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Abstract

While many machine learning methods, particularly deep neural networks, have

been trained for density functional and quantum chemical energies and properties, the

vast majority of these methods focus on single-point energies. In principle, such ML

methods, once trained, offer thermochemical accuracy on par with density functional

and wave function methods but at speeds comparable to traditional force fields or

approximate semiempirical methods. So far, most efforts have focused on optimized

equilibrium single-point energies and properties. In this work, we evaluate the accu-

racy of several leading ML methods across a range of bond potential energy curves and

torsional potentials. Methods were trained on the existing ANI-1 training set, calcu-

lated using the ωB97X / 6-31G(d) single points at non-equilibrium geometries. We find

that across a range of small molecules, several methods offer both qualitative accuracy

(e.g., correct minima, both repulsive and attractive bond regions, anharmonic shape,

and single minima) and quantitative accuracy in terms of the mean absolute percent

error near the minima. At the moment, ANI-2x, FCHL, and a new libmolgrid-based

convolutional neural net show good performance.
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1 Introduction

Machine learning (ML) methods have been proposed as surrogates for time-consuming quan-

tum mechanical calculations, such as density functional and first-principles methods, for their

rapid prediction potential once trained.1–11 For ML to be a successful surrogate, the meth-

ods need to be able to perform property predictions adequately for optimized geometries,

capture not just the well of the potential energy curve but also the anharmonicity that force

field methods fail to capture, and appropriately handle multiple conformations of the same

molecule.

Numerous studies have shown the proficiency of ML methods to predict thermochemical

parameters at already optimized geometries utilizing various types of representations and

neural network structures.2,12 Early representations, such as Coulomb Matrix13 and bag-of-

features,14,15 demonstrated success in property predictions with further iterations of repre-

sentations such as FCHL16,17 continuing to improve the property prediction at optimized

geometries. These ML methods are typically trained on the QM713,18 or QM919,20 data sets

consisting of optimized molecules with up to 7 or 9 heavy atoms respectively and help to

demonstrate ML’s potential as a surrogate.

Additional deep neural network (DNN) methods, like ANI3–5,21 and BAND NN,22 used

training data beyond optimized single points to better evaluate the potential surface for

dynamics and geometry optimizations. These methods utilize the ANI-1 data set,23 or

ANI-2 data set in the case of ANI-2x, for training as it contains both equilibrium and

non-equilibrium structures of up to eight heavy atoms containing H, C, N, and O with the

non-equilibrium structures being generated from normal-mode sampling. The training set

for ANI-2x adds the additional elements of F, Cl, and S while providing additional torsion

sampling data.5 The BAND NN model uses a subset of the ANI-1 data set that only uses non-

equilibrium geometries with energies within 30 kcal/mol of the equilibrium energy. Although

these methods have been shown to perform adequately in their respective papers, the range
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for bond stretch applications has been limited to the harmonic portion of the potential energy

curve, rarely examining the potential energy curves further from equilibrium.

Recent work has expanded the knowledge on ML performance for predicting and ranking

thermally accessible conformations.24 Though ML was not tasked with large bond stretches

as being done in this work, the ability of ML methods to rank conformational energy was only

comparable to that of semiempirical methods. While this is not equivalent to the accuracy

of density functional (DFT) or ab initio electronic structure methods, the accuracy ML is

desired to be a surrogate of, ML method performance shows promise with future work on

models and training sets improving future performance.

For ML to become a viable replacement for current methods, ML needs to achieve optimized

geometries and predict properties without relying on force field (FF) methods. Most FFs

have been refined for biomolecules and can struggle with non-covalent and steric interactions

for applications such as conjugated polymers. While these issues can be lessened with specific

parameterization,25,26 geometries of FFs generally can be less than ideal.27 ML trained on

higher levels of theory ideally captures these non-covalent interactions and provides better

initial optimized geometries.

With the rapid adoption of ML, there has been a growing desire to use ML in molecular

dynamics (MD) applications to provide more accurate simulations than FFs at a much lower

cost than time-consuming quantum mechanical calculations.24 For ML to be reliable, it

needs to properly predict conformational changes that occur in MD simulations from non-

equilibrium bond stretching to torsional barriers. This work looks to examine how well the

current state of ML performs at these tasks as well as display the methods’ understanding of

chemical physics to help decide what needs to be addressed for ML to improve as a surrogate

for computationally expensive calculations.
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2 Methods

2.1 Molecules

A mixture of small and large molecules was chosen to evaluate ML performance on poten-

tial energy surfaces for a total of 17 bond stretches and 5 dihedral scans. The molecules

examined were benzene (C-C and C-H stretching), methanol, methane, CO, H2, ethylene,

water, acetylene, hydrogen cyanide, N2, ammonia, biphenyl, aspartame, sucrose, dialanine,

and diglycine. Bond stretches were evaluated every 0.1Å while dihedrals were evaluated

every 20◦ with the exception of biphenyl which was every 15◦.

2.2 Computational Methods

The reference method, ωB97X,28 was performed using Orca 4.0.129 while the force field

calculations, MMFF9430–34 and GAFF,35 were performed using Open Babel version 3.0.36

Machine learning methods and representations included ANI-1x,3,4 ANI-2x,5 BAND-NN,22

FCHL,37 Bag of Bonds (BOB),38 and Extended Connectivity Fingerprints (ECFP).39,40

Scikit-learn41 was used for kernel ridge regression (KRR) and bayesian ridge regression

(BRR) for BOB and random forest regression (RFR) with BOB and ECFP representations

while FCHL used the custom KRR in QML.

We also trained a deep convolutional neural network (Colorful CNN), an approach that has

been successfully used in protein-ligand binding affinity prediction.42,43 The input molecule

is represented as a voxelized grid of atomic densities as generated by the libmolgrid library.44

Our network has six modules separated by pooling operations each with seven convolutional

layers. Full details of the model and training procedure are provided in the Supplementary

Methods.

Due to method scaling efficiency for memory usage, a subset of the ANI-1 data set was taken

for training representations using BOB/KRR and BOB/BRR. For consistency, ECFP/RFR
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and BOB/RFR were additionally trained on this subset. The subset consists of 5 non-

equilibrium geometries for every molecule with up to 7 heavy atoms, as well as 5 non-

equilibrium geometries for half of the molecules with 8 heavy atoms, to create a training

set consisting of 33,496 molecules and 167,480 non-equilibrium geometries. All molecules

from the test set were removed from the training set. This training set was additionally

used for BOB/RFR and ECFP/RFR. An additional subset of the first 5000 non-equilibrium

geometries was used for FCHL/KRR. Increasing the training set for FCHL/KRR had a

negative impact on prediction performance so our results are with the model trained on

1000 different molecules for a total of 5000 non-equilibrium geometries.

3 Results and discussion

To illustrate the qualitative performance of potential energy surface predictions, we analyzed

both small and larger molecules outside of the ANI-1 data set used for training for each ML

method. We wish to focus on how the methods perform not only around the bond length

at the energy minima, r0, but also in the attractive and repulsive regimes to gain a better

understanding of how ML methods would behave if given less ideal starting geometries for

a task such as geometry optimization.

Table 1: Overview of machine learning performance sorted by median mean absolute percent
error (MAPE).

Methods Median MAPE1 r0
2 Repulsive Wall3 Attractive Forces4 Minima after 2Å5

ωB97X 6-31G(d) 0 17 17 17 0
ANI-2x 0.0021 17 13 17 12
BOB/BRR 0.2266 0 5 5 9
FCHL/KRR 0.2547 10 16 15 13
Colorful CNN 0.2555 16 17 17 13
ANI-1x 0.2649 16 11 17 5
BOB/KRR 0.3131 1 9 11 13
BOB/RFR 43.8809 2 3 0 8
BAND-NN 99.3095 11 9 56 57

MMFF94 100.0497 14 17 0 0
GAFF 100.1328 13 17 0 0
ECFP/RFR 193.3704 0 0 0 0

1Median mean absolute percent error over all 17 molecules from r0 ± 0.25Å.
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Each ML method was evaluated on the criteria demonstrated in Table 1 for bond stretches.

The median mean absolute percent error (MAPE) was calculated from the energy values

ranging from r0 ± 0.25Å for the molecules to determine how accurate and precise the ML

predicted energies are. Additional evaluation criteria included the accuracy of r0 prediction

for each molecule, the repulsive wall, the attractive forces, and the incidences of additional

minima past 2Å.

While methods like BOB/BRR and BOB/KRR had the second and fifth-lowest median

MAPE, their ability to predict the geometry with the lowest energy, a repulsive wall, and

attractive forces was quite poor compared to the other top methods based on MAPE. Other

methods utilizing RFR also performed poorly, often predicting stepwise energy surfaces seen

in Figure 1, thus being incapable of consistently predicting r0, attractive, or repulsive forces.

This is seen in Figure 1b when the bond breaking causes the only change in the ECFP

representation and leads to the higher energy. Other ML methods such as ANI-1x, ANI-

2x, FCHL, and Colorful CNN were able to accurately predict energies while also predicting

the repulsive and attractive forces of the molecule. In short, while random forest methods

may have accuracy at single-point properties, they prove inherently inaccurate for potential

energy and should be avoided.

2The number of molecules the method correctly predicted the lowest energy bond length.
3The number of times the method predicted a repulsive wall as the bond was compressed.
4The number of times the method predicted attractive forces after r0.
5How many methods predicted a local or global minima after 2Å.
6BAND-NN regularly would not predict energies for geometries with a bond stretch of 2Å or greater.
7BAND-NN regularly would not predict energies for geometries with a bond stretch of 2Å or greater.
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Figure 1: N2 potential energy curves for ML methods utilizing random forest regression for
predictions using (a) BOB and (b) ECFP for the ML descriptors.

A possible advantage for the ANI-1x and ANI-2x models is that some molecules in our

test evaluation are found in the ANI-1x training set. In the training of the other methods,

molecules in our test set were purposefully left out of the training set but may be present in

the ANI-1x and ANI-2x model. For that reason, we will focus the remainder of our discussion

on molecules outside of the ANI-1 training set, examining the best overall performers, ANI-

1x, ANI-2x, FCHL, and Colorful CNN from Table 1. The performance of all methods is

included in the supplemental information.

Figure 2a displays the performance of ANI-1x, ANI-2x, Colorful CNN, and FCHL on the

N-N bond stretch of N2. While each of these ML methods predicts the correct r0, there are

issues in the prediction of the potential energy curve. ANI1-x, ANI-2x, and Colorful CNN

fail to accurately depict the repulsive region with ANI-2x lowering in energy as the bond was

compressed to 0.6Å. FCHL depicts the repulsive wall but inaccurately predicts the energy

as the bond is compressed. All four methods accurately determined the attractive forces to

about 2Å with ANI-2x matching ωB97X to 2.25Å.

The H-H stretch of H2 in Figure 2b indicates one possible issue for ML. All four meth-

ods performed poorly with ANI-2x being the only method to obtain the correct r0. This

performance is likely due to the absence of H-H bonding data within the training set. H2,

while a unique bond, demonstrates the need to be careful when applying ML to molecules

7



or chemistry completely outside the scope of the training set.

Figure 2c and 2d demonstrate the prediction capability of these ML methods on bond

stretches for molecules larger than the training set. FCHL was only able to accurately

capture the shape of the potential energy curve for dialanine, failing to capture the well of the

potential energy curve for aspartame, perhaps from the difficulties training the entire ANI-1

set. ANI-1x, ANI-2x, and Colorful CNN retain both repulsive and attractive information

while having accurate energies to that of ωB97X for both aspartame and dialanine. These

methods do continue to exhibit difficulty in accurately predicting bond compression under

1Å as well as bond stretching after 2Å.
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Figure 2: Bond stretch potential energy curves for (a) N2, (b) H2, (c) aspartame, (d) dialanine
using total SCF energies in kcal/mol.

For bond stretches, ANI-1x, ANI-2x, Colorful CNN, and FCHL models show promise with

initial training indicating these methods can accurately predict the bottom of the potential

energy well. While force fields such as MMFF94 or GAFF can be used to obtain optimized
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geometries near this regime, ultimately ML methods should exhibit accuracy not only at

single-point energy evaluation tasks, but at qualitatively and quantitatively accurate poten-

tial energy curves. Further training on long-range attractive forces might enable ML models

to evaluate non-covalent interactions.

As an example, further evaluations were carried out on energy predictions from frozen-rotor

dihedral angle scans for biphenyl and sucrose. Table 2 compiles the predicted lowest energy

angle for these molecules as well as the barrier energies from −45◦ to 0◦ for biphenyl and 0◦

to −60◦ for sucrose.

ANI-1x and ANI-2x properly predict the lowest energy angle for biphenyl while Colorful CNN

predicts −45◦ to be a local, but not global, minima. FCHL improperly predicts rotation

energies as seen in Figure 3a, predicting 0◦, 180◦, and −180◦ to be the lowest energy

dihedrals. All of the methods over-predicted the height of the energy barrier for biphenyl.

For sucrose, all four methods correctly predicted the lowest energy angle. ANI-1x best

captures the energy of the dihedral angles, seen in Figure 3b, with ANI-2x and Colorful

CNN under-predicting the energy for most angles. Unlike with biphenyl, FCHL captures the

shape of the torsion scan for sucrose but vastly over predicts the energies at each angle.

Table 2: The ML prediction of θ0 and the barrier energy between the lowest and high-
est energy dihedrals for biphenyl and sucrose compared to the reference ωB97X 6-31G(d)
method.

Methods
Biphenyl Sucrose

θ0 (◦) Barrier Energy (kcal/mol) θ0 (◦) Barrier Energy (kcal/mol)
ωB97X 6-31G(d) -45 3.54 0 2.45× 103

ANI-1x -45 3.95 0 2.50× 103

ANI-2x -45 4.16 0 1.93× 103

Colorful CNN -135 5.49 0 9.46× 102

FCHL/KRR 180 5.52 0 9.73× 104
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Figure 3: Dihedral energy predictions for (a) biphenyl and (b) sucrose in kcal/mol.

Dihedral scans demonstrate how small conformational changes in the molecule can affect the

potential energy surface. The 2D torsion scans in Figures 4 and 5 compare ML performance

to that of ωB97X and FFs, MMFF94 and GAFF. ANI-1x, ANI-2x, and Colorful CNN retain

the resolution of some of the higher energy φ and ψ between −100◦ to 100◦ while FCHL

predicts these to be lower energy confirmations similar to both FF methods. In lower energy

conformations both BAND and BOB/KRR methods over-estimate these energy differences.
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Figure 4: 2D torsion scans of dialanine in kcal/mol unless otherwise stated. Note that color
schemes differ, due to large differences in energy scales.
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Figure 5: 2D torsion scans of diglycine in kcal/mol unless otherwise stated. Note that color
schemes differ, due to large differences in energy scales.

The additional torsion training in ANI-2x provided a beneficial reduction in the MAE for

both dialanine and diglycine, seen in Figure 3, by roughly 35% from ANI-1x. Additional

torsion sampling for methods Colorful CNN and FCHL should also provide a decrease in

MAE for predicting dihedral angle energies. This could improve accuracy for the Colorful

CNN method that is already qualitatively adequate.

As an example, the ANI-2x training indicates additional torsion sampling, and the method

shows improved accuracy over ANI-1x. Providing additional torsion sampling training sets
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Table 3: Mean absolute error (MAE) in kcal/mol of 2D torsion scans for the top performing
methods.

Methods Dialanine MAE ∆Energy (kcal/mol) Diglycine MAE ∆Energy (kcal/mol)
ANI-2x 1.89 1.71
ANI-1x 3.01 2.52
Colorful CNN 7.10 6.07
FCHL/KRR 252.17 200.86

should improve ML method accuracy across multiple methods.

A prevailing pitfall of ML methods stems from the training set. At the end of the day,

the machine learning method is only as good as the training set. As seen with H2, models

struggle with chemical motifs outside of the training set. Current ML training sets largely

consist of a subset of the molecules generated in the GDB-1720 set, typically containing

at least H, C, O, and N. While these training sets are a noble starting point for covering

small organic molecules, they lack a diversity of atom species needed for applications such

as protein binding and DNA sequencing. Additional data sets such as PubChemQC45 could

help to further expand the snapshot of chemical space ML methods are trained on.

4 Conclusions

Much work has focused on the use of machine learning methods as surrogates for computationally-

intensive density functional and quantum chemical methods. Often such efforts train and

test on single-point energies of optimized structures. An important step is to evaluate ML

methods across potential energy curves and surfaces for tasks such as geometry optimization.

ML methods such as ANI-2x, Colorful CNN, and FCHL perform decently near the well of the

potential energy curve while struggling to properly predict repulsive regions and particularly

long-range attractive forces. Further improvements through the addition of stretched bonds

in training data should help to improve model performance in this area. Increased torsion

sampling for training ANI-2x improved the model’s performance over ANI-1x and should

provide improvements for models like Colorful CNN and FCHL.

13



In general, there is still the issue of applying ML to the prediction of molecules too far

outside the scope of the training set. The inclusion of additional elements and an increase in

diversity of molecules in the training set from diverse data sets such as PubchemQC should

alleviate some of these challenges.

Acknowledgement

We acknowledge the National Science Foundation (CHE-1800435) for support and the Uni-

versity of Pittsburgh Center for Research Computing through the computational resources

provided.

Supporting Information Available

Figures of all bond stretch potential energy curves, dihedral potential energy scans for all

molecules and methods considered. All raw data, Python notebooks, and trained Colorful

CNN model can be found at https://github.com/hutchisonlab/ml-benchmark.

References

(1) Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-

Dimensional Potential-Energy Surfaces. Physical Review Letters 2007, 98 .

(2) Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.;

Vinyals, O.; Kearnes, S.; Riley, P. F.; von Lilienfeld, O. A. Prediction Errors of Molec-

ular Machine Learning Models Lower than Hybrid DFT Error. Journal of Chemical

Theory and Computation 2017, 13, 5255–5264, PMID: 28926232.

(3) Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: an extensible neural network potential

14



with DFT accuracy at force field computational cost. Chemical Science 2017, 8, 3192–

3203.

(4) Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E. Less is more: Sam-

pling chemical space with active learning. The Journal of Chemical Physics 2018, 148,

241733.

(5) Devereux, C.; Smith, J. S.; Davis, K. K.; Barros, K.; Zubatyuk, R.; Isayev, O.; Roit-

berg, A. E. Extending the Applicability of the ANI Deep Learning Molecular Potential

to Sulfur and Halogens. Journal of Chemical Theory and Computation 2020, 16, 4192–

4202, PMID: 32543858.

(6) von Lilienfeld, O. A.; Burke, K. Retrospective on a decade of machine learning for

chemical discovery. Nature Communications 2020, 11 .

(7) Dral, P. O. Quantum Chemistry in the Age of Machine Learning. The Journal of Phys-

ical Chemistry Letters 2020, 11, 2336–2347.

(8) Qiao, Z.; Welborn, M.; Anandkumar, A.; Manby, F. R.; Miller, T. F. OrbNet: Deep

learning for quantum chemistry using symmetry-adapted atomic-orbital features. The

Journal of Chemical Physics 2020, 153, 124111.

(9) Sinitskiy, A. V.; Pande, V. S. Deep Neural Network Computes Electron Densities and

Energies of a Large Set of Organic Molecules Faster than Density Functional Theory

(DFT). 2018.

(10) Sinitskiy, A. V.; Pande, V. S. Physical machine learning outperforms ”human learning”

in Quantum Chemistry. 2020.
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