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Abstract

Although Quantum Mechanical/Molecular Mechanics (QM/MM) methods are now

routinely applied to the studies of chemical reactions in condensed phases and enzy-

matic reactions, they may confront technical difficulties when the reactive region is

varying over time. For instance, when the solvent molecules are directly participating

in the reaction, the exchange of water molecules between the QM and MM regions

may occur on a time scale that is comparable to that of the reaction. Several adaptive

QM/MM schemes have been proposed to cope with this situation. However, these

methods either significantly increase the computational cost or introduce artificial re-

straints to the system. In this work, we developed a novel adaptive QM/MM scheme

and applied it to a study of a nucleophilic addition reaction. In this scheme, the config-

uration sampling was performed with a small QM region (without solvent molecules),

and the thermodynamic properties under other potential energy functions with larger

QM regions (with a different number of solvent molecules and/or different level of QM

theory) are computed via extrapolation using the reference-potential method. Our sim-

ulation results show that this adaptive QM/MM scheme is numerically stable, at least

for the case studied in this work. Furthermore, this method also offers an inexpensive

way to examine the convergence of the QM/MM calculation with respect to the size

of the QM region.

Introduction

Hybrid Quantum Mechanical/Molecular Mechanical (QM/MM) methods are nowadays well

accepted for the simulations of chemical reactions in condensed phases and enzymatic reac-

tions.1–8 However, applications of these methods are always hindered by their steep compu-

tational expense and complexity in domain partitioning. First, in order to determine the

reaction mechanism, a long molecular dynamics simulation at ab initio levels is needed, from

which statistical properties can be extracted reliably. With a sub-fs time step for propaga-

tion, 106 to 109 steps of energy and force evaluations are required to reach a ns to µs time
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scale. Second, the size of the QM region matters. Defining the QM region is often based

on chemical intuition and is a compromise between accuracy and efficiency. A small QM

region may lead to systematically biased results.9–13 Last but not the least, the partitioning

of the whole system into the QM and the MM regions is nontrivial, especially when solvent

molecules are strongly involved in the reactions. By including some of the solvent molecules

near the solute molecule into the QM region can capture the quantum mechanical interaction

between the solute and the solvent molecules. However, it brings another technical difficulty

in maintaining dynamic continuity when the exchange of solvent molecules between the QM

and the MM regions takes place, especially when an abrupt on-the-fly repartitioning scheme

of the QM and MM regions is adopted. In order to solve this difficulty, various schemes of

adaptive QM/MM methods have been proposed,14–17 which can be categorized broadly into

restrained QM/MM schemes18–20 and adaptive QM/MM schemes.21–28 In the former class of

schemes, solvent exchange between the QM and the MM regions is prevented by applying a

restraining potential. However, the evolution of the system under study is no longer under

a realistic Hamiltonian due to the introduction of an artificial restraint. In the adaptive

QM/MM scheme, an effective QM/MM potential is adopted by a weighted average of the

potentials from multiple means of partitioning of the system with varying combinations of

solute and solvent molecules. This may significantly increase the computational expense.

Fortunately, if we are only interested in thermodynamic properties, for instance, the free

energy profile, instead of real dynamics, these properties can be calculated indirectly via the

reference-potential approach,29–32 of which the idea has been applied to many studies.33–57

Specifically, the QM/MM partitioning with a fixed number of solvent molecules in the QM

region, although the specific water molecules may vary, has a constant functional form for the

Hamiltonian, say H1. The exchange of solvent molecules between the QM and MM regions

is just a permutation of the state before the exchange takes place. Another partitioning

scheme, with no solvent molecules in the QM region, adopts a Hamiltonian H0, which serves

as the reference potential. The ensemble average of an operator X under H1 can be computed
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from the ensemble of H0 via reweighting58

〈X〉1 =
∫
Xe−βH1 dR∫
e−βH1 dR

=
∫
Xeβ(H0−H1)e−βH0 dR∫
eβ(H0−H1)e−βH0 dR

=

〈
Xeβ(H0−H1)

〉
0

〈eβ(H0−H1)〉0
,

where 〈·〉 denotes the ensemble average or expectation, and the subscript 0 or 1 indicates the

Hamiltonian under which the ensemble is calculated. Here, eβ(H0−H1)

