absence of ma-
ture MPI programming and performance models.23 Previously, 
we implemented ERI and XC schemes in a single GPU ver-
sion of QUICK following the previously discussed execution 
and memory models. As detailed below, we implement the 
parallel multi-GPU version adhering to the same philosophy 
and employing the MPI based root-worker model.  
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Fig. 2. Distribution of the ERI workload and thread walking. In the single GPU version, a single CPU core constructs the half ERI matrix 
of a protonated Schiff base (PSB3, top left) and sorts ERIs based on the type, number of primitives and the estimated value. The row and 
column indices of the matrix correspond to bra and ket pairs and the colors denote magnitude of the ERI value. The table on top right indi-
cates the boundaries for different ERI types. In the parallel GPU version, each compute rank prepares and sorts an ERI matrix based on the 
same criteria and additionally, runs a distribution algorithm, excludes bra types (indicated by white vertical strips) thus keeping only a set 
of ERIs that would be computed on the corresponding GPU. See text for details on the distribution algorithm.   

3.2 Parallelizing ERI and ERI gradient schemes  

The existing implementation of the ERI engine in QUICK can 
be mainly divided into four parts.14,15 The first part is com-
prised of several host functions that process molecular and 
basis set information, compute Schwarz cutoff values and 
perform presorting of ERIs. Handling CPU-GPU data transfer 
such as uploading molecular and basis set information, con-
struction of the ERI matrix and downloading the Kohn-Sham 
matrix are also performed by the functions in the first part. In 
the second part, there exist several global kernels (i.e. GPU 
capable functions that can be directly invoked from the host) 
that go through the µ, n, l, s indices and invoke kernels that 
perform the horizontal recurrence relations (HRR) step of the 
OSHGP algorithm. Assembling the Kohn-Sham matrix is also 
performed here. The HRR step is carried out by a set of device 
kernels (GPU capable functions that cannot be directly in-
voked from the host) belonging to the third part. The fourth 
part contains a set of complex machine generated device ker-

nels. These kernels perform the vertical recurrence relations 
(VRR) step.  

To extend the above implementation to multi-GPUs, changes 
are required only for the first two parts. We first assign the 
GPUs to CPU cores (from now on compute ranks) depending 
on their local ranks. Input processing and calculating precom-
putable quantities are done on the root compute rank (see Fig. 
1). The calculated information is then broadcasted to worker 
ranks. Each compute rank uploads molecular and basis set 
information and Schwarz cutoff values to their assigned 
GPUs. The next step is presorting the ERIs. As documented 
previously,15 presorting helps to minimize the thread diver-
gence during ERI computation by ensuring that threads in a 
warp receive the same instructions to the largest possible ex-
tent. In the existing presorting scheme, the four-index ERIs are 
treated as an N2 x N2 matrix problem with horizontal and ver-
tical directions represented by a bra (i.e. [ab|) and ket (i.e. 
|cd]). The elements of such an ERI matrix are organized by 
four different criteria in each dimension. First, ERIs are sepa-
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rated into dense or sparse regions based on the Schwarz cutoff 
value (see Fig. 2). The pairs with values greater than 10-4 fall 
into the dense zone, while the remaining ones fall into the 
sparse. Then, ERIs in each zone are sorted based on their shell 
type, resulting in sub-zones (type-zones) such as ss, sp, ps, etc. 
in the matrix. Third, pairs within each type-zone are sorted 
based on the number of primitive functions creating primitive-
zones. Finally, elements in primitive-zones are sorted based on 
the Schwarz cutoff values. The resulting ERI matrix is used to 
determine the order of ERI calculation by navigating from one 
matrix element to another (called thread-walking). In our mul-
ti-GPU version, this procedure is replicated on each compute 
rank, eliminating the need to broadcast the ERI matrix. At this 
stage, the workload distribution takes place. Focusing on the 
horizontal direction of the ERI matrix, we divide bra types in 
the dense region among compute ranks. More specifically, for 
every compute rank, bins of bra types are created, and the total 
number of items and the primitive functions are tracked. The 
assignment of a given bra is then performed by considering its 
primitive count. The same procedure is repeated for the sparse 
region and the resulting ERI matrices are well balanced in 
terms of elements inside each region and workload of shell 
types (see Fig. 2). Based on the prepared bins, a set of binary 
flags is created for every compute rank and uploaded to the 
global memory of the assigned GPU and the array pointers are 
stored in constant memory. During ERI and ERI gradient 
computation, each thread works on a contracted ERI after 
checking the value of the corresponding binary flag.    

