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ABSTRACT  

 

The double layer at the solid/electrolyte 

interface is a key concept in 

electrochemistry. Here, we present an 

experimental study combined with 

simulations, which provides a molecular 

picture of the double-layer formation in 

operando processes.  By THz spectroscopy we are able to follow the stripping off of the 

cation/anion hydration shells for a NaCl electrolyte at the Au surface when decreasing/increasing 

the bias potential. While Na+ is attracted toward the electrode already at the smallest applied 

negative potentials, stripping-off of the Cl- hydration shell is observed only at higher potential 

values. These phenomena are directly measured by in operando THz spectroscopy with ultra-bright 

synchrotron light as a source and rationalized by accompanying molecular-dynamics simulations 

and electronic-structure calculations.  
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INTRODUCTION 

One of the most challenging global frontiers is the economic transition towards renewable energy 

technologies and recycling of waste into valuable chemicals. Most routes to tackle these efforts 

and develop “green” processes involve electrochemistry. These range from battery, supercapacitor 

and fuel cell technologies (1), to corrosion and solar cells (2), to electrochemical water splitting,(3) 

all the way to using electric power for selective reduction of  CO2  to  form  synthetic renewable 

fuels and valuable chemicals (4). Each of these applications involves electron transfer across the 

electrode/solution interface and is therefore governed by interfacial chemistry. Thus, all major 

efforts rely on increasing the speed and selectivity of interfacial reactions. This holds for 

electrocatalysis, as much as for batteries.   

The fundamental principles governing interfacial chemistry have been established decades ago. 

Marcus theory and the Butler-Volmer formalism describe the general principles of electrochemical 

reaction kinetics, based either on looking at the solvation of reactants, intermediates and products 

or on the activated complex formed upon electron transfer, respectively. In parallel, the Mott-

Schottky equation for the depletion layer allows to predict on macroscopic bases the capacitive 

behaviour at the semiconductor/electrolyte interface (5). In reality, however, very little is known 

at the molecular level on the structure and solvation state of the reacting species and the way they 

are activated directly at the electrode, due to lack of a microscopic description of the double layer 

arising at the solid/electrolyte interface. Several experiments (6-8) showed the validity of the 

Gouy-Chapman-Stern-Grahame model (GCS) for the description of solid/electrolyte interfaces at 

a macroscopic level. According to the GCS model (9), the charged electrode is in contact with the 

Inner Helmholtz Plane (IHP), composed of dehydrated immobile ions specifically bound to the 

surface. The Outer Helmholtz Plane (OHP), consisting of hydrated ions, follows the IHP, which is 
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the diffusive layer with mobile ions. Per contra, on the microscopic scale, the interfacial solvent 

structure and ion solvation in the IHP/OHP are not explicitly treated, and deviations from the GCS 

model have been reported (10,11). Whatever the electro-catalytic process, the reactants must 

approach the surface to react, i.e. they have to penetrate the double layer. A microscopic 

understanding of the double layer and the role of the solvent (water in most electrochemical 

applications as of today) in mediating ion-surface interactions is therefore of fundamental 

importance for future applications.  

 This requires new experimental techniques that are able to selectively probe the double 

layer and simultaneously provide molecular-level information, under in operando electrochemical 

conditions. In the past two decades, a number of theoretical (12-17) and experimental (18-27) 

studies have been performed to explore the microscopic structure of the electrichemical double 

layer. However, only recent techniques allow the study of key desolvation/resolvation processes. 

It is still an experimental challenge to probe interfaces under operando conditions, facing 

difficulties in regulating all the variables involved in electrochemical reactions (28,29), such as 

controlling surface structure and mass transport. Charge transfer at an unperturbed double layer 

has been characterized by an electrochemical probe (30). Using IR spectroscopy, Yamakata et al. 

(24) investigated modifications in the ion hydration shells on a CO-covered Pt electrode. Local 

and intramolecular mode probes have been used in Sum Frequency Generation experiments at 

aqueous interfaces in operando conditions (31) or in SERS/Stark effect spectroscopies (32). 

 Previous simulation studies further revealed that the hydration of metal surfaces induces 

the formation of a strongly bound adlayer where water molecules form a 2D-hydrogen bond 

network parallel to the surface. This adlayer interacts unfavourably with the adjacent water layer, 

which hence shows hydrophobic features similar to the water-air interface (33). When a negative 
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potential is applied, interfacial water reorients with H atoms toward the gold surface, slightly 

disrupting the hydrogen bonding network in the interfacial layer (21). These structural changes are 

expected to have an impact on the electric double layer formation, since the adsorption of ions at 

the metal surface was shown to require that an adlayer water molecule vacates its adsorption site 

(13). 