〈eβ(H0−H1)〉0
can be considered as

the weight under H1 for the configurations sampled with H0. For a generalized ensemble,

the equation can be slightly more complicated, but the idea is the same. Recently, Jia et al

proposed a reference potential method for the free energy calculations at an expensive level

of theory using a unique Boltzmann ensemble.41 Li et al extended this method to mixed en-

sembles from, but not limited to, umbrella sampling (US)58 simulations.47 In these methods,

a long simulation using a less expensive Hamiltonian is performed to explore the phase space,

and from this simulation, a free energy profile corresponding to this Hamiltonian can be esti-

mated using well-established postprocessing methods such as Multistate Bennett Acceptance

Ratio (MBAR)59,60 and the Weighted Histogram Analysis Method (WHAM).61–63 Next, a

correction in the free energy from this inexpensive Hamiltonian to the Hamiltonian of in-

terest is calculated using thermodynamic perturbation (TP).64 In this way, expensive direct

simulations at the high level Hamiltonian can be avoided. When calculating the correction

for a mixed ensemble, weight factors from the MBAR analysis should be used.47 Therefore,

the TP should be carried out with nonuniform weights for the samples. Thermodynamic

expectations of any structural properties can be computed in a similar way.47,53

In this work, we put forth a new method for the free energy calculations with an

adaptive QM domain for the study of the intramolecular nucleophilic addition reaction

of Me2N–(CH2)3 –CH––O (NCO) molecule utilizing the idea of energy reweighting in the

reference-potential methods. It has been shown in a previous study that explicit solvation

matters for the thermodynamic property calculations along the reaction.65 The umbrella

sampling simulations are carried out only at the semi-empirical level, specifically PM666/MM
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level, without a single water molecule in the QM region. After the simulation, the trajecto-

ries are postprocessed for semi-empirical QM/MM or ab initio QM/MM energy calculations

with a certain number of solvent molecules included in the QM region, from which the free

energy profiles at these levels are obtained. This manuscript is organized in the following

way. In the next section, the theory behind this method and the simulation setup are ex-

plained, and the results are presented subsequently with discussion. Finally, we end with a

conclusion for this study.

Method

Multistate Thermodynamic Perturbation (MsTP) Method

The MsTP method, previously known as MBAR+wTP, was proposed by Li et al.47 re-

cently. Derivation of the MsTP method has been fully presented in ref. 47. In this method,

enhanced sampling methods such as umbrella sampling simulations are conducted under a

reference (and usually inexpensive) Hamiltonian, for instance, semi-empirical (SE) QM/MM.

Thermodynamics properties under this reference Hamiltonian can be obtained using MBAR

analysis, and then corrected to the target Hamiltonian using the weighted thermodynamic

perturbation. These steps can be integrated into the MBAR formulation as explained in the

following.

With trajectories from K simulations using different potential energy functions Uk as

is typically done in Umbrella Sampling, thermodynamic properties, which depend only on

coordinates, under another potential energy function Ut can be computed via

〈A〉t =

N∑
n=1

wt(rn)A(rn)
N∑
n=1

wt(rn)
, (1)

in which N = ∑
k
Nk and Nk is the number of configurations extracted from the kth simula-
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tion, and

wt(rn) = exp [−βUt(rn)]
K∑
k=1

Nk exp [βfk − βUk(rn)]
(2)

is the unnormalized weight of configuration rn under Uk. Here, fk is known as the free energy

corresponding to Uk and can be obtained by iteratively solving the MBAR equations

fi = −β−1 ln
N∑
n=1

exp [−βUi(rn)]
K∑
k=1

Nk exp [βfk − βUk(rn)]
, ∀i = 1, . . . , K. (3)

In US, the potential energy functions used for configuration sampling are

Uk(rn) = U0(rn) +Wk(rn) (4)

where U0(r) and Wk(r) are the unbiased potential energy function and the biasing potential

for the kth simulation, respectively. Equation 2 can be rewritten as

wt(rn) = exp [−β∆Ut(rn)]
K∑
k=1

Nk exp [βfk − βWk(rn)]
, (5)

with ∆Ut(r) = Ut(r) − U0(r). Further defining the free energy ft corresponding to the

potential energy function Ut(r)

ft = −β−1 ln
N∑
n=1

wt(rn), (6)

we have the normalized weight for configuration rn under the potential energy function Ut(r)

w̃t(rn) = exp [βft − β∆Ut(rn)]
K∑
k=1

Nk exp [βfk − βWk(rn)]
, (7)
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and Eq. 1 can be simplified as

〈A〉t =
N∑
n=1

w̃t(rn)A(rn). (8)

It can be easily identified that for a single unbiased simulation with K = 1 and W = 0,

Eq. 7 can be rewritten as the normal TP equation. Therefore, the idea behind Eq. 7 can

be thought as multistate thermodynamics perturbation (MsTP). MsTP has been applied to

the calculations of free energy profiles for chemical reactions in condensed phase rendered

in both one dimensional47 and two dimensional53 reaction coordinates. The computational

expense decreases by two orders of magnitude comparing with direct QM/MM calculations

while maintaining a high accuracy.

Specifically for this adaptive QM/MM calculation, potential energy function U0(r) cor-

responds to the partitioning with a solvent-free QM region described by a semi-empirical

Hamiltonian PM6. Wk(ξ(r)) is the restraining potential on a predefined collective variable

(CV) ξ(r) that may enhance the phase space sampling in a certain region. U ′M(r) is the

potential energy function for the partitioning with M solvent molecules in the QM region

described by either a semi-empirical QM or an ab initio QM level of theory. The prime sign

here is to emphasize that the QM level of theory can be either the same as or different from

the reference Hamiltonian. If A is an indication function δ of some chosen CV ξ(r)

δ(ξm − ξ(r)) =


1, if −∆ξ/2 < ξm − ξ(r) < ∆ξ/2

0, otherwise
, (9)

we have the PMF for U ′M(r) as

FM(ξm) = −β−1 ln
N∑
n=1

ωM(rn)δ(ξm − ξ(rn)) (10)
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defined up to an additive constant, and

wM(rn) = exp [−β∆U ′M(rn)]
K∑
k=1

Nk exp [βfk − βWk(rn)]
= exp [−β(U ′M(rn)− U0(rn))]

K∑
k=1

Nk exp [βfk − βWk(rn)]
. (11)

Similarly, the PMF for U0(r) is

F0(ξm) = −β−1 ln
N∑
n=1

ω0(rn)δ(ξm − ξ(rn)), (12)

in which

ω0(rn) = 1
K∑
k=1

Nk exp [βfk − βWk(rn)]
. (13)

Random noise in the potential of mean force from finite sampling was eliminated by a

Gaussian smoothing on the density-of-states of ∆U ′M(r).67 Gaussian processes regression

(GPR) method68 is used to eliminate the statistical noise in the free energy profile from the

MsTP calculation.

Model Setup
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Figure 1: The nucleophilic addition reaction of Me2N–(CH2)3 –CH––O (NCO) molecule
studied in this work.

Me2N–(CH2)3 –CH––O (NCO) was solvated in a TIP3P water69 sphere with a radius

of 20 Å centering at the NCO molecule, which contains 1020 water molecules. The whole

system was optimized by 2000 steps of steepest descent algorithm and 3000 steps of conjugate

gradient method. The optimized structure was heated up to 300 K in 1 ns and then further
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relaxed for 10 ns. Periodic boundary condition was not applied, and the water sphere was

restrained by a soft half-harmonic potential with a force constant of 10 kcal ·mol−1 · Å−2 to

avoid evaporation. The integration time step was set to 2 fs. The nonbonded interaction was

fully counted without any truncation. The van der Waals (vdW) parameters for the NCO

molecule were taken from the general AMBER force field (GAFF)70 for the ring-opening

structure, and the AM1bcc charges from the reactant configuration were assigned to the

NCO molecule. The temperature was regulated to 300 K using the Langevin dynamics with

a collision frequency of 1 ps−1.71

Umbrella Sampling

The phase space exploration was assisted by umbrella sampling.58 The distance between

the nitrogen and carbonyl carbon atom of the NCO molecule was chosen as the CV ξ(r),

which ranges from 1.50 to 5.00 Å with an increment of 0.05 Å. Overlap matrix proposed by