 

Fig. 3. Molecules used for benchmarks in this work. The 
number of atoms is listed in parenthesis. 

  

Table 1. Wall times in seconds for ERI, XC potential, ERI gradient and XC gradient tasks on olestra (453 atoms) at different levels of 
theory on up to 4 GPU nodes.a  

   B3LYP/6-31Gc B3LYP/6-31G**d B3LYP/cc-pVDZe 

GPUs ERIb XCb ERI 
gradient 

XC 
gradient 

ERIb XCb ERI 
gradient 

XC 
gradient 

ERIb XCb ERI 
gradient 

XC 
gradient 

1 510.0 30.0 198.7 187.6 1795.9 67.0 784.4 192.6 11783.9 278.1 3298.4 206.2 

2 254.9 17.2 99.8 95.8 906.7 38.9 393.4 98.7 5941.3 157.0 1652.9 106.1 

4 128.1 11.8 50.2 50.4 457.3 26.0 197.3 52.0 3004.6 102.5 829.5 56.7 

6 87.1 9.2 33.5 32.3 307.7 19.2 132.4 33.5 2131.8 73.8 554.3 37.0 

8 65.7 8.0 25.2 27.4 230.8 17.1 99.4 28.4 1609.9 69.5 416.0 31.7 

10 53.1 7.9 20.2 22.9 185.3 17.8 79.8 23.9 1257.4 67.4 334.8 27.0 

12 44.3 6.7 16.8 18.7 156.1 15.4 66.8 19.5 1049.1 55.9 280.2 21.9 

14 38.2 6.0 14.4 14.1 134.6 13.4 57.8 14.9 898.7 48.8 239.9 17.1 

16 33.8 5.5 12.6 14.0 117.8 12.5 50.4 14.6 790.4 44.7 209.2 16.8 
aEach node has 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2 Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) and 374 GB memory. 
bReported ERI and XC times are the total of 19 iterations for B3LYP/6-31G, 18 iterations for B3LYP/6-31G** and 32 iterations for 
B3LYP/cc-pVDZ. c2131/4962 contracted/primitive functions. d4015/6846 contracted/primitive functions. e4015/9224 contracted/primitive 
functions. 
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Fig. 4. Speed-up of ERI, XC and their gradient calculations for olestra at the B3LYP/6-31G (A), B3LYP/6-31G** (B) and B3LYP/cc-
pVDZ levels of theory on up to 4 GPU nodes. Each node consists of 4 NVIDIA V100-SXM2 type GPUs, 2 Intel Xeon (R) Gold 6248 
CPUs (2.50 GHz) and 374 GB memory per node. Total time is the summation of the reported time components.  

3.3 Parallelization of XC and XC gradient schemes  

The XC potential calculation in the serial GPU implementa-
tion follows a scheme involving three major steps.16 The first 
step performs grid operations. Here the numerical grid is 
formed, weights are computed, and the grid is pruned based on 
the values of the weights. Next, the remaining points are parti-
tioned in space using an octree algorithm. The values of atom 
centered basis and primitive functions are then computed at 
grid points in each spatial bin. The points that have at least one 
significant basis function are retained in the bin, while the rest 
is eliminated. Lists of significant basis and primitive function 
indices are also prepared for each bin and locator maps are 
constructed to facilitate the retrieval of indices from the lists. 
Finally, the grid information, basis and primitive function in-
dex lists and corresponding maps are uploaded to the GPU. In 
the second and third steps, electron densities and the XC po-
tential are computed on the GPU. The potential contributions 
are assembled into the Kohn-Sham matrix residing in global 
memory as they are computed in later steps.  

In our multi-GPU version, the majority of the operations of the 
first step is done on the root rank (see Fig. 1). This includes 
grid generation, weight computation, pruning and the prepara-
tion of the basis/primitive function index lists and maps. The 
time spent on such tasks is considerably small and paralleliza-
tion on multi-GPUs is deemed unnecessary. Prepared data 
structures are then broadcast to the worker compute ranks. All 
ranks then run a load distribution algorithm. Here the bins are 
sorted based on the number of grid points or the product of the 
grid point-primitive function count. Sorted bins are assigned to 
ranks using a round robin algorithm and lists of binary flags 
are created to record the assignment. At this stage, each rank 
picks up the assigned list of binary flags and repacked grid 
points, basis and primitive function lists and locator maps. It is 
important to note that unlike ERI kernels, XC kernels perform 
a large amount of frequent global memory transactions and 
repacking is vital to maintain coalesced memory access pat-
terns and, hence, kernel performance. The ranks then upload 
repacked data to their GPUs. Since each rank independently 
works on a subset of numerical grid points, the kernels per-
forming the second and third steps do not require any changes. 
The computed XC potentials are assembled into Kohn-Sham 
operators maintained by each rank. During a given SCF itera-
tion, ranks download copies of the operator from the GPU and 

send them to the root rank to perform the reduction and opera-
tor diagonalization. The calculation of the XC energy nuclear 
gradients is a two-step procedure implemented in separate 
kernels in the serial GPU version. The first computes the XC 
energy gradients and can be used in the multi-GPU version as 
is. The second, grid weight gradient computation, is only re-
quired for points whose grid weight is not equal to unity and is 
dependent on the XC energy at a given grid point, a quantity 
computed by the former kernel. In the serial version, points are 
filtered on the host and reuploaded to the GPU prior to the 
second kernel launch. Since different ranks in the multi-GPU 
version work on sub-sets of grid points, they may end up with 
unequal number of grid points, thus leading to a workload 
imbalance. Therefore, a load rebalancing step is required after 
the filtering. Here compute ranks communicate with each oth-
er to determine the minimum number of grid points that 
should be transferred to achieve a balanced workload and then 
transfer the data accordingly. Following the rebalancing step, 
the data is uploaded, grid weight gradients are computed and 
assembled into individual gradient vectors. At the end of the 
calculation, the vectors are downloaded, and are reduced in an 
analogous way to the Kohn-Sham operator. 

4. Benchmark Results and Discussion 

4.1 Benchmarking the multi-GPU implementation 

Below we present the benchmarking results of our multi-GPU 
implementation. In past work, we have compared QUICK 
serial CPU, MPI parallel CPU, and single GPU performance 
against another GPU capable quantum chemical code.16 We 
therefore limit current benchmarks to QUICK single- vs multi-
GPU comparisons. Fig. 3 depicts the organic molecules and 
protein systems that we have chosen for our benchmarks. 

First, the performance of B3LYP gradient calculations on mul-
tiple GPUs is analyzed using olestra (C156H278O19, see Fig. 3 
for molecular structure) with 3 different basis sets. The goal 
here is to analyze the parallel efficiency of the ERI, XC and 
their gradient computation tasks with different angular mo-
mentum basis functions and contraction levels. Second, a simi-
lar investigation is carried out using systems of different sizes; 
but with the same basis set, aiming to analyze the impact of 
system size on performance and scalability.  
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Fig. 5. Total speed-up for morphine (40 atoms, 410 basis func-
tions), buckministerfullerene (buckyball, 60 atoms and 900 basis 
functions), valinomycin (168 atoms, 1620 basis functions), ⍺-
contoxin (1m2c, 220 atoms and 2276 basis functions), crambin 
(642 atoms, 6504 basis functions) gradient calculations at 
B3LYP/6-31G** on up to 4 GPU nodes. Each node consists of 4 
NVIDIA V100-SXM2 type GPUs, 2 Intel Xeon (R) Gold 6248 
CPU (2.50 GHz) and 374 GB memory per node.  