 In this work we focus on changes in the water network, such as the formation and stripping 

off of the hydration shell during the formation of the electric double layer (EDL). Any changes in 

the hydrogen bond network as well as ion hydration can be sensitively probed by THz 

spectroscopy, i.e. in the intermolecular fingerprint region between 10-700 cm-1 (34). The low 

frequency absorption spectrum of bulk water is well known (34-37). Modes around 80 cm−1 are 

characterized by concerted motions involving the second solvation shell. Cross-correlating these 

modes with the local dipole demonstrates that their integrated contribution to the total IR activity 

is indeed very weak, which is consistent with the lack of any resonance around 80 cm-1 in the THz 

absorption spectrum, while the peak is present in Optical Kerr as well as Raman spectra. The 

hydrogen-bond stretching modes contribute to a peak centred at 200 cm−1, which is dominated by 

first-shell dynamics. The frequency region above 500 cm−1 is dominated by water librational 

modes, i.e. hindered rotations. 

 We present the first reported fingerprint of the double-layer formation of an electrolyte 

solution at a gold surface under applied bias potential using the ultra-bright synchrotron Soleil as 

a low frequency radiation source. As sample, we used a 10 mM NaCl solution and applied a 

positive/negative potential at the gold (Au)-liquid interface. The low frequency spectra of aqueous 

NaCl have been extensively analysed in detail elsewhere (38,39). Any modification of the 

hydration layer of the two ions will be clearly identified by the change in their well-known THz 
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fingerprints. 

 

RESULTS  

Following the pioneering work of Nemes et al. (40), we adopted the electrochemical cell 

developed at AILES (Soleil Facility) (41), consisting of a Au grid as working electrode and a thin 

platinum foil as counter electrode. Since no Faradaic reactions were driven (see Fig. S1 in SI), we 

did not employ a reference electrode to prevent concentration alterations of the sample. The 

potential values reported here are referenced to a “reference potential” (Vref) at which a zero current 

is measured, equal to +0.03 V and +0.07 V for the positive and negative potential series, 

respectively (see Section S8 of the SI for conversion to a Ag/AgCl reference electrode). The exact 

position of the Au potential of zero charge (PZC) for our specific experimental setup cannot be 

precisely determined due to the polycrystalline nature of our electrode and the specific electrolyte 

composition and concentration. However, a recent study by Wang et al. (42) sets the PZC of a 

polycrystalline Au electrode in the range 0.17 V-0.22 V vs SHE by SECCM measurements, 

compatible with the voltage range probed in this present work. We recorded absorption THz 

spectra in the 50-350 cm-1 region, varying the potential in 20 mV steps from 0 V to +0.2 V for the 

positive voltages, and at the following values for the negative voltages: -2 mV, -4 mV, -8 mV, -10 

mV, -20 mV, -50 mV, -150 mV. In order to confirm that background variations are negligible, the 

acquisition of each spectrum taken at the potential Vi was followed by acquisition of a spectrum at the 

reference potential Vref. Fig. 1 shows the difference spectra obtained by referencing each spectrum 

at potential Vi to the spectrum at the lowest or highest applied bias potential for the negative (A) 

or positive (B) potential series, respectively. This choice allows to better visualise the trends upon 

voltage application. A crucial advantage is that, in the difference spectra, any spectral contribution 
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that does not change with the potential provides by construction a zero intensity. Therefore, the 

intensity of the difference spectra only arises from the region of the EDL (with a Debye length of  

3 nm), where the potential is non-zero and decay with increasing distance from the surface, while 

the bulk does not provide spectral contribution, since it is not affected by the potential. The signal 

to noise ratio depends on the probed interfacial volume and it is estimated to be 210-4 (cfr section 

S3 of the SI).  All details about the experimental set-up are given in the SI (section S1-S8). 

For negative bias potentials, the spectral intensity sharply decreases for potentials of a few 

millivolts (from -2 mV to -8 mV) and saturates around zero already at -50 mV. This implies that 

the spectral intensity does not change anymore from -50 mV up to the most negative potential. A 

different trend emerges for positive voltages: the spectral intensity initially increases with 

increasing potential from 0 mV to +80 mV and starts to decrease only at higher potential values. 

In order to decipher the reason behind the different behaviour with negative and positive potentials 

and to unveil the spectral components responsible for the observed trends, we performed a 

Principal Component Analysis (PCA).  

 

Figure 1: Absorption spectra as a function of the applied potential. A: spectra acquired during negative potential 

series for 5 selected voltages. Each spectrum is referenced to the spectrum acquired at -150 mV. B: spectra acquired 
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during positive potential series for 5 selected voltages. Each spectrum is referenced to the spectrum acquired at +200 

mV. The total set of spectra upon potential application is displayed in Fig. S7 and S9 of the SI. 