Klimovich et al.72 was used to monitor the degree of overlap between adjacent simulation

windows. Extra windows were added when the overlap between neighboring windows are

insufficient, resulting in 84 windows in total. The setup of the restraint potential in each

window simulation can be found in the supporting information (SI). The central region

contains only the NCO molecule, and PM6 was used for its interaction potential. For each US

window, the whole system was optimized by 1000 steepest descent steps and 1000 conjugate

gradient steps. The relaxed system was heated up to 300 K in 100 ps, followed by a 1-

ns production simulation. The temperature was maintained at 300 K using the Langevin

dynamics with a collision frequency of 1 ps−1. The integration time step was set to 1 fs. The

configurations were saved every 1 ps for subsequent free energy analysis. The free energy

profile at this level was computed using the MBAR analysis method. After that, single point

energies under PM6/MM and ωB97X-D73/6-31+G(d,p)/MM levels were obtained for the

MsTP calculations. For the single point energy calculations, the QM region was augmented

with M = 0, 2, 3, or 4 water molecules that are closest to the oxygen atom in the carbonyl
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group for each snapshot. The propagation of the molecular dynamics simulations and single

point energy calculations were carried out using the AMBER 18 package suite.74 Interfacing

with Gaussian 16 package75 was utilized when ωB97X-D energy calculations were requested.

Results and Discussion

Potential of Mean Force at the PM6 Levels

The free energy profiles at the PM6 level are shown in Fig. 2. Since in the US simulations

the QM region had no water molecules included, the uncertainty of the free energy profile

is very small. The free energy profile shows a shallow well at dCN = 4.54 Å for the reactant

but a deep well at dCN = 1.66 Å for the product. The barrier for the forward reaction is 3.4

kcal/mol, and the reaction free energy is 4.2 kcal/mol. By including two water molecules into

the QM region, the free energy profile shows only small difference from that with a solvent-

free QM region. The locations of the reactant and the product are nearly unchanged, with

the new locations being dCN = 4.52 Å and dCN = 1.66 Å for the reactant and the product,

respectively. The barrier for the forward reaction becomes 3.5 kcal/mol, and the reaction

free energy is 4.3 kcal/mol. The PM6 free energy profile with two water molecules in the QM

region has already reached convergence by comparing it with those enveloping more water

molecules into the QM region. The results indicate that under the PM6 level of theory, the

solvent molecules play a role as an electrostatic perturbator to the NCO molecule that only

weakly tunes the reaction. As shown in Fig. S1, the magnitude of charge transferred from

the solute molecule to the solvent is smaller than 0.1e, even when the C-N bond has formed.

Potential of Mean Force at the DFT Levels

Extrapolation to the DFT/MM level using the US trajectories from the PM6/MM simula-

tions is also possible, and the free energies profiles are shown in Fig. 3. Similar to the results
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Figure 2: Free energy profiles at the PM6 levels with different numbers of water molecules
in the QM region. The shaded areas are the 95% confidence intervals.

at the PM6/MM level, the locations of the reactant, the products and the transition states

are nearly independent of the number of water molecules in the QM region. Without water

molecules in the QM region, the free energy barrier for the forward reaction and the reaction

free energy are 2.0 kcal/mol and -1.6 kcal/mol, respectively. Both of them are much smaller

than those under the PM6/MM level of theory in their absolute values. When two water

molecules are added to the QM region, the free energy profile shows large deviations from the

one at the same level of theory but with no solvent molecules in the QM region, especially at

the product side. When solvent molecules in the MM region are represented as background

charges that polarize the electronic structure of the QM region, charge transfer is not allowed

between the QM solute molecule and the MM solvent molecules. When two nearest solvent

molecules are included in the QM region, the water molecules can accommodate the extra

electrons around the oxygen atom in the carbonyl group, especially after the formation of

the C–N bond. Therefore, the product is stabilized by 1.6 kcal/mol, and the reaction free

energy becomes -3.3 kcal/mol. The free energy barrier for the forward reaction increases
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to 2.4 kcal/mol. Adding more water molecules into the QM region does not significantly

change the profile. With three water molecules in the QM region, the reactant and the

product are located at dCN = 4.52 Å and 1.64 Å, and the free energy barrier and the reaction

free energy are 2.3 kcal/mol and -3.3 kcal/mol. With four water molecules in the QM region,

the reactant and the product are located at dCN = 4.50 Å and 1.66 Å, and the free energy

barrier and the reaction free energy are 2.1 kcal/mol and -3.1 kcal/mol. Considering the

uncertainties in the free energy profiles, these numbers are statistically identical. Therefore,

when two water molecules are included in the QM region, the free energies have converged.
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Figure 3: Free energy profiles at the DFT levels with different numbers of water molecules
in the QM region. The shaded areas are the 95% confidence intervals.

