
Dynamical Cooperativity of Ligand-Residue Interactions Evaluated 

with the Fragment Molecular Orbital Method 

Shigenori Tanaka1*, Shusuke Tokutomi1, Ryo Hatada2, Koji Okuwaki2, Kazuki Akisawa2, 

Kaori Fukuzawa3,4,5, Yuto Komeiji6, Yoshio Okiyama7, Yuji Mochizuki2,5 
 

1 Graduate School of System Informatics, Department of Computational Science, Kobe University, 

1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan 

2 Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, 

Rikkyo University, 3-34-1 Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan 

3 School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41 Ebara, 

Shinagawa-Ku, Tokyo 142-8501, Japan 

4 Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku 

University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan 

5 Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 

153-8505, Japan 

6 Biomedical Research Institute, AIST, Tsukuba Central 6, Tsukuba, Ibaraki 305-8566, 

Japan 

7 Division of Medicinal Safety Science, National Institute of Health Sciences, 3-25-26 

Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 201-9501, Japan 

 

E-mail: tanaka2@kobe-u.ac.jp (Shigenori Tanaka); fullmoon@rikkyo.ac.jp (Yuji Mochizuki) 

 

 

  

mailto:tanaka2@kobe-u.ac.jp
mailto:fullmoon@rikkyo.ac.jp


Abstract 

By the splendid advance in computation power realized with Fugaku supercomputer, it has become 

possible to perform ab initio fragment molecular orbital (FMO) calculations for thousands of 

dynamical structures of a protein-ligand complex in a parallelized way. We have thus carried out the 

electron-correlated FMO calculations for a complex of the 3C-like (3CL) main protease (Mpro) of the 

new coronavirus (SARS-CoV-2) and its inhibitor N3 incorporating the structural fluctuations sampled 

by classical molecular dynamics (MD) simulation in hydrated condition. Along with a statistical 

evaluation of inter-fragment interaction energies (IFIEs) between the N3 ligand and surrounding 

amino-acid residues for a thousand of dynamical structure samples, we have applied in this study a 

novel approach based on the principal component analysis (PCA) and the singular value 

decomposition (SVD) to the analysis of IFIE data in order to extract the dynamically cooperative 

interactions between the ligand and residues. We have found that the relative importance of each 

residue is modified via the structural fluctuations and that the ligand is bound in the pharmacophore 

in a dynamical manner through collective interactions formed by multiple residues, thus providing a 

new insight into structure-based drug discovery. 

 

  



INTRODUCTION 

  Computational analysis of protein-ligand interactions is a key issue in structure-based, rational drug 

discovery.1) Through long history of this direction of scientific research, a variety of theoretical 

approaches based on molecular docking,2-4) molecular dynamics5-7) and quantum chemical 

calculations1) have been developed. In these approaches, physicochemical properties such as scoring 

function,8) binding free energy,9) ligand-residue interaction and interaction fingerprint10) have been 

employed to quantitatively represent the affinity between protein and ligand molecules. The 

significance of these computational measures is extensively recognized also in the urgent drug 

discovery issues concerning the COVID-19 pandemic.11) 

  The COVID-19 disease caused by the new severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) is still the worldwide critical issue, as reported by the World Health Organization (WHO).12) 

A great amount of works have been conducted in various fields against this difficult situation. In the 

pharmaceutical approaches, several proteins such as the 3C-like (3CL) main protease (Mpro) of SARS-

Cov-2 have attracted considerable attention because they are potential targets of antiviral drugs, and 

hence a number of computational studies have been performed to find effective inhibitors against 

them.11) For example, at the early stage of COVID-19 outbreak, Xu et al. 13) showed that nelfinavir, 

which was known as an antiretroviral drug for the treatment of the human immunodeficiency virus 

(HIV), may be a promising inhibitor to Mpro, based on the homology modeling of SARS-CoV-2 Mpro 



and the docking simulations of thousands of small molecule drugs. Jin et al.14) identified a new peptide-

like inhibitor called N3 on the basis of structure-assisted and computer-aided drug design strategy, and 

then determined the crystal structure of Mpro-N3 complex (registered as 6LU7 in Protein Data Bank 

(PDB)) in which the N3 ligand is covalently bonded to Cys145 via reactive Michael addition. 

Following this availability of 6LU7 structure, a number of computational studies primarily including 

molecular dynamics (MD) simulations were carried out15-24) towards the elucidation of ligand binding 

mechanism and discovery of effective inhibitors. In the quantum chemical studies, we24) performed 

ab initio fragment molecular orbital (FMO)25-29) method-based analyses of interactions between the 

N3 inhibitor and amino-acid residues in the pharmacophore, in which pair interaction energy (PIE)27) 

or inter-fragment interaction energy (IFIE)28,29) was employed to identify crucial residues having site-

specific interactions with N3 through, e.g., hydrogen bond. 

While we additionally performed detailed PIE decomposition analyses (PIEDA30,31)) including also 

the implicit hydration effect by means of the Poisson-Boltzmann (PB) model32,33) in Ref. 24, the 

structural fluctuation effect (which should be essential in physiological condition) was not 

incorporated there because we performed only a single-structure FMO calculation with the 6LU7 

crystal structure data.14) Therefore, we34) subsequently carried out the same FMO approach for the 

Mpro-N3 complex again, but using a thousand of structure samples generated by classical MD 



simulation. This demanding task was firstly realized through large capacity computing with the novel 

use of a massively parallel computing resource of Fugaku supercomputer35) at RIKEN in Kobe. 

Now, we are in the new era for FMO application to protein-ligand binding analysis. We can perform 

the FMO-IFIE analysis on thousands of snapshot structures of protein-ligand complex system 

generated by MD simulation. Our present problem is what we can do using these dynamical interaction 

data with quantum chemical accuracy. In addition to our earlier study34) mainly concerning the 

dynamical average and fluctuation of protein-ligand IFIEs, we here employ two statistical techniques 

of data analysis, principal component analysis (PCA) and singular value decomposition (SVD),36-38) 

to elicit the collective dynamics of interactions between a ligand molecule and surrounding amino-

acid residues. Through these novel approaches, we anticipate that cooperative interactions between 

the ligand and multiple residues can be described dynamically to represent the specific binding modes 

of ligand molecule in the pharmacophore. These kinds of computational descriptions are recently 

attracting much attention; for example, a ligand molecule is often bound by multiple interaction 

points20,21), thus indicating the importance of molecular interaction fingerprint10) and its dynamical 

extension. Also including the possibility of describing the dynamical interaction network as observed 

in hydrogen-bonding systems,39) the present quantum-chemical approach can thus pave a new avenue 

for computational drug discovery. The computational protocols in the present study are detailed in the 



following, along with some new findings concerning the binding mechanism between Mpro and its 

possible inhibitors. 

 

MATERIALS AND METHODS 

Preparation of structures of Mpro-N3 complex. 

We employed the crystal structure of the Mpro-N3 complex (PDB entry: 6LU7), from which we 

extracted a monomer unit, and processed it in a standard manner with the MOE software;40) that is, 

we added missing hydrogens and optimized them with the AMBER10:EHT41) force field (refer also 

to Ref. 24 for details), where we assigned a doubly-protonated cationic model (HIP) to His163. This 

structure (see Fig. 1) is referred to as “static” one hereafter. A thousand of “dynamic” structures were 

then prepared by the MD simulation method with the AMBER16 program42) (with the 

AMBER10:EHT force field), where counter ions (Na+) were generated to electrically neutralize the 

system. The durations of MD run were 50 ps for the thermal elevation from 0 K to 310 K (NVT 

ensemble), 50 ps for the density relaxation (NPT ensemble), 1 ns for the equilibration (NPT ensemble), 

and 100 ns for the production process (at 310K and 1 atm with NPT ensemble). From trajectories of 

the production run, a thousand snapshots were sampled with the interval of 100 ps. This fairly long-

time MD sampling could cover larger configurational spaces and thus provides dependable statistical 

evaluations of dynamically fluctuating interaction energies between ligand and amino-acid residues. 



All the MD simulations were performed on the TSUBAME3.0 GPU-accelerated computer at Tokyo 

Institute of Technology. Each sample structure was shaped to a droplet form with water molecules 

within 4 Å of Mpro for the FMO calculations, where all the counter ions were retained to keep the 

system electrically neutral; this criterion of water layer thickness was adopted according to the 

literature.43-45)  

 

Fragment molecular orbital (FMO) method. 

The electronic energy of two-body FMO expansion25-29) can be expressed as 

𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ 𝐸𝐸𝐼𝐼′𝐼𝐼 + ∑ ∆𝐸𝐸�𝐼𝐼𝐼𝐼𝐼𝐼>𝐽𝐽     (1) 

where I and J are fragment indices that represent amino-acid residues or (parts of) ligand molecule in 

the present study. The first term of eq. 1 refers to the renormalized fragment monomer energy, and the 

second term corresponds to the fragment interaction energy termed as PIE27) or IFIE.28,29) The electron 

correlation effect represented by the dispersion (DI) energy is taken into account at the second-order 

Møller-Plesset perturbation (MP2) level46-49) in this study. We adopted the partial renormalization 

(PR)50) to reduce the tendency of overestimation in MP2-based DI energy.24) As shown in Fig. S1 in 

Supporting Information (SI), the N3 ligand was segmented to 5 fragments24) and has a covalent bond 

to Cys145 (C145; hereafter, 1-letter code for amino-acid residues is primarily used for the simplicity 

of representation) in the 6LU7 structure.14) The numbers of fragments were 311 for the Mpro-N3 

complex and about 1400 for the water layer, respectively. The basis set used was 6-31G*51), a standard 

choice in recent FMO studies. A series of FMO-MP2/6-31G* calculations with the PIEDA option were 



performed with the ABINIT-MP program28,29) on the supercomputer Fugaku.35) Typical job timing for 

a single structure sample was 0.6 h with 192 nodes (or a half rack) of Fugaku, and the concurrent job 

processing led to only 6 h for the completion of all the 1000 structure samples. In addition to the 

structures with the covalent bond between the N3 ligand and C145, we have also carried out the FMO 

calculations for the structures without the covalent bond24) in order to investigate the case when the 

ligand molecule is bound with non-covalent interactions. 

  It is noted that an amino-acid “residue” corresponds to one “fragment” in this study. When we make 

the interpretation of IFIE for the ligand-residue interaction, caution is in order for the fact that the 

fragmentation of usual FMO calculation for protein is made at the single bond between the carbonyl 

carbon and the alpha carbon (with side chain)52) and thus that a misleading assignment shift of 

interacting fragment may occur when the carbonyl oxygen forms a hydrogen bond. This issue was 

carefully handled as was done in Ref. 24. We obtained the averages and standard deviations of IFIE 

values calculated for the “dynamic” structures, where the ligand-residue IFIE was obtained through 

the summation of the contributions from the five fragments composing the N3 ligand (see Fig. S1 in 

SI). 

 

Statistical analyses of dynamical FMO-IFIE data. 

  Through the FMO calculations for the protein-ligand complex whose structure is temporally varied, 

we obtain the time-evolving IFIE matrix X = (𝑥𝑥𝑖𝑖𝑖𝑖), where i = 1,…,m refers to the time step and j = 



1,…,n represents each residue in the protein, when we consider the ligand-residue interactions; here, 

the summation over the IFIEs for the five fragments of N3 ligand has been taken. The corresponding 

variance-covariance matrix 𝑍𝑍 = (𝑧𝑧𝑝𝑝𝑝𝑝) (1≦p, q≦n=306 in the case of the presence of covalent bond 

to C145) is then calculated by  

𝑧𝑧𝑝𝑝𝑝𝑝 =  1
𝑚𝑚
∑ (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑝𝑝���)(𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑞𝑞���)     (2) 

where 𝑥𝑥𝑝𝑝��� denotes the temporal average of 𝑥𝑥𝑖𝑖𝑖𝑖 over m=1000 step. 

  In the principal component analysis (PCA), the variance-covariance matrix is decomposed as  

𝑍𝑍 = 𝐴𝐴Λ𝐴𝐴𝑇𝑇      (3) 

as in Fig. 2, where Λ  is a diagonal matrix whose elements 𝜆𝜆𝑖𝑖  represent the eigenvalues of i-th 

components (PCi) and 𝐴𝐴  is a unitary matrix composed of the set of eigenvectors (superscript 𝑇𝑇 

denotes the transpose). The weight of the j-th residue can then be defined by 

       𝐶𝐶𝑗𝑗 =  ∑ 𝜆𝜆𝑖𝑖𝑖𝑖 𝑎𝑎𝑖𝑖𝑖𝑖2    (4) 

through summation over the eigenstates i using the components aij in A. 

  On the other hand, in the singular value decomposition (SVD),36-38) the time-evolving IFIE matrix 

X is decomposed as (see Fig. 2)  

𝑋𝑋 = 𝑈𝑈Σ𝑉𝑉𝑇𝑇      (5) 

where Σ  contains the singular values 𝜎𝜎𝑖𝑖  for the diagonal elements; 𝑈𝑈  and 𝑉𝑉  refer to matrices 

composed of the left and right singular vectors, respectively. In the present case, 𝑈𝑈 and 𝑉𝑉 represent 



the characteristics concerning the time and residue variations, respectively. The i-th components 

associated with the singular values 𝜎𝜎𝑖𝑖 are designated as SVi in the following. The weight of the j-th 

residue can then be defined by 

𝐷𝐷𝑗𝑗 =  ∑ 𝜎𝜎𝑖𝑖𝑖𝑖 𝑣𝑣𝑖𝑖𝑖𝑖2     (6) 

through summation over i using the components vij in V. 

 

RESULTS AND DISCUSSION 

Structural dynamics and temporal variations of IFIEs. 

Figure 3(a) illustrates a superimposed view of 100 ns fluctuating structures of the N3 ligand and 

surrounding residues sampled with 10 ns intervals in the presence of the covalent bond between N3 

and Mpro. Because of the covalent bond to C145 of Mpro, fluctuations of Fragments 3 and 4 of the 

ligand (see Fig. S1 in SI) are suppressed, whereas those of the terminal Fragments 1 and 5 are relatively 

larger; refer also to Fig. S2 in SI for the root mean square deviation (RSMD) of trajectories. 

On the other hand, Figure 3(b) illustrates the structural changes of the N3 ligand in the absence of 

the covalent bond to C145. Naturally, the ligand showed larger dynamical fluctuations than with the 

covalent bond. The temporal evolution of the corresponding RMSD is illustrated in Fig. S3 in SI. 

  Concerning the residue specific analysis, Fig. 4(a) shows IFIE plots of some important residues 

whose stabilization energies with the N3 ligand are larger than -10 kcal/mol in the presence of covalent 



bond with C145. As can be seen, H163, which is treated as a protonated HIP,24,34) is a crucial residue 

with the largest stabilization in both “static” and “dynamic” evaluations. Other notable stabilizing 

residues are M165, E166, L167 and Q189. The important contributions from these five residues were 

consistently remarked in Refs. 14, 17-21 and 24 as well. A considerable amount of decrease in 

stabilization (ca. 15 kcal/mol) due to dynamical motion is found for H163, while those of M165, E166, 

L167 and Q189 are relatively minor. These relations may be explained34) by the differences in the 

contact distances between the residues and the N3 ligand. Kneller et al.53) investigated the structural 

changes of 6LU7 by MD simulation and observed that a loop consisting of E166-G170 in Mpro moves 

away from the N3 ligand. The present results illustrating the lower contributions of M165, E166 and 

L167 are consistent with their observation. 

  Figure 5(a) illustrates the dynamically averaged PIEDA values of the leading residues in the 

interactions between Mpro and N3 in the presence of covalent bond with C145. The electrostatic (ES) 

term is the main source of stabilization associated with hydrogen bonds, and its amount for H163 is 

the largest one among all the residues. In comparison with the “static” PIEDA results in Ref. 24, the 

contributions from the charge transfer (CT) term are decreased. In exchange for CT, the dispersion 

(DI) term plays a supplementary role in stabilizing the dynamical ligand binding, especially for M165, 

E166 and Q189, thus providing useful information for drug design. 



  As we have seen above, there are several differences between the “static” and “dynamic” structures 

in interactions between Mpro and N3. We analyzed the correlation between “dynamic” IFIE values and 

interacting distances and found34) that the correlation coefficients have substantial values of 0.6-0.7 

except for some cases. This fact implies that thermal fluctuations under physiological cellular 

condition certainly affect the interactions between the N3 ligand and surrounding residues. 

  Figures 4(b) and 5(b) exhibit the results of IFIE and PIEDA in the absence of the covalent bond24) 

between the N3 ligand and C145 of Mpro. The effects of dynamic reduction in ligand-residue 

interactions are more significant in the absence than in the presence of the covalent bond, especially 

for H163, E166 and M165. The strong ES attraction between H163 and N3 is greatly reduced due to 

the large fluctuation and the position shift of the ligand in the pharmacophore, as seen in Fig. 3(b). 

The IFIE values of E166 also differ between the static and dynamic configurations substantially due 

to the flexibility of ligand position. The PIEDA results in Fig. 5(b) indicate that the important ES 

contributions from L167 and Q189, and DI contributions from M165, Q189 and H41 remain even in 

the presence of dynamic fluctuations of N3 ligand.  

 

Principal component analysis (PCA). 

We first show the results for the PCA in the presence of the covalent bond to C145. The important 

residues that were selected according to the PCA weight Cj defined by eq. 4 are Q189, E166, A191, 



H163 and L167, which are consistent with those enumerated in the previous work34) (see also Fig. 

4(a)). It is here noted that the result of the selection is the same even when the summation over the 

PCA mode i is confined to i ≦ 10 in eq. 4. Figure 6 illustrates the eigenvalue λi of each PCA 

component, thus showing that the contributions from the top 10 components (PC1 – PC10) cover about 

80 % of the total sum. Figure 7 then depicts the important residues with high magnitudes (absolute 

values) in each eigenvector of PC1 – PC5. Q189 shows a dominant contribution in PC1, and E166 in 

PC2; in these two mode components, each single residue (Q189 and E166) alone retains an essential 

interaction with the ligand N3. In contrast, in the cases of PC3 – PC5, multiple residues collectively 

contribute to form the eigenvectors; for example, A191, Q192, L167 and H163 cooperatively interact 

with the ligand in the PC3 mode. We thus find an instance that the ligand is trapped via many site 

interactions by multiple residues.  

   As for the case in the absence of the covalent bond to C145, on the other hand, we can enumerate 

the essential residues that strongly interact with the ligand N3 based on eq. 4 as Q189, M165, H163, 

A191 and H41, which is again consistent with the previous result.34) As observed in Figure 8, the 

contributions from the eigenvalues λi of the top 6 components (PC1 – PC6) exceed 80 % of the total 

sum. Figure 9 then depicts the important residues with high magnitudes in each eigenvector of PC1 – 

PC5. Q189 and M165 give important contributions in PC1, and M165, Q189, H163 and A191 play 

vital roles in PC2. A191, M165, A193, Q192 and S46 are the crucial residues in PC3, and similarly 



multiple residues cooperatively work for binding in PC4 and PC5 as well. Compared to the case in the 

presence of the covalent bond to C145, it is characteristic that multiple residues contribute to these 

interaction modes of PC1 – PC5 more collectively. This dynamical cooperativity in the ligand-residue 

interactions can be attributed to the larger fluctuations of ligand position (Fig. 3(b)) due to the absence 

of the covalent bond to C145, thus demonstrating that the ligand N3 is sustained through many site 

interactions by multiple residues. 

   In the absence of the covalent bond between the ligand N3 and C145, it is observed that there is a 

significant change in the ligand binding conformation at around 30 ns in the MD simulation (see Fig. 

S3 for RMSD). We have therefore attempted two individual PCAs employing the MD trajectories for 

0-30 ns (stage 1) and 30-100 ns (stage 2). For the former stage 1, we have found the important residues 

as Q189, H163, M165, E166 and H41 based on eq. 4. On the other hand, Q189, A191, S46, H41 and 

M165 have been detected for the latter stage 2. It is noted that S46 listed in the latter was not remarked 

in the previous study;34) hence, S46 is a new contributor in the ligand-residue interactions discovered 

only after the conformation change. It is also noted regarding the relative importance of the residues 

between the two stages that the weight has increased for Q189, S46, A191, C145 and E47, and 

decreased for H163, E166, M165, A193 and S144 in the stage 2. The PCA results for 0-30 ns and 30-

100 ns are demonstrated in Fig. S4 and Fig. S5, respectively, thus showing the crucial residues for 

collective interactions with the N3 ligand before and after the conformation change. 



 

Singular value decomposition (SVD). 

As mentioned in MATERIALS AND METHODS section, we can obtain two species of 

eigenvectors, U and V, in the directions of time and amino-acid residue through SVD. Of special 

interest here are the temporal eigenvectors, which can describe the temporal characteristics in the 

ligand-residue interactions. Figure 10 illustrates the first, second and third temporal eigenvectors in 

the presence of the covalent bond between the ligand and C145, thus showing homogeneous, 

randomized features of temporal variations. In contrast, in the absence of the covalent bond to C145, 

we observe in Figure 11 that a significant change takes place at around 30 ns, as remarkably detected 

in the second and third temporal eigenvectors, thus demonstrating the appearance of dynamical “phase 

transition” associated with the conformation change of the N3 ligand. This detection of the temporal 

characteristics shows a prominent ability of the present SVD method (see also below). Figure 12 

illustrates the distribution of the eigenvalues both in the presence and absence of the covalent bond to 

C145. 