 

In a nutshell, for both positive and negative potential series, a matrix M is constructed, each row 

containing one of the measured difference spectra, and subsequently diagonalised in order to obtain 

an orthonormal basis set carrying the fundamental effect of the applied potential on the spectral 

features. In practice, each spectrum is rewritten as a linear combination of potential-independent 

partial spectral components (Principal Components, PCs) weighted by the potential-dependent 

scores (eigenvalues). While a standard fitting procedure requires assumptions on the number of 

the bands in a given spectral region, their position and shape, the advantage of PCA is that it does 

not depend on any a priori knowledge. However, the extracted spectral components still need to 

be associated to meaningful physical observables. This is done in Fig. 2, by comparing the spectral 

components obtained from the PCA with theoretically reconstructed spectral components. The 

scores obtained from the PCA are reported in Figure S1 in the SI. The theoretical spectra are 

obtained from classical molecular-dynamics (MD) simulations of positively and negatively 

charged Au-electrolyte interfaces (17 simulations with surface charge, σ, values from -300 mC/m2 

to +300 mC/m2, see Methods Section for details). 

 As shown in Fig.2-A, a single spectral component is sufficient to describe the spectral 

changes with negative potentials, while two independent components are found for positive 

potentials (panels B and C). The residuals, obtained by subtracting the sum of the corresponding 

spectral components  from the total spectrum (in Fig 1) at each potential  (A, for negative potentials 

and B+C, for positive potentials), demonstrate that the low number of independent components is 

indeed sufficient to reproduce the full spectrum. 
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Figure 2: Experimental and theoretical partial spectral components as a function of negative and positive 

applied potential and surface charge. Top: (A) Partial spectra, attributed to Na+ hydration, obtained multiplying the 

first principal component by the respective scores as a function of negative applied potential. Bottom: residuals derived 

from the subtraction of the partial spectra from the total spectra in Fig. 1-A. (B) Partial spectra, attributed to Cl- 

hydration, obtained multiplying the second principal component by the respective scores as a function of positive 

applied potential. Bottom panel: residuals. (C) Partial spectra, attributed to the interfacial water network, obtained 

multiplying the first principal component by the respective scores as a function of positive applied potential.  Bottom: 

(D) Simulated spectrum of hydrated Na+, from Ref. (39) multiplied by the variation in the number of hydration water 

around Na+ cations as a function of the negative surface charge in the MD simulations. (E) simulated spectrum of 

hydrated Cl- ion, from ref (39) multiplied by the variation in the number of hydration water around Cl- as a function 

of the positive surface charge in the MD simulations. (F) Hydrogen bond (HB) stretch mode of water molecules 

hydrating a hydrophobic (alcohol) surfaces, as in (43), multiplied by the number of hydrogen bond of the 2D-HB 

network as a function of the positive surface charge in the MD simulations. 
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 In the following, we will analyze the results of the PCA by comparison with simulated 

spectral features. For each of the three PCs discussed above, we assign a calculated isolated 

spectral component and scale it by a surface charge dependent factor that is derived from either 

changes in the solvation environment of the ions or changes in the hydrogen bond network. This 

allows us to map the spectral changes to the atomistic processes at the EDL under applied bias. 

The spectral component for negative potentials in Fig.2-A is compared and assigned to the 

theoretical THz spectrum of solvated Na+ as a function of the Au surface charge () in panel D. 

As detailed in the methods section, the spectra in panel D are obtained by multiplying the 

theoretical spectrum of solvated Na+ (39) by a weighting factor, chosen to be the variation of the 

number of hydration water molecules with  in the first solvation shell of Na+ in the MD 

simulations. The calculated spectrum of solvated Na+ is therefore associated with the theoretical 

(-independent) principal component, and the variation of the number of hydration water 

molecules with  around Na+ is used as a proxy for the -dependent score. Both experimental and 

theoretical spectra show a similar trend with negative applied potential/surface charge. Therefore, 

since the intensity in the theoretical spectra depends on the number of Na+ hydration water 

molecules, an intensity increase/decrease in the experiments correlates directly with an 

increase/decrease in the number of hydration water around Na+ cations at the interface. 

We can hence assign the sharp intensity decrease detected in both the experimental and the 

theoretical spectra (panel A and D) to the (partial) depletion of the hydration layer of Na+ at the 

interface, happening already at the smallest applied potentials/surface charges. When comparing 

the experimental spectral component in Fig. 2-A with the theoretical counterpart in Fig. 2-D we 

conclude that the ΔA (ν,V) maximum at ~250 cm-1 in Fig. 2-A does not arise from the hydration 

shell of Na+
. It therefore has to be ascribed to a second contribution hidden in the experimental 
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spectral component. This can occur when two (or more) spectral components share the same trend 

with the potential (i.e. same scores) and the PCA is not able to disentangle them.  As discussed in 

more detail in the SI and since any ion contribution has been ruled out, this feature might be 

associated with the interfacial water network. Here, adlayer disordering at negative potentials (13) 

can induce a blue shift of the librational band (S3 in SI). In the methods section, this hypothesis is 

corroborated by the theoretical results showