

1

Harnessing the Power of Multi-GPU Acceleration into the Quantum In-
teraction Computational Kernel Program
Madushanka Manathunga†, Chi Jin†, Vinícius Wilian D. Cruzeiro‡,¥, Yipu Miao#, Dawei Mu%, Kamesh Ar-
umugam§, Kristopher Keipert§, Hasan Metin Aktulga¶, Kenneth M. Merz, Jr.†,* and Andreas W. Götz‡,*
†Department of Chemistry and Department of Biochemistry and Molecular Biology, Michigan State University, 578 S. Shaw
Lane, East Lansing, Michigan 48824-1322, United States, ‡San Diego Supercomputer Center, University of California San
Diego, 9500 Gilman Drive, La Jolla, California 92093-0505, United States, ¥Department of Chemistry and Biochemistry, Uni-
versity of California San Diego, La Jolla, CA 92093, United States, #Facebook, 1 Hacker Way, Menlo Park, California 94025,
United States, %National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W Clark
St, Urbana, IL 61801, United States, §NVIDIA Corporation, Santa Clara, CA 95051, ¶Department of Computer Science and
Engineering, Michigan State University, 428 S. Shaw Lane, East Lansing, Michigan 48824-1322, United States.

* Corresponding authors: Kenneth M. Merz, Jr. (merz@chemistry.msu.edu), Andreas W. Götz (agoetz@sdsc.edu)
KEYWORDS: QUICK, Graphics Processing Units, Quantum Chemistry Software, HF, DFT Package

Abstract. We report a new multi-GPU capable ab initio Hartree-Fock/density functional theory implementation integrated into the
open source QUantum Interaction Computational Kernel (QUICK) program. Details on the load balancing algorithms for electron
repulsion integrals and exchange correlation quadrature across multiple GPUs are described. Benchmarking studies carried out on
up to 4 GPU nodes, each containing 4 NVIDIA V100-SMX2 type GPUs demonstrate that our implementation is capable of achiev-
ing excellent load balancing and high parallel efficiency. For representative medium to large size protein/organic molecular sys-
tems, the observed efficiencies remained above 86%. The accelerations on NVIDIA A100, P100 and K80 platforms also have real-
ized parallel efficiencies higher than 74%, paving the way for large-scale ab initio electronic structure calculations.

1. Introduction

At the dawn of the exascale computing era, multiple graphics
processing unit (multi-GPU) execution has become inevitable
for high performance computing applications. Software pack-
ages from various fields such as artificial intelligence1 and
numerical weather prediction2 are already harvesting the pow-
er of hundreds and thousands of GPUs. While a single GPU is
capable of performing trillions of floating point operations per
second outperforming single or even multiple modern central
processing units (CPUs), properly engineered scientific appli-
cations are able to exploit an enormous amount of computa-
tional power on multi-GPU platforms.

The power of multi-GPUs has been harnessed into a range of
traditional computational chemistry tools,3–12 however, only a
handful of ab initio quantum chemical packages9–13 are among
them. Meanwhile, with multi-GPU nodes increasingly becom-
ing common in contemporary supercomputer centers, open-
source quantum chemical codes that can fully exploit their
power are in demand. Perhaps the lack of multi-GPU capable
quantum chemical packages is mainly due to the complexity
of load balancing and performance tuning on GPU hardware.
To fill this void, we have further improved our open source
quantum chemical package called QUantum Interaction Com-
putational Kernel (QUICK) software14–16 by incorporating
multi-GPU capabilities. QUICK is capable of performing effi-

cient ab initio Hartree-Fock (HF) and density functional theo-
ry (DFT) energy and gradient calculations. For instance, the
realized speed-ups for computing B3LYP energy and gradi-
ents of small to medium size molecular systems on a single
NVIDIA V100 GPU were ca. 30 to 90-fold and 35 to 60-fold
with respect to a Skylake CPU platform.16 In QUICK, the
most time-consuming tasks of HF/DFT calculations, electronic
repulsion integral (ERI), exchange correlation potential (only
in the case of DFT, XC) and their derivatives are computed on
the GPU. The ERIs are computed using vertical and horizontal
recurrence relationships reported by Obara, Saika, Head-
Gordon and Pople (OSHGP algorithm).17,18 The XC contribu-
tions are calculated based on a scheme developed by Pople
and co-workers.19 In addition to computing the above quanti-
ties, assembling the Fock matrix and gradient vector are also
done on the GPU.

Among the few publications found in the literature regarding
the multi-GPU implementation of ERIs, Ufimtsev and Mar-
tinez’s work9 is perhaps the earliest. In this implementation,
the Coulomb and exchange ERIs are first organized into two
matrices in which the rows and column indices correspond to
bra and ket pairs of primitive integrals. The matrices are then
sorted based on 1) the angular momentum of each bra and ket
pair, 2) each pair’s contribution to the Schwarz upper bound.
Next, different rows of the matrices are cyclically mapped to
available GPUs such that each GPU computes a subset of the

2

Coulomb and exchange integrals. A similar approach is used
for parallelizing ERI gradient calculations.13 The observed
speed-ups using this approach were reasonable, for instance 2
to 2.8-fold for computing ERIs on 3 GTX280 cards and 3 to
3.5-fold for computing ERI gradients on 2 GeForce 295GTX
cards each having 2 graphics processors. A second, but a hy-
brid ERI engine, has been developed by Kussman and Ochsen-
feld,10 and quite recently, a fragmentation based Fock build
algorithm with dynamic load balancing has been reported by
Gordon and coworkers.12 In the context of XC parallelization
on multi-GPUs, Williams-Young et al.11 has documented a
three level parallelization scheme. In such a scheme, the load
balancing is achieved by pre-estimating the FLOPs incurred
by batches of grid points.

Our multi-GPU implementation consists of the following fea-
tures. The message passing interface (MPI)20 is used to set up
the calculation and communicate between compute ranks host-
ing GPUs. The ERI workload is statically distributed among
the GPUs. The XC workload parallelization is performed in
two stages, with the second being a load rebalancing stage for
the XC gradients. The next sections of this manuscript are
organized as follows: In section 2, we briefly revisit some of
the theoretical concepts essential to describe the implementa-
tion. Since the practical computational implementation of HF
and DFT methods are not distinct from each other, we focus
on the Kohn-Sham formalism to drive the discussion. The
details of the multi-GPU parallelization are then presented in
section 3. Here we first discuss the important aspects of multi-
GPU programming and present an implementation that fol-
lows this philosophy. In section 4, benchmarking results are
presented and discussed. The tests provide insight into the
scaling of the ERI and XC algorithms on several widely used
NVIDIA GPU types. Finally, in section 5, we conclude our
discussion by exploring directions for further improvement.

2. Theory

In the Kohn-Sham formalism, the total electronic energy (𝐸)
of a closed shell system within the generalized gradient ap-
proximation (GGA) is given by,19

𝐸 =	∑ %𝜓!| −
"
#
∇#|𝜓!*$

! −∑ 𝑍% ∫𝜌(𝑟)|𝑟 − 𝑟%|&"𝑑𝑟$'()
% +

"
#∬𝜌(𝑟")|𝑟" − 𝑟#|&"𝜌(𝑟#)𝑑𝑟"𝑑𝑟# + ∫𝑓(𝜌(𝑟), ∇𝜌(𝑟))𝑑𝑟 (1)

where the first term is the kinetic energy of the electrons, the
second is the electron-nuclear interaction energy, the third is
the Coulomb self-interaction energy of the electron densities
and the fourth is for the exchange correlation energy. Further-
more, the 𝜓! are spatial molecular orbitals, 𝑍% is the charge of
nuclei A and 𝜌 is the electron density expressed as,

𝜌 = ∑ |𝜓!|#$
! . (2)

In practice, calculation of the energy using equation (1) re-
quires expressing molecular orbitals and electron density in
terms of atomic orbitals (𝜙*),

𝜓! =	∑ 𝐶*!𝜙*+
* , 𝜌 = ∑ ∑ ∑ 8𝐶*!9 ∗ 𝐶,!𝜙*𝜙, =$

!
+
,

+
*

∑ 𝑃*,𝜙*𝜙,*, , (3)

where 𝐶*! and 𝐶,! are molecular orbital coefficients and 𝑃*, is
the density matrix. Substituting equations (3) into (1) and min-
imizing with respect to the molecular orbital coefficients under
orthonormality constraints leads to a series of linear equations
represented by the Kohn-Sham matrix (𝐾*,).

𝐾*, = 𝐻*,(-./ + 𝐽*, +𝐾*,01, (5)

Here 𝐻*,(-./ is the one electron operator matrix, 𝐽*, is the Cou-
lomb matrix given by,

𝐽*, = ∑ 𝑃23(𝜇𝜈|𝜆𝜎)+
23 (6)

and 𝐾*,01 is the XC potential contribution to the Kohn-Sham
matrix expressed as,

𝐾*,01 = ∫ C4546𝜙*𝜙, + %3
45
47
∇𝜌* . ∇(𝜙*𝜙,)F 𝑑𝑟	. (7)

Here 𝛾 = |∇𝜌|#. (8)

The computationally most expensive task in building the
Kohn-Sham matrix is computing the ERIs required in equation
(6). In practice, atomic basis functions are constructed as a
linear combination of primitive atom centered Cartesian
Gaussian functions and the contracted ERIs can be written in
terms of primitive ones.

(𝜇𝜈|𝜆𝜎) = 	∑ 𝐶*8𝐶,9𝐶2(𝐶3:[𝑎𝑏|𝑐𝑑];<.= (9)

Primitive ERIs can be computed and assembled into contract-
ed ERIs using an established algorithm such as OSHGP.17,18
The second most expensive contribution for constructing the
Kohn-Sham matrix is calculating the XC potential. Due to the
complexity of XC functionals, this quantity is obtained numer-
ically, involving the formation of a quadrature grid where
quantities such as electron densities, value of the basis func-
tions and their gradients are computed at each grid point.

An expression for the molecular gradients can be obtained
from equation (1) by differentiating with respect to nuclear
coordinates.

∇%𝐸 = ∑ 𝑃*,8∇%𝐻*,(-./9 +
"
#
∑ 𝑃*,𝑃23∇%(𝜇𝜈|𝜆𝜎) −+
*,23

+
*,

∑ 𝑊*,8∇%𝑆*,9+
, − 4∑ ∑ 𝑃, ∫ C

45
46
𝜙,∇𝜙* ++

,
>
*

𝑋*, %
45
47
∇𝜌*F 𝑑𝑟. (10)

Here 𝑆*, is the overlap matrix, 𝑊*, is the energy weighted
density matrix and 𝑋*, is a matrix element given by,

𝑋*, = 𝜙,∇(∇𝜙*)? + (∇𝜙*)(∇𝜙*)?. (11)

Similar to equation (5), the most expensive terms in equation
(10) are computing ERI gradients (second term) and XC gra-
dients (fourth term).

3

Fig. 1. Flowchart depicting the multi-GPU workflow of a DFT geometry optimization calculation. Major and sub steps are denoted by
purple and light blue color boxes, respectively. Steps indicated by green boxes are performed only on the root compute rank. OPT denotes
optimization and circle arrows indicate iterative steps. Steps marked with yellow boxes containing “GPU” are performed only on the GPU.
One electron integrals and gradients (not shown) are asynchronously computed on the CPU during ERI and ERI gradient steps respective-
ly. CPUs remain idle during GPU steps 5c, 6c and 6e.

3. Implementation

3.1 Key considerations in multi-GPU programming

GPUs allow massive data parallel computations in comparison
to classic CPU platforms. However, their hardware architec-
ture is more complex and one needs a proper understanding of
the execution and memory models and available multi-GPU
programming models in order to write an efficient application.
In the context of execution, GPUs use a single instruction mul-
tiple data paradigm for performing work.21 At the microarchi-
tectural level, the graphics processing chip of a GPU consists
of a series of streaming multiprocessors. A programmer
should organize and map the work to threads which are then
assigned to streaming multiprocessors as thread blocks and
executed as warps of a certain size (32 for recent architec-
tures). The streaming multiprocessors execute warps by issu-
ing the same instruction for each thread. Therefore, branching
in the code should be minimized to avoid thread divergence
which leads to performance penalties. A GPU (device) carries
its own memory spaces which are physically distinct from the
CPU (or host) memory.21 The main type, called global
memory, is the largest and accessible to threads located on all
streaming multiprocessors. Typically, several GBs of global
memory is available on a GPU, however, global memory
transactions suffer from high memory latency. A second type
of memory called shared memory is available on each stream-
ing multiprocessor, but is relatively small and only accessible
by the threads being executed on the same streaming multi-
processor. The constant and texture memory are read only

memory types accessible to all threads. These are available in
small quantities and the transactions are faster than global
memory transactions. Additionally, a certain number of regis-
ters is available for threads in the same warp. Register transac-
tions are the fastest, however, their number is very limited.
Careful usage of these memory spaces is essential to write a
memory efficient GPU application.

For setting up a multi-GPU program, at least two main options
are at one’s disposal.22 The first is to use the CUDA streams,
in which a single or multiple cores can be used to handle mul-
tiple GPUs in a single node. The second, but rather more com-
plex option, is to employ MPI and allow each compute rank to
handle a GPU. The latter option has the advantage that it al-
lows to utilize devices from multiple nodes. Furthermore, for
programs already having MPI based CPU parallel implemen-
tations, the latter only requires a moderate coding effort. In
MPI based multi-GPU programming, one can employ a root-
worker model and design algorithms to eliminate the commu-
nications between devices. Alternatively, algorithms with de-
vice-device communication can be achieved using CUDA-
aware MPI technology which, however, is not currently popu-
lar among many HPC applications due to the absence of ma-
ture MPI programming and performance models.23 Previously,
we implemented ERI and XC schemes in a single GPU ver-
sion of QUICK following the previously discussed execution
and memory models. As detailed below, we implement the
parallel multi-GPU version adhering to the same philosophy
and employing the MPI based root-worker model.

Setup XC workload

Setup multi-GPU
1

Assemble Gradient
vector

Setup ERI workload

SCF: Assemble
operator

Delete common values
& DFT grid

Finalize

3

4

5

OPT

6

7

8

Process input
2

Distribute XC
workload

Run octree, prescreen
basis functions, broadcast

a b
Repack

distributed info Upload to GPU

c d

Construct ERI
matrix, sort

Calculate & broadcast
precomputable quantities

a b
Distribute ERI

workload Upload to GPU

c d

Upload/reset
operator

a
Compute

ERIs
Compute

XC potential

b c
Download
operator

Reduce
operator

d e

Upload grad
vector

a
Compute

ERI gradients
Compute

XC ene grad

b c
Rebalance

XC workload

d

Reduce
grad vector

Download
grad vector

g f
Compute grid
weight grad

e

GPU GPU

GPU GPU

GPU

4

Fig. 2. Distribution of the ERI workload and thread walking. In the single GPU version, a single CPU core constructs the half ERI matrix
of a protonated Schiff base (PSB3, top left) and sorts ERIs based on the type, number of primitives and the estimated value. The row and
column indices of the matrix correspond to bra and ket pairs and the colors denote magnitude of the ERI value. The table on top right indi-
cates the boundaries for different ERI types. In the parallel GPU version, each compute rank prepares and sorts an ERI matrix based on the
same criteria and additionally, runs a distribution algorithm, excludes bra types (indicated by white vertical strips) thus keeping only a set
of ERIs that would be computed on the corresponding GPU. See text for details on the distribution algorithm.

3.2 Parallelizing ERI and ERI gradient schemes

The existing implementation of the ERI engine in QUICK can
be mainly divided into four parts.14,15 The first part is com-
prised of several host functions that process molecular and
basis set information, compute Schwarz cutoff values and
perform presorting of ERIs. Handling CPU-GPU data transfer
such as uploading molecular and basis set information, con-
struction of the ERI matrix and downloading the Kohn-Sham
matrix are also performed by the functions in the first part. In
the second part, there exist several global kernels (i.e. GPU
capable functions that can be directly invoked from the host)
that go through the µ, n, l, s indices and invoke kernels that
perform the horizontal recurrence relations (HRR) step of the
OSHGP algorithm. Assembling the Kohn-Sham matrix is also
performed here. The HRR step is carried out by a set of device
kernels (GPU capable functions that cannot be directly in-
voked from the host) belonging to the third part. The fourth
part contains a set of complex machine generated device ker-

nels. These kernels perform the vertical recurrence relations
(VRR) step.

To extend the above implementation to multi-GPUs, changes
are required only for the first two parts. We first assign the
GPUs to CPU cores (from now on compute ranks) depending
on their local ranks. Input processing and calculating precom-
putable quantities are done on the root compute rank (see Fig.
1). The calculated information is then broadcasted to worker
ranks. Each compute rank uploads molecular and basis set
information and Schwarz cutoff values to their assigned
GPUs. The next step is presorting the ERIs. As documented
previously,15 presorting helps to minimize the thread diver-
gence during ERI computation by ensuring that threads in a
warp receive the same instructions to the largest possible ex-
tent. In the existing presorting scheme, the four-index ERIs are
treated as an N2 x N2 matrix problem with horizontal and ver-
tical directions represented by a bra (i.e. [ab|) and ket (i.e.
|cd]). The elements of such an ERI matrix are organized by
four different criteria in each dimension. First, ERIs are sepa-

Single

GPU 1 GPU 2 GPU 3
Parallel

B3LYP/6-31G(2df,2pd)

PSB3

Zone i+j Range

Dense

0 0-401
1 402-1035
2 1036-1725
3 1726-2204
4 2205-2441
5 2442-2523
6 2523-2539

Sparse

0 2540-2666
1 2667-2862
2 2863-3091
3 3092-3246
4 3247-3325
5 3326-3343
6 3344-3347ss sp ps sd