The selected platform for both tests includes four GPU nodes 
from the recently assembled Expanse cluster at the San Diego 
Supercomputer Center (SDSC). Each node has four NVIDIA 

Volta V100-SXM2 type GPUs (32 GB) hosted by two 20-core 
Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) with 374 GB 
memory. The nodes are interconnected by 100 GB/s HDR 
InfiniBand technology. The QUICK code was compiled using 
the GNU/8.3.1 compiler tool chain, CUDA/10.2 and 
OpenMPI/4.0.4 with optimization level 2 (-O2). For all calcu-
lations, the density matrix cutoff and XC grid pruning cutoff 
was set to 10-8. The number of CPU cores employed for a cal-
culation was set to the number of GPUs being used. Prior to 
the benchmark runs, performance of different ERI thread 
walking strategies were compared using a set of HF calcula-
tions (see Fig. S1, Table S1) and circular thread walking was 
chosen for the ERI and ERI gradient computation. As docu-
mented previously,15 the sorting procedure results in an ERI 
matrix in which large and small-valued ERIs are most likely 
distributed circularly at the origin or edge of the matrix. The 
fact that circular thread-walking displayed better performance 
over other strategies in the multi-GPU version suggests that 
dummy regions introduced to ERI matrices of individual com-
pute ranks, which results in idle threads, does not cause signif-
icant thread divergence. Based on a second comparison (Table 
S3), numerical grid point count (rather than the product of 
primitive function and grid point count) based XC load bal-
ancing was selected for all benchmarks. This is due to the fact 
that both methods display similar performance.  

 

Table 2. Wall times in seconds for ERI, XC potential, ERI gradient and XC gradient tasks of a water cluster (270 atoms, 2250 basis func-
tions) gradient calculation at PBE0/def2-SVP level of theory (2250/3510 contracted/primitive functions) on up to 4 GPU nodes of V100, 
P100 and K80.a  

   V100 P100 K80 

GPUs ERIb XCb ERI 
gradient 

XC 
gradient 

ERIb XCb ERI 
gradient 

XC 
gradient 

ERIb XCb ERI 
gradient 

XC 
gradient 

1 405.5 30.8 232.0 48.1 645.2 80.1 461.0 96.5 2382.7 565.6 1697.8 723.5 

2 202.0 20.0 116.3 24.9 327.7 42.7 233.2 49.2 1224.5 302.0 859.1 367.2 

4 101.3 11.0 58.6 13.3 169.6 25.6 119.0 26.1 638.6 160.1 436.9 184.5 

6 67.7 8.2 39.3 9.6 117.9 22.1 81.3 18.4 448.1 115.1 297.6 124.1 

8 50.7 7.1 29.6 7.7 92.0 15.2 62.3 13.4 350.3 91.1 227.1 95.9 

10 41.1 6.5 24.0 5.9 76.7 14.0 50.8 10.8 295.9 72.5 185.8 77.1 

12 34.2 5.6 20.0 5.8 66.7 12.7 43.6 10.2 258.0 69.0 157.7 64.5 

14 30.2 5.5 17.6 4.2 59.4 12.6 37.9 8.4 229.5 56.4 137.0 58.1 

16 25.8 5.0 15.3 4.1 54.2 10.3 35.1 8.2 209.9 52.8 122.3 50.1 
aEach V100 node is comprised of 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2 Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) and 374 GB 
memory. P100 nodes are equipped with 4 NVIDIA P100 type GPUs (16 GB), 2 Intel (R) Xeon (R) E5-2680 v4 CPUs (2.4 GHz) and 128 
GB memory. Each K80 node has 4 NVIDIA K80 type GPUs (12 GB), 2 Intel (R) Xeon (R) E5-2680 v3 CPUs (2.5 GHz) and 128 GB 
memory. bReported ERI and XC times are the total of 13 iterations. 
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Fig. 6. Speed-up of ERI, XC and their gradient calculations for a water cluster (270 atoms, 2250 basis functions) at PBE0/def2-SVP level 
of theory on up to 4 GPU nodes of V100 (A), P100 (B) and K80 (C). Each V100 node is comprised of 4 NVIDIA V100-SXM2 type GPUs 
(32 GB), 2 Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) and 374 GB memory. P100 nodes are equipped with 4 NVIDIA P100 type GPUs 
(16 GB), 2 Intel (R) Xeon (R) E5-2680 v4 CPUs (2.4 GHz) and 128 GB memory. Each K80 node has 4 NVIDIA K80 type GPUs (12 GB), 
2 Intel (R) Xeon (R) E5-2680 v3 CPUs (2.5 GHz) and 128 GB memory.   

In Fig. 4, we report the speed-ups (calculated as T(serial)/T(n) 
where T(serial) and T(n) are the wall times on single and n 
GPUs respectively) of the ERI, ERI gradient, XC potential and 
XC gradient calculation for olestra using B3LYP with the 6-
31G, 6-31G** and cc-pVDZ basis sets. The corresponding 
wall times are reported in Table 1, load balancing and MPI 
operation times are reported in Table S4 and the parallel effi-
ciencies (calculated as 1/n * T(serial)/T(n) * 100) are reported 
in Table S6-S8. Three key pieces of information can be im-
mediately obtained from these data. First, the ERI and ERI 
gradient calculations display near-linear strong scaling and 
high parallel efficiency in all cases, suggesting that the imple-
mented load balancing scheme is effective. Second, the XC 
tasks demonstrate a lower, non-linear scaling in speed-up de-
spite the fact that their load balancing remains as impressive as 
that for the ERIs (see Fig. S2). The parallel efficiency for the 
XC potential diminishes with more GPUs; but remains high 
for the XC gradient computation. Careful examination of de-
vice kernels using NVIDIA profiler tools revealed that the 
performance of all ERI kernels is limited by register availabil-
ity and only a single thread block can reside on a streaming 
multiprocessor at a given time. With an increasing number of 
GPUs, more streaming multiprocessors are available for the 
computation resulting in the observed near-linear strong scal-
ing. In contrast, the performance of the XC potential and ener-
gy gradient kernels are limited by global memory transactions, 
while the grid weight gradient kernel, which dominates the XC 
gradient time, is register bound. The reduced kernel efficiency 
in spite of having a balanced workload can be explained by 
GPU starvation. As mentioned previously, the parallelism of 
the XC computation is achieved by assigning numerical grid 
points to threads. In the presence of sufficient active warps, 
such as is the case for 1 or 2 GPUs, better latency hiding can 
be obtained by executing compute operations during the load-
ing of memory and storage. However, achieving such hiding 
becomes difficult with more GPUs since the workload be-
comes lighter. The third piece of information from the first set 
of benchmarks is that the near-linear strong scaling of the total 
performance remains largely unaffected by the lower, non-
linear scaling of the XC potential and energy gradient tasks.  
The total parallel efficiency in all 3 test cases remains greater 
than 88% on up to 16 GPUs. This is due to the fact that XC 
tasks represent only a small fraction of the total time. In all 

cases, the load balancing times were less than 2 s and MPI 
operation times were small (see Table S4). 

In Fig. 5, we report the total speed-up of B3LYP/6-31G** 
gradient calculations (Kohn-Sham operator formation during 
second SCF iteration and gradient computation) for 5 molecular 
systems of different size (see Fig. 3 for structures). The paral-
lel efficiencies and combined total times are reported in Table 
S9 and Table S14 respectively. As anticipated, the larger sys-
tems display better scaling with high parallel efficiency. For 
instance, crambin and 1m2c examples show an efficiency 
greater than 93% on 16 computing ranks. In contrast, for the 
smallest example morphine, the efficiency drops down to 
~53% on 16 ranks. Such a performance decrease is expected 
since the workload becomes lighter in the presence of more 
compute resources. 