   The important residues in the ligand binding can also be enumerated by SVD in terms of the 

eigenvectors for the amino-acid residues. According to the SVD weight Dj defined by eq. 6, we find 

H163, Q189, L167, M165 and E166 to be important residues (the result is the same even when the 

summation over the SVD mode i is confined to i ≦ 10) in the presence of the covalent bond to C145, 



which is consistent with the previous work.34) Table 1 then shows the top five residues with higher 

magnitudes in each eigenvector of SV1-SV5. H163, L167, M165, Q189 and H41 are enumerated in 

the first eigenvector (SV1) with the magnitudes higher than 0.3. As for the second eigenvector (SV2), 

the contributions of Q189 and E166 are dominant, whose magnitudes are higher than 0.2.  

   In the absence of the covalent bond between the ligand and C145, we find Q189, L167, M165, 

H41 and H163 important, as shown in Table 1. Concerning the top five residues with higher 

magnitudes in each eigenvector, we observe Q189, L167, H41, H163 and E166 for SV1, Q189, M165, 

H163, L167 and E166 for SV2, and Q189, M165, H41, A191 and L167 for SV3. Those residues such 

as Q189, M165, H163, E166 and A191 contained in SV2 and SV3 correspond to the residues whose 

PCA weights have significantly changed at around 30 ns (see the PCA section above). We thus 

consider them to be the crucial residues for the conformation change. Here, we note that more detailed 

inspection of the temporal eigenvectors of SV2 and SV3 in Fig. 11 also shows that a temporally broad 

transition is occurring between 20 and 40 ns (see also Fig. S3 in SI), where the start and end of the 

transition are detected by SV3 and SV2, respectively, as the temporally global change in the sign of 

eigenvector components. Besides, it is found that all the top five residues for the first to fifth 

eigenvectors (SV1 – SV5) in Table 1 have the magnitudes higher than 0.2; this fact shows again that 

the N3 ligand is sustained through many site interactions by multiple residues in the case of the absence 



of the covalent bond to C145. It is also characteristic in this case that the important contributions from 

S46 appear in the SV4 and SV5, which has been noted in the time-divided PCA above as well. 

 

Comparison to other investigations. 

  Kneller et al.53) performed the room temperature X-ray structure analysis of unliganded SARS-CoV-

2 3CL Mpro and compared the result with the low-temperature ligand-free and N3-bound structures 

and also with the ligand-free MD structures at room temperature. Through these analyses, they found 

the significant structural plasticity of Mpro in the vicinity of the active site such as the small helix near 

P2 group containing residues 45-50, the β-hairpin loop near P3-P4 region with residues 165-170 and 

the P5 loop spanning residues 190-194. The dynamic flexibility of these structural regions can account 

for the dynamical IFIE interactions observed in the present PCA and SVD analyses. 

  Through the detailed QM/MM simulations for the complex of SARS-CoV-2 Mpro with N3 and its 

analogues, Arafet et al.54) enumerated the important interactions between the Mpro residues and the 

covalent or non-covalent inhibitors. In addition to the active interactions associated with C145 and 

H41, they found vital (primarily hydrogen bond) interactions between the ligand and those residues 

such as F140, N142, G143, H163, H164, E166, Q189, T190 and Q192. The collectivity of the 

interaction networks is a significant finding in their research, which corresponds well to that in the 

present study. 



  Through the pharmacophore modeling and 1μs MD simulations for SARS-CoV-2 Mpro in complex 

with three drug candidates (2A5I, 2OP9 and Indinavir), Yoshino et al.21) identified the key interactions 

between the possible inhibitors and the surrounding residues. They thus found that primarily H41, 

G143 and E166 (further possibly M49, S144, C145, M165, P168 and Q189) formed crucial 

interactions with the functional groups common among peptide-like inhibitors, and concluded that 

these interactions should be important targets for designing potential drugs against SARS-CoV-2 Mpro 

since the inhibitors would dynamically interact with Mpro at multiple sites in the pharmacophore. 