6*6 6*3

ss
3*6 3*3 6*1 1*6 3*1 1*3 1*1

Dense

Sparse

Thread walking

5

rated into dense or sparse regions based on the Schwarz cutoff
value (see Fig. 2). The pairs with values greater than 10-4 fall
into the dense zone, while the remaining ones fall into the
sparse. Then, ERIs in each zone are sorted based on their shell
type, resulting in sub-zones (type-zones) such as ss, sp, ps, etc.
in the matrix. Third, pairs within each type-zone are sorted
based on the number of primitive functions creating primitive-
zones. Finally, elements in primitive-zones are sorted based on
the Schwarz cutoff values. The resulting ERI matrix is used to
determine the order of ERI calculation by navigating from one
matrix element to another (called thread-walking). In our mul-
ti-GPU version, this procedure is replicated on each compute
rank, eliminating the need to broadcast the ERI matrix. At this
stage, the workload distribution takes place. Focusing on the
horizontal direction of the ERI matrix, we divide bra types in
the dense region among compute ranks. More specifically, for
every compute rank, bins of bra types are created, and the total
number of items and the primitive functions are tracked. The
assignment of a given bra is then performed by considering its
primitive count. The same procedure is repeated for the sparse
region and the resulting ERI matrices are well balanced in
terms of elements inside each region and workload of shell
types (see Fig. 2). Based on the prepared bins, a set of binary
flags is created for every compute rank and uploaded to the
global memory of the assigned GPU and the array pointers are
stored in constant memory. During ERI and ERI gradient
computation, each thread works on a contracted ERI after
checking the value of the corresponding binary flag.

Fig. 3. Molecules used for benchmarks in this work. The
number of atoms is listed in parenthesis.

Table 1. Wall times in seconds for ERI, XC potential, ERI gradient and XC gradient tasks on olestra (453 atoms) at different levels of
theory on up to 4 GPU nodes.a

 B3LYP/6-31Gc B3LYP/6-31G**d B3LYP/cc-pVDZe

GPUs ERIb XCb ERI
gradient

XC
gradient

ERIb XCb ERI
gradient

XC
gradient

ERIb XCb ERI
gradient

XC
gradient

1 510.0 30.0 198.7 187.6 1795.9 67.0 784.4 192.6 11783.9 278.1 3298.4 206.2

2 254.9 17.2 99.8 95.8 906.7 38.9 393.4 98.7 5941.3 157.0 1652.9 106.1

4 128.1 11.8 50.2 50.4 457.3 26.0 197.3 52.0 3004.6 102.5 829.5 56.7

6 87.1 9.2 33.5 32.3 307.7 19.2 132.4 33.5 2131.8 73.8 554.3 37.0

8 65.7 8.0 25.2 27.4 230.8 17.1 99.4 28.4 1609.9 69.5 416.0 31.7

10 53.1 7.9 20.2 22.9 185.3 17.8 79.8 23.9 1257.4 67.4 334.8 27.0

12 44.3 6.7 16.8 18.7 156.1 15.4 66.8 19.5 1049.1 55.9 280.2 21.9

14 38.2 6.0 14.4 14.1 134.6 13.4 57.8 14.9 898.7 48.8 239.9 17.1

16 33.8 5.5 12.6 14.0 117.8 12.5 50.4 14.6 790.4 44.7 209.2 16.8
aEach node has 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2 Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) and 374 GB memory.
bReported ERI and XC times are the total of 19 iterations for B3LYP/6-31G, 18 iterations for B3LYP/6-31G** and 32 iterations for
B3LYP/cc-pVDZ. c2131/4962 contracted/primitive functions. d4015/6846 contracted/primitive functions. e4015/9224 contracted/primitive
functions.

6

Fig. 4. Speed-up of ERI, XC and their gradient calculations for olestra at the B3LYP/6-31G (A), B3LYP/6-31G** (B) and B3LYP/cc-
pVDZ levels of theory on up to 4 GPU nodes. Each node consists of 4 NVIDIA V100-SXM2 type GPUs, 2 Intel Xeon (R) Gold 6248
CPUs (2.50 GHz) and 374 GB memory per node. Total time is the summation of the reported time components.

3.3 Parallelization of XC and XC gradient schemes

The XC potential calculation in the serial GPU implementa-
tion follows a scheme involving three major steps.16 The first
step performs grid operations. Here the numerical grid is
formed, weights are computed, and the grid is pruned based on
the values of the weights. Next, the remaining points are parti-
tioned in space using an octree algorithm. The values of atom
centered basis and primitive functions are then computed at
grid points in each spatial bin. The points that have at least one
significant basis function are retained in the bin, while the rest
is eliminated. Lists of significant basis and primitive function
indices are also prepared for each bin and locator maps are
constructed to facilitate the retrieval of indices from the lists.
Finally, the grid information, basis and primitive function in-
dex lists and corresponding maps are uploaded to the GPU. In
the second and third steps, electron densities and the XC po-
tential are computed on the GPU. The potential contributions
are assembled into the Kohn-Sham matrix residing in global
memory as they are computed in later steps.

In our multi-GPU version, the majority of the operations of the
first step is done on the root rank (see Fig. 1). This includes
grid generation, weight computation, pruning and the prepara-
tion of the basis/primitive function index lists and maps. The
time spent on such tasks is considerably small and paralleliza-
tion on multi-GPUs is deemed unnecessary. Prepared data
structures are then broadcast to the worker compute ranks. All
ranks then run a load distribution algorithm. Here the bins are
sorted based on the number of grid points or the product of the
grid point-primitive function count. Sorted bins are assigned to
ranks using a round robin algorithm and lists of binary flags
are created to record the assignment. At this stage, each rank
picks up the assigned list of binary flags and repacked grid
points, basis and primitive function lists and locator maps. It is
important to note that unlike ERI kernels, XC kernels perform
a large amount of frequent global memory transactions and
repacking is vital to maintain coalesced memory access pat-
terns and, hence, kernel performance. The ranks then upload
repacked data to their GPUs. Since each rank independently
works on a subset of numerical grid points, the kernels per-
forming the second and third steps do not require any changes.
The computed XC potentials are assembled into Kohn-Sham
operators maintained by each rank. During a given SCF itera-
tion, ranks download copies of the operator from the GPU and

send them to the root rank to perform the reduction and opera-
tor diagonalization. The calculation of the XC energy nuclear
gradients is a two-step procedure implemented in separate
kernels in the serial GPU version. The first computes the XC
energy gradients and can be used in the multi-GPU version as
is. The second, grid weight gradient computation, is only re-
quired for points whose grid weight is not equal to unity and is
dependent on the XC energy at a given grid point, a quantity
computed by the former kernel. In the serial version, points are
filtered on the host and reuploaded to the GPU prior to the
second kernel launch. Since different ranks in the multi-GPU
version work on sub-sets of grid points, they may end up with
unequal number of grid points, thus leading to a workload
imbalance. Therefore, a load rebalancing step is required after
the filtering. Here compute ranks communicate with each oth-
er to determine the minimum number of grid points that
should be transferred to achieve a balanced workload and then
transfer the data accordingly. Following the rebalancing step,
the data is uploaded, grid weight gradients are computed and
assembled into individual gradient vectors. At the end of the
calculation, the vectors are downloaded, and are reduced in an
analogous way to the Kohn-Sham operator.

4. Benchmark Results and Discussion

4.1 Benchmarking the multi-GPU implementation

Below we present the benchmarking results of our multi-GPU
implementation. In past work, we have compared QUICK
serial CPU, MPI parallel CPU, and single GPU performance
against another GPU capable quantum chemical code.16 We
therefore limit current benchmarks to QUICK single- vs multi-
GPU comparisons. Fig. 3 depicts the organic molecules and
protein systems that we have chosen for our benchmarks.

First, the performance of B3LYP gradient calculations on mul-
tiple GPUs is analyzed using olestra (C156H278O19, see Fig. 3
for molecular structure) with 3 different basis sets. The goal
here is to analyze the parallel efficiency of the ERI, XC and
their gradient computation tasks with different angular mo-
mentum basis functions and contraction levels. Second, a simi-
lar investigation is carried out using systems of different sizes;
but with the same basis set, aiming to analyze the impact of
system size on performance and scalability.

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs

ERI ERI gradient
XC XC gradient
Total Ideal

A

0 4 8 12 16
0

4

8

12

16

Number of GPUs

Sp
ee

d-
up

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs

B

0 4 8 12 16
0

4

8

12

16 ERI ERI gradient
XC XC gradient
Total Ideal

Sp
ee

d-
up

Number of GPUs

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs
0 4 8 12 16

0

4

8

12

16C
ERI ERI gradient
XC XC gradient
Total Ideal

Sp
ee

d-
up

Number of GPUs

7

Fig. 5. Total speed-up for morphine (40 atoms, 410 basis func-
tions), buckministerfullerene (buckyball, 60 atoms and 900 basis
functions), valinomycin (168 atoms, 1620 basis functions), ⍺-
contoxin (1m2c, 220 atoms and 2276 basis functions), crambin
(642 atoms, 6504 basis functions) gradient calculations at
B3LYP/6-31G** on up to 4 GPU nodes. Each node consists of 4
NVIDIA V100-SXM2 type GPUs, 2 Intel Xeon (R) Gold 6248
CPU (2.50 GHz) and 374 GB memory per node.

The selected platform for both tests includes four GPU nodes
from the recently assembled Expanse cluster at the San Diego
Supercomputer Center (SDSC). Each node has four NVIDIA

Volta V100-SXM2 type GPUs (32 GB) hosted by two 20-core
Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) with 374 GB
memory. The nodes are interconnected by 100 GB/s HDR
InfiniBand technology. The QUICK code was compiled using
the GNU/8.3.1 compiler tool chain, CUDA/10.2 and
OpenMPI/4.0.4 with optimization level 2 (-O2). For all calcu-
lations, the density matrix cutoff and XC grid pruning cutoff
was set to 10-8. The number of CPU cores employed for a cal-
culation was set to the number of GPUs being used. Prior to
the benchmark runs, performance of different ERI thread
walking strategies were compared using a set of HF calcula-
tions (see Fig. S1, Table S1) and circular thread walking was
chosen for the ERI and ERI gradient computation. As docu-
mented previously,15 the sorting procedure results in an ERI
matrix in which large and small-valued ERIs are most likely
distributed circularly at the origin or edge of the matrix. The
fact that circular thread-walking displayed better performance
over other strategies in the multi-GPU version suggests that
dummy regions introduced to ERI matrices of individual com-
pute ranks, which results in idle threads, does not cause signif-
icant thread divergence. Based on a second comparison (Table
S3), numerical grid point count (rather than the product of
primitive function and grid point count) based XC load bal-
ancing was selected for all benchmarks. This is due to the fact
that both methods display similar performance.

Table 2. Wall times in seconds for ERI, XC potential, ERI gradient and XC gradient tasks of a water cluster (270 atoms, 2250 basis func-
tions) gradient calculation at PBE0/def2-SVP level of theory (2250/3510 contracted/primitive functions) on up to 4 GPU nodes of V100,
P100 and K80.a

 V100 P100 K80

GPUs ERIb XCb ERI
gradient

XC
gradient

ERIb XCb ERI
gradient

XC
gradient

ERIb XCb ERI
gradient

XC
gradient

1 405.5 30.8 232.0 48.1 645.2 80.1 461.0 96.5 2382.7 565.6 1697.8 723.5

2 202.0 20.0 116.3 24.9 327.7 42.7 233.2 49.2 1224.5 302.0 859.1 367.2

4 101.3 11.0 58.6 13.3 169.6 25.6 119.0 26.1 638.6 160.1 436.9 184.5

6 67.7 8.2 39.3 9.6 117.9 22.1 81.3 18.4 448.1 115.1 297.6 124.1

8 50.7 7.1 29.6 7.7 92.0 15.2 62.3 13.4 350.3 91.1 227.1 95.9

10 41.1 6.5 24.0 5.9 76.7 14.0 50.8 10.8 295.9 72.5 185.8 77.1

12 34.2 5.6 20.0 5.8 66.7 12.7 43.6 10.2 258.0 69.0 157.7 64.5

14 30.2 5.5 17.6 4.2 59.4 12.6 37.9 8.4 229.5 56.4 137.0 58.1

16 25.8 5.0 15.3 4.1 54.2 10.3 35.1 8.2 209.9 52.8 122.3 50.1
aEach V100 node is comprised of 4 NVIDIA V100-SXM2 type GPUs (32 GB), 2 Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) and 374 GB
memory. P100 nodes are equipped with 4 NVIDIA P100 type GPUs (16 GB), 2 Intel (R) Xeon (R) E5-2680 v4 CPUs (2.4 GHz) and 128
GB memory. Each K80 node has 4 NVIDIA K80 type GPUs (12 GB), 2 Intel (R) Xeon (R) E5-2680 v3 CPUs (2.5 GHz) and 128 GB
memory. bReported ERI and XC times are the total of 13 iterations.

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs

Sp
ee

d-
up

0

4

8

12

16

0 4 8 12 16
Number of GPUs

Morphine 1m2c
Buckyball Crambin
Valinomycin Ideal

8

Fig. 6. Speed-up of ERI, XC and their gradient calculations for a water cluster (270 atoms, 2250 basis functions) at PBE0/def2-SVP level
of theory on up to 4 GPU nodes of V100 (A), P100 (B) and K80 (C). Each V100 node is comprised of 4 NVIDIA V100-SXM2 type GPUs
(32 GB), 2 Intel Xeon (R) Gold 6248 CPUs (2.50 GHz) and 374 GB memory. P100 nodes are equipped with 4 NVIDIA P100 type GPUs
(16 GB), 2 Intel (R) Xeon (R) E5-2680 v4 CPUs (2.4 GHz) and 128 GB memory. Each K80 node has 4 NVIDIA K80 type GPUs (12 GB),
2 Intel (R) Xeon (R) E5-2680 v3 CPUs (2.5 GHz) and 128 GB memory.

In Fig. 4, we report the speed-ups (calculated as T(serial)/T(n)
where T(serial) and T(n) are the wall times on single and n
GPUs respectively) of the ERI, ERI gradient, XC potential and
XC gradient calculation for olestra using B3LYP with the 6-
31G, 6-31G** and cc-pVDZ basis sets. The corresponding
wall times are reported in Table 1, load balancing and MPI
operation times are reported in Table S4 and the parallel effi-
ciencies (calculated as 1/n * T(serial)/T(n) * 100) are reported
in Table S6-S8. Three key pieces of information can be im-
mediately obtained from these data. First, the ERI and ERI
gradient calculations display near-linear strong scaling and
high parallel efficiency in all cases, suggesting that the imple-
mented load balancing scheme is effective. Second, the XC
tasks demonstrate a lower, non-linear scaling in speed-up de-
spite the fact that their load balancing remains as impressive as
that for the ERIs (see Fig. S2). The parallel efficiency for the
XC potential diminishes with more GPUs; but remains high
for the XC gradient computation. Careful examination of de-
vice kernels using NVIDIA profiler tools revealed that the
performance of all ERI kernels is limited by register availabil-
ity and only a single thread block can reside on a streaming
multiprocessor at a given time. With an increasing number of
GPUs, more streaming multiprocessors are available for the
computation resulting in the observed near-linear strong scal-
ing. In contrast, the performance of the XC potential and ener-
gy gradient kernels are limited by global memory transactions,
while the grid weight gradient kernel, which dominates the XC
gradient time, is register bound. The reduced kernel efficiency
in spite of having a balanced workload can be explained by
GPU starvation. As mentioned previously, the parallelism of
the XC computation is achieved by assigning numerical grid
points to threads. In the presence of sufficient active warps,
such as is the case for 1 or 2 GPUs, better latency hiding can
be obtained by executing compute operations during the load-
ing of memory and storage. However, achieving such hiding
becomes difficult with more GPUs since the workload be-
comes lighter. The third piece of information from the first set
of benchmarks is that the near-linear strong scaling of the total
performance remains largely unaffected by the lower, non-
linear scaling of the XC potential and energy gradient tasks.
The total parallel efficiency in all 3 test cases remains greater
than 88% on up to 16 GPUs. This is due to the fact that XC
tasks represent only a small fraction of the total time. In all

cases, the load balancing times were less than 2 s and MPI
operation times were small (see Table S4).

In Fig. 5, we report the total speed-up of B3LYP/6-31G**
gradient calculations (Kohn-Sham operator formation during
second SCF iteration and gradient computation) for 5 molecular
systems of different size (see Fig. 3 for structures). The paral-
lel efficiencies and combined total times are reported in Table
S9 and Table S14 respectively. As anticipated, the larger sys-
tems display better scaling with high parallel efficiency. For
instance, crambin and 1m2c examples show an efficiency
greater than 93% on 16 computing ranks. In contrast, for the
smallest example morphine, the efficiency drops down to
~53% on 16 ranks. Such a performance decrease is expected
since the workload becomes lighter in the presence of more
compute resources.

4.2 Performance on different microarchitectures

For all the benchmarks presented so far, we have used
NVIDIA V100-SXM2 type GPUs. It is also necessary to doc-
ument the performance of the QUICK multi-GPU version on
other widely used data center cards. For this purpose, we se-
lected 4 NVIDIA P100 and K80 (belonging to Pascal and
Kepler microarchitectures respectively) GPU nodes from the
SDSC comet cluster. In Fig. 6 and Table 2, we report the
speed-ups and wall times for gradient computation for a clus-
ter containing 90 water molecules at the PBE0/def2-SVP level
of theory. The load balancing and MPI operation times are
reported in Table S5. The parallel efficiencies are reported in
Tables S10-S12. At first glance, one notices the highest single
GPU performance for all tasks on the V100 and the lowest on
the K80. This trend is expected and consistent with the report-
ed peak FP64 compute power (7.8, 5.3 and 2.9 TFLOPS for
the V100, P100 and K80, respectively) and memory band-
widths (900, 780 and 480 GB/s for the V100, P100 and K80,
respectively) for each device.24–26 The best scaling for ERI and
ERI gradient calculations is also observed on the V100 plat-
form. The associated parallel efficiency is greater than 94%.
Such scaling slightly diminishes on the P100 and K80 plat-
forms, however, the parallel efficiency remains above 70%.
Exploring for potential performance improvement, we reeval-
uated the thread walking strategies for the latter platforms (see
Table S2). The results suggested that circular thread walking

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs

0

4

8

12

16

0 4 8 12 16

Sp
ee

d-
up

Number of GPUs

ERI ERI gradient
XC XC gradient
Total Ideal

A

0 4 8 12 16
0

4

8

12

16

Number of GPUs

Sp
ee

d-
up

B

0 4 8 12 16
0

4

8

12

16 ERI ERI gradient
XC XC gradient
Total Ideal

Sp
ee

d-
up

Number of GPUs
0 4 8 12 16

0

4

8

12

16C
ERI ERI gradient
XC XC gradient
Total Ideal

Sp
ee

d-
up

Number of GPUs

9

is the most suitable as for V100s. For XC tasks, the best scal-
ing is observed on the K80 platform with parallel efficiencies
>66% and >89% for potential and gradient computations, re-
spectively. This is followed by the efficiencies of P100 and
then the V100. The different scaling of ERI and XC tasks on
the 3 platforms must be due to their significant architectural
differences.24,25,27 The highest overall parallel efficiency
(>89%) is achieved on the V100 class of GPUs. In addition to
above platforms, we benchmarked the QUICK multi-GPU
version on a single NVIDIA DGX A100 node28 equipped with
8 A100 type GPUs (belonging to recent Ampere microarchi-
tecture).29 Owing to the high peak FP64 compute power, ERI
and ERI gradient calculations on a single A100 are much fast-
er in comparison to V100 (see Table S15). In contrast, XC
and XC gradient times remain substantially same. The ob-
served scaling and parallel efficiencies are similar to that of 8
V100s (see Fig. S3 and Table S13). On all platforms, the load
balancing and MPI operation times remain considerably small.

5. Conclusions

We have reported the details of a MPI parallel GPU ab initio
HF/DFT implementation of the QUICK quantum chemical
package. Our implementation features static ERI and XC load
balancing schemes. Dynamic load balancing is employed in
the XC gradient calculations. Benchmarking against the single
GPU version on up to 16 GPUs demonstrated near-linear
strong scaling behavior for ERIs and ERI gradients and lower,
non-linear scaling for the XC and XC gradients resulting in an
excellent aggregated parallel efficiency above 86%. Similar
scaling is observed on A100, P100 and K80 platforms. The
associated total parallel efficiencies were always greater than
74%, paving the way for large-scale ab initio electronic struc-
ture calculations. The benchmarks in the current study were
limited to 4 nodes, which is the maximum allowed per user at
the SDSC. The performance scaling on more compute nodes
would be informative. We recommend NVIDIA V100 data
center GPUs for the latest QUICK version (v21.03).

The profiling of the ERI and XC kernels has indicated room
for potential improvement. For the ERI kernels, the current
bottleneck is the register availability. Reordering load and
store procedures to reuse available registers and reimplement-
ing large device kernels into smaller kernels may lead to fa-
vorable performance on both serial and multi-GPU versions.
For the XC kernels, the memory efficiency should be en-
hanced. In this context, increasing the register and shared
memory usage may be viable strategies.

Finally, we recently integrated the QUICK serial GPU version
as a library into the development version of the AMBER mo-
lecular dynamics package30 enabling GPU capable quantum
mechanics/ molecular mechanics (QM/MM) simulations. The
integration of the multi-GPU version is currently in progress.
QUICK version 21.03 can be downloaded from
https://github.com/merzlab/QUICK under the Mozilla public
license free of charge.

ASSOCIATED CONTENT
Supporting text and Cartesian coordinates of the test molecules.
This material is available free of charge via the Internet at
http://pubs.acs.org.

ACKNOWLEDGMENT
We thank Dmitry Pekurovsky from SDSC for improving our one-
electron integral code, Scott Le Grand and Kurt O’hearn for their
useful comments on technical aspects of our GPU code. M.M. and
A.G. thank SDSC for granted computer time and Mary Thomas,
Julia Levites and the other organizers of the SDSC 2020 GPU
Hackathon. M.M. and K.M. are grateful to the Department of
Chemistry and Biochemistry and high-performance computer
center (iCER HPCC) at the Michigan State University. This re-
search was supported by the National Science Foundation grant
OAC-1835144. This work also used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is support-
ed by the National Science Foundation (grant number ACI-
1053575, resources at the San Diego Supercomputer Center
through award TG-CHE130010 to A.G.).

References

(1) Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; He, K.
Accurate, Large Minibatch SGD: Training Imagenet in 1
Hour. 2018, arXiv:1706.02677v2, arXiv.org e-Print
archive. https://arxiv.org/abs/1706.02677v2 (accessed
Feb 05, 2021)

(2) Fuhrer, O.; Chadha, T.; Hoefler, T.; Kwasniewski, G.;
Lapillonne, X.; Leutwyler, D.; Lüthi, D.; Osuna, C.;
Schär, C.; Schulthess, T. C.; et al. Near-Global Climate
Simulation at 1 Km Resolution: Establishing a
Performance Baseline on 4888 GPUs with COSMO 5.0.
Geosci. Model Dev. 2018, 11, 1665–1681.

(3) Götz, A. W.; Williamson, M. J.; Xu, D.; Poole, D.; Le
Grand, S.; Walker, R. C. Routine Microsecond
Molecular Dynamics Simulations with AMBER on
GPUs. 1. Generalized Born. J. Chem. Theory Comput.
2012, 8, 1542–1555.

(4) Salomon-Ferrer, R.; Götz, A. W.; Poole, D.; Le Grand,
S.; Walker, R. C. Routine Microsecond Molecular
Dynamics Simulations with AMBER on GPUs. 2.
Explicit Solvent Particle Mesh Ewald. J. Chem. Theory
Comput. 2013, 9, 3878–3888.

(5) Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; De
Groot, B. L.; Grubmüller, H. Best Bang for Your Buck:
GPU Nodes for GROMACS Biomolecular Simulations.
J. Comput. Chem. 2015, 36, 1990–2008.

(6) Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de
Groot, B. L.; Grubmüller, H. More Bang for Your Buck:
Improved Use of GPU Nodes for GROMACS 2018. J.
Comput. Chem. 2019, 40, 2418–2431.

(7) Phillips, J. C.; Sun, Y.; Jain, N.; Bohm, E. J.; Kalé, L. V.
Mapping to Irregular Torus Topologies and Other
Techniques for Petascale Biomolecular Simulation. In
International Conference for High Performance
Computing, Networking, Storage and Analysis, SC; IEEE
Computer Society, 2014; Vol. 2015-Janua, pp 81–91.