4.2 Performance on different microarchitectures 

For all the benchmarks presented so far, we have used 
NVIDIA V100-SXM2 type GPUs. It is also necessary to doc-
ument the performance of the QUICK multi-GPU version on 
other widely used data center cards. For this purpose, we se-
lected 4 NVIDIA P100 and K80 (belonging to Pascal and 
Kepler microarchitectures respectively) GPU nodes from the 
SDSC comet cluster. In Fig. 6 and Table 2, we report the 
speed-ups and wall times for gradient computation for a clus-
ter containing 90 water molecules at the PBE0/def2-SVP level 
of theory. The load balancing and MPI operation times are 
reported in Table S5. The parallel efficiencies are reported in 
Tables S10-S12. At first glance, one notices the highest single 
GPU performance for all tasks on the V100 and the lowest on 
the K80. This trend is expected and consistent with the report-
ed peak FP64 compute power (7.8, 5.3 and 2.9 TFLOPS for 
the V100, P100 and K80, respectively) and memory band-
widths (900, 780 and 480 GB/s for the V100, P100 and K80, 
respectively) for each device.24–26 The best scaling for ERI and 
ERI gradient calculations is also observed on the V100 plat-
form. The associated parallel efficiency is greater than 94%. 
Such scaling slightly diminishes on the P100 and K80 plat-
forms, however, the parallel efficiency remains above 70%. 
Exploring for potential performance improvement, we reeval-
uated the thread walking strategies for the latter platforms (see 
Table S2). The results suggested that circular thread walking 
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is the most suitable as for V100s. For XC tasks, the best scal-
ing is observed on the K80 platform with parallel efficiencies 
>66% and >89% for potential and gradient computations, re-
spectively. This is followed by the efficiencies of P100 and 
then the V100. The different scaling of ERI and XC tasks on 
the 3 platforms must be due to their significant architectural 
differences.24,25,27 The highest overall parallel efficiency 
(>89%) is achieved on the V100 class of GPUs. In addition to 
above platforms, we benchmarked the QUICK multi-GPU 
version on a single NVIDIA DGX A100 node28 equipped with 
8 A100 type GPUs (belonging to recent Ampere microarchi-
tecture).29 Owing to the high peak FP64 compute power, ERI 
and ERI gradient calculations on a single A100 are much fast-
er in comparison to V100 (see Table S15). In contrast, XC 
and XC gradient times remain substantially same. The ob-
served scaling and parallel efficiencies are similar to that of 8 
V100s (see Fig. S3 and Table S13). On all platforms, the load 
balancing and MPI operation times remain considerably small. 

 

5. Conclusions 

We have reported the details of a MPI parallel GPU ab initio 
HF/DFT implementation of the QUICK quantum chemical 
package. Our implementation features static ERI and XC load 
balancing schemes. Dynamic load balancing is employed in 
the XC gradient calculations. Benchmarking against the single 
GPU version on up to 16 GPUs demonstrated near-linear 
strong scaling behavior for ERIs and ERI gradients and lower, 
non-linear scaling for the XC and XC gradients resulting in an 
excellent aggregated parallel efficiency above 86%. Similar 
scaling is observed on A100, P100 and K80 platforms. The 
associated total parallel efficiencies were always greater than 
74%, paving the way for large-scale ab initio electronic struc-
ture calculations. The benchmarks in the current study were 
limited to 4 nodes, which is the maximum allowed per user at 
the SDSC. The performance scaling on more compute nodes 
would be informative. We recommend NVIDIA V100 data 
center GPUs for the latest QUICK version (v21.03). 

The profiling of the ERI and XC kernels has indicated room 
for potential improvement. For the ERI kernels, the current 
bottleneck is the register availability. Reordering load and 
store procedures to reuse available registers and reimplement-
ing large device kernels into smaller kernels may lead to fa-
vorable performance on both serial and multi-GPU versions. 
For the XC kernels, the memory efficiency should be en-
hanced. In this context, increasing the register and shared 
memory usage may be viable strategies.  

Finally, we recently integrated the QUICK serial GPU version 
as a library into the development version of the AMBER mo-
lecular dynamics package30 enabling GPU capable quantum 
mechanics/ molecular mechanics (QM/MM) simulations. The 
integration of the multi-GPU version is currently in progress. 
QUICK version 21.03 can be downloaded from 
https://github.com/merzlab/QUICK under the Mozilla public 
license free of charge. 

ASSOCIATED CONTENT  
Supporting text and Cartesian coordinates of the test molecules. 
This material is available free of charge via the Internet at 
http://pubs.acs.org.  
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