Similar descriptions on the ligand-residue interactions were also given by Nutho et al.20). 

  Overall, these structural and simulation studies have provided the pictures for designing possible 

inhibitors against Mpro on the basis of ligand-residue interactions consistent with the present dynamical 

FMO-IFIE study. The advantage of the present PCA/SVD based methodology is that it can give a 

comprehensive approach to systematically extracting crucial interactions in terms of ab initio electron-

correlated FMO method for the whole protein-ligand systems with the aid of highly parallelized 

capacity computing. Through inclusion of explicit water molecules, the present FMO approach could 

also account for the effects associated with the hydrogen bond networks20,39) formed by surrounding 

hydration environments, whose detailed analysis would be an interesting research problem in 

forthcoming studies. 

 



CONCLUSIONS 

In the present work we have performed a combined simulation based on classical MD and ab initio 

FMO methods for the analysis of ligand binding in the SARS-CoV-2 Mpro-N3 complex system, thus 

finding the importance of statistical evaluation of interactions by employing a thousand of dynamically 

fluctuating structures. Recent studies17,20-23,53,55-56) concerning SARS-CoV-2 proteins have shed light 

on the importance of “dynamic” aspects, and our quantum-chemical work accords with this direction. 

As demonstrated here, the combination of MD and FMO approaches employing a thousand of sampled 

structures has now been made feasible by using massive computing resources such as the Fugaku 

supercomputer. The present approach can thus provide a computational way to satisfy the demands 

that the ligand-residue interactions should be described with quantum chemical accuracy and in a 

dynamical manner, while the accomplishment of fully ab initio molecular dynamics would be an 

ultimate goal.  

As novel computational tools in statistical analysis, we have proposed in this study the use of PCA 

and SVD to systematically elicit the dynamical characteristics in ligand-residue IFIEs. Applied to the 

SARS-CoV-2 Mpro-N3 system, we have found dynamically correlated, collective interactions between 

ligand and surrounding residues, whose behaviors are mostly consistent with those observed in the 

literature but containing some new findings. We consider this proposed methodology will extend the 

conventional FMO-based “static” analyses of ligand binding such as VISCANA57) and similar 



approaches37,58) to the “dynamic” ones, thus enabling the dynamical descriptions of interaction 

fingerprint to represent the interactions between ligand and multiple residues for pharmaceutical 

applications. Furthermore, we can anticipate more general utility of the present method such as the 

application to the dynamical descriptions of networks composed of hydrogen bonding39) and 

dispersion interactions in molecular systems, which are essential for molecular designs including drug 

discovery. For instance, we may think of the design of inhibitors that can utilize the dynamical 

interactions with multiple sites of target protein.  
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Table 
 
Table 1. Top five residues with higher magnitudes (denoted in parentheses) in each eigenvector for 

SV1-SV5 in SVD analysis, along with those by the total weight, eq. 6. The results for the presence 

and absence of the covalent bond with C145 are shown in upper and lower panels, respectively. 

 

Total H163 Q189 L167 M165 E166 

 

SV1 
H163 
(0.489) 

L167 
(0.412) 

M165 
(0.397) 

Q189 
(0.384) 

H41 
(0.319) 

SV2 
Q189 
(0.815) 

E166 
(-0.499) 

H163 
(-0.169) 

L167 
(-0.144) 

T190 
(-0.094) 

SV3 
E166 
(0.764) 

Q189 
(0.399) 

M165 
(-0.314) 

H163 
(-0.236) 

L167 
(-0.176) 

SV4 
A191 
(-0.759) 

H163 
(0.420) 

Q192 
(0.380) 

L167 
(-0.225) 

P168 
(0.108) 

SV5 
L167 
(0.558) 

A191 
(-0.482) 

A193 
(0.383) 

Q192 
(-0.347) 

H163 
(-0.206) 

 
 

Total Q189 L167 M165 H41 H163 

 

SV1 
Q189 
(0.572) 

L167 
(0.510) 

H41 
(0.335) 

H163 
(0.269) 

E166 
(0.259) 

SV2 
Q189 
(0.641) 

M165 
(-0.541) 

H163 
(-0.368) 

L167 
(-0.233) 

E166 
(-0.204) 

SV3 
Q189 
(0.495) 

M165 
(0.462) 

H41 
(-0.390) 

A191 
(-0.363) 

L167 
(-0.287) 

SV4 
A191 
(-0.717) 

M165 
(-0.386) 

S46 
(0.269) 

H41 
(0.257) 

A193 
(0.241) 

SV5 
H163 
(-0.584) 

Q192 
(0.362) 

E166 
(0.340) 

S46 
(0.288) 

N142 
(0.219) 

  



 
Figure 1. Structure of Mpro-N3 complex (PDB entry: 6LU7) by two ways in which Mpro is depicted 

by ribbon (left) and molecular surface (right) representations. The N3 ligand is depicted by the 

sphere representation. 

 

  



 
Figure 2. Schematic representations for PCA (upper panel) and SVD (lower panel). 

 
  



 (a) 

 (b) 

Figure 3. Superimposed view of snapshots from the 100 ns MD trajectory sampled with 10 ns intervals 

for the N3 ligand and crucial residues in pharmacophore. (a) The N3 ligand which is covalently bonded 

to C145 is depicted in yellow color. (b) The N3 ligand depicted in yellow is not covalently bonded to 

C145. 

  



 (a) 

 (b) 

Figure 4. IFIE values of leading residues interacting (larger than -10 kcal/mol of total stabilization) 

with Mpro in the cases of the presence (a) and absence (b) of the covalent bond between N3 and C145. 

Blue and orange bars correspond to the single value by “static” structure and the averaged value by a 

thousand of “dynamic” structures, respectively. Vertical line for the latter refers to the standard 

deviation. 

  



 (a) 

 (b) 

Figure 5. Averaged PIEDA values of crucial residues interacting (more than -10 kcal/mol of total 

stabilization) with Mpro over a thousand of “dynamic” structures in the cases of the presence (a) and 

absence (b) of the covalent bond between N3 and C145. Blue, orange, gray and yellow bars correspond 

to ES, EX, CT and DI terms, respectively. Vertical line refers to the standard deviation. 

  



 

Figure 6. Distribution of eigenvalues in PCA in the presence of the covalent bond to C145. Solid curve 

represents the cumulative contribution. 

 

 



 

 



 

 

Figure 7. Residue components for the eigenvectors of PC1-PC5 in PCA in the presence of the covalent 

bond with C145. 

  



 
Figure 8. Distribution of eigenvalues in PCA in the absence of the covalent bond to C145. Solid 

curve represents the cumulative contribution. 

 

 

 
 



 

 

 



 

 
Figure 9. Residue components for the eigenvectors of PC1-PC5 in PCA in the absence of the 

covalent bond with C145. 

  



 

 

 
Figure 10. Temporal components (U) for the eigenvectors of SV1-SV3 in SVD in the presence of the 

covalent bond to C145. 

  



 

 

 
Figure 11. Temporal components (U) for the eigenvectors of SV1-SV3 in SVD in the absence of the 

covalent bond to C145. 

  



(a) 

 

(b) 

 

Figure 12. Distributions of eigenvalues in SVD in the presence (a) and absence (b) of the covalent 

bond to C145. Solid curves represent the cumulative contributions. 
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Figure S1. Fragmentation of N3 ligand. The fragmentation point is identified by orange triangle 

indicating the direction of bond detachment atom (BDA) to bond attachment atom (BAA). There is a 

covalent bond to C145.  

 

  



 

Figure S2. RMSDs for 100 ns MD in the presence of the covalent bond between N3 ligand and C145 

residue of Mpro. Upper panel: Cα atoms in Mpro. Lower panel: C and N atoms in N3. 

  



 

Figure S3. RMSDs for 100 ns MD in the absence of the covalent bond between N3 ligand and C145 

residue of Mpro. Upper panel: Cα atoms in Mpro. Lower panel: C and N atoms in N3. 

  



 

 



 

 

 

  



 

 
Figure S4. PCA results for stage 1 (0-30 ns) in the case of the absence of the covalent bond between 

N3 and C145. Following the distribution of the eigenvalues, the residue components for the 

eigenvectors of PC1-PC5 are illustrated. 

  



 
 

 
 



 

 

 



 

 
Figure S5. PCA results for stage 2 (30-100 ns) in the case of the absence of the covalent bond 

between N3 and C145. Following the distribution of the eigenvalues, the residue components for the 

eigenvectors of PC1-PC5 are illustrated. 
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