(8) Harvey, M. J.; Giupponi, G.; De Fabritiis, G. ACEMD:
Accelerating Biomolecular Dynamics in the Microsecond
Time Scale. J. Chem. Theory Comput. 2009, 5, 1632–
1639.

(9) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on
Graphical Processing Units. 2. Direct Self-Consistent-
Field Implementation. J. Chem. Theory Comput. 2009, 5,
1004–1015.

(10) Kussmann, J.; Ochsenfeld, C. Hybrid CPU/GPU Integral

10

Engine for Strong-Scaling Ab Initio Methods. J. Chem.
Theory Comput. 2017, 13, 3153–3159.

(11) Williams-Young, D. B.; de Jong, W. A.; van Dam, H. J.
J.; Yang, C. On the Efficient Evaluation of the Exchange
Correlation Potential on Graphics Processing Unit
Clusters. Front. Chem. 2020, 8, 581058.

(12) Barca, G. M. J.; Galvez-Vallejo, J. L.; Poole, D. L.;
Rendell, A. P.; Gordon, M. S. High-Performance,
Graphics Processing Unit-Accelerated Fock Build
Algorithm. J. Chem. Theory Comput. 2020, 16, 7232–
7238.

(13) Ufimtsev, I. S.; Martinez, T. J. Quantum Chemistry on
Graphical Processing Units. 3. Analytical Energy
Gradients, Geometry Optimization, and First Principles
Molecular Dynamics. J. Chem. Theory Comput. 2009, 5,
2619–2628.

(14) Miao, Y.; Merz, K. M. Acceleration of Electron
Repulsion Integral Evaluation on Graphics Processing
Units via Use of Recurrence Relations. J. Chem. Theory
Comput. 2013, 9, 965–976.

(15) Miao, Y.; Merz, K. M. Acceleration of High Angular
Momentum Electron Repulsion Integrals and Integral
Derivatives on Graphics Processing Units. J. Chem.
Theory Comput. 2015, 11, 1449–1462.

(16) Manathunga, M.; Miao, Y.; Mu, D.; Götz, A. W.; Merz,
K. M. Parallel Implementation of Density Functional
Theory Methods in the Quantum Interaction
Computational Kernel Program. J. Chem. Theory
Comput. 2020, 16, 4315–4326.

(17) Obara, S.; Saika, A. Efficient Recursive Computation of
Molecular Integrals over Cartesian Gaussian Functions.
J. Chem. Phys. 1986, 84, 3963–3974.

(18) Head‐Gordon, M.; Pople, J. A. A Method for Two‐
electron Gaussian Integral and Integral Derivative
Evaluation Using Recurrence Relations. J. Chem. Phys.
1988, 89, 5777–5786.

(19) Pople, J. A.; Gill, P. M. W.; Johnson, B. G. Kohn—Sham
Density-Functional Theory within a Finite Basis Set.
Chem. Phys. Lett. 1992, 199, 557–560.

(20) Gabriel, E.; Fagg, G. E.; Bosilca, G.; Angskun, T.;
Dongarra, J. J.; Squyres, J. M.; Sahay, V.; Kambadur, P.;
Barrett, B.; Lumsdaine, A.; et al. Open MPI: Goals,
Concept, and Design of a Next Generation MPI
Implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting; Budapest, Hungary,
2004; pp 97–104.

(21) Cheng, J.; Grossman, M.; McKercher, T. Professional
CUDA C Programming; John Wiley & Sons, Inc.:

Indianapolis, 2013; pp 67-264.
(22) Han, J.; Sharma, B. Scalable Multi-GPU Programming.

In Learn CUDA Programming: A Beginner’s Guide to
GPU Programming and Parallel Computing with CUDA
10.x and C/C++; Packt Publishing: Birmingham, 2019;
pp 241-274.

(23) Li, A.; Song, S. L.; Chen, J.; Li, J.; Liu, X.; Tallent, N.
R.; Barker, K. J. Evaluating Modern GPU Interconnect:
PCIe, NVLink, NV-SLI, NVSwitch and GPUDirect.
IEEE Trans. Parallel Distrib. Syst. 2020, 31, 94–110.

(24) NVIDIA. NVIDIA Tesla V100 GPU Architecture
https://images.nvidia.com/content/volta-
architecture/pdf/volta-architecture-whitepaper.pdf
(accessed Feb 25, 2020).

(25) NVIDIA. NVIDIA Tesla P100
https://images.nvidia.com/content/pdf/tesla/whitepaper/p
ascal-architecture-whitepaper.pdf (accessed Mar 17,
2020).

(26) NVIDIA. Tesla K80 | NVIDIA
https://www.nvidia.com/en-gb/data-center/tesla-k80/
(accessed Jan 9, 2021).

(27) Microway. In-Depth Comparison of NVIDIA Tesla
Kepler GPU Accelerators | Microway
https://www.microway.com/knowledge-center-
articles/in-depth-comparison-of-nvidia-tesla-kepler-gpu-
accelerators/ (accessed Jan 9, 2021).

(28) NVIDIA. NVIDIA DGX A100 | DATA SHEET |
MAY20 https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-ampere-architecture-
whitepaper.pdf (accessed Feb 4, 2021).

(29) NVIDIA. NVIDIA A100 Tensor Core GPU Architecture
https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/nvidia-dgx-a100-datasheet.pdf
(accessed Feb 4, 2021).

(30) Case, D. A.; Belfon, K.; Ben-Shalom, I. Y. .; Brozell, S.
R.; Cerutti, D. S.; Cheatham, T. E.; III; Cruzeiro, V. W.
D.; Darden, T. A.; Duke, R. E.; et al. AMBER 2020.
University of California: San Francisco, CA 2020.

11

Insert Table of Contents artwork here

B3LYP/6-31G** gradients

GPUs
To

ta
l s

pe
ed

-u
p

0 16
0

8

16 Ideal

Crambin
Morphine

Buckyball
⍺-contoxin

Load balancing
(8 GPUs)

12.5%

12.5%

12.5%

12.5%12.5%

12.5%

12.5%

12.5%