The variations of the CM5 charges76 of the polar atoms in the NCO molecule during

the reaction are shown in Fig. 4, with the atomic charges of the bonded hydrogen atoms

merged into those of the heavy atoms. It shows that when the nitrogen atom approaches

the carbon atom in the carbonyl group, the lone pair electrons of the nitrogen atom become

shared electrons between the nitrogen atom and the carbon atom, and push the shared

electrons in the carbonyl group to the oxygen side. Some portion of the electrons drifts
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away from oxygen atom in the carbonyl group to the water molecules hydrogen-bonded with

the carbonyl group. As a results, the CM5 charge of the nitrogen atom goes up (becomes

less negative) by about 0.187e, that of the oxygen atom in the carbonyl group goes down by

about 0.162e, and the four water molecules near the carbonyl oxygen atom accept about 0.228

electrons altogether. Since the carbonyl carbon atom accepts electrons from the nitrogen

atom but donates electrons to the oxygen atom, its CM5 charge decreases by only 0.074e.

It agrees with the previous observation of the N+|C–O– pattern.77 Since the bond order

between the carbon and the oxygen atom in the carbonyl group decreases, the bond length

increases during the reaction, as can be seen in Fig. 5. In the reactant region, the CO bond

distance remains around 1.22 Å. When the distance between the nitrogen atom and the

carbon atom is smaller than 3.0 Å (on the product side), the CO bond distance goes up

quickly.
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Figure 4: Alternations of atomic CM5 charges along the reaction at the DFT/MM level with
4 water molecules in the QM region. The shaded areas are the 95% confidence intervals.

If we define a buffer region between the QM and the MM regions, this method can be

straightforwardly combined with the permuted adaptive partitioning (PAP) scheme22 by
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Figure 5: Variations of the C––O bond length along the reaction at the DFT/MM level with
4 water molecules in the QM region. The shaded area is the 95% confidence interval.

setting the PAP Hamiltonian at a certain QM level of theory as the target Hamiltonian.

In spite of its rigor, PAP partition scheme is computationally very demanding and scales

poorly with the size of the buffer region. Therefore, only one permutation is considered in

this work, in which the nearest M solvent molecules are bracketed into the QM region. The

consequence is the loss of the detailed balance and the continuity of the trajectory because

of the introduction of human intervention in picking the water molecules to be included in

the QM region. Other partition schemes can be adopted. However, as shown in Fig. S2, the

permutation we have used (bracketing the nearest M solvent into the QM region) in this

work has the largest impact on the free energy change from the reactant to the product, since

it can best relax the extra electron density around the oxygen atom in the NCO molecule

once the C–N bond has formed. While the other scheme (with the 2nd and 3rd nearest

water molecules in the QM region) underestimates the reaction free energy, due that the

magnitude of the electron transfer from the NCO molecule to the solvent is underestimated,

especially at the product side.
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Conclusion

In this work, we proposed a novel method for adaptive QM/MM simulations of chemical

reaction in a homogeneous environment, which is based on the reference-potential method

and can be easily implemented. With this method, extrapolations to a different level of

theory or/and to a different size of QM region are made possible. The uncertainty increases

with the “magnitude” of the extrapolation. Increasing the number of water molecules being

bracketed into the QM region increases the standard deviation of the potential of mean

force. Fortunately, this numerical difficulty can be easily solved by extending the length

of the simulation at the low level of theory. This method also offers a convenient way to

check the convergence of the QM/MM calculations with respect to the size of the QM region

even in heterogeneous but invariant embedding environment. Semiempirical methods such

as PM6 should be used with care, due to the difficulty in handling charge transfer effect with

minimum basis sets.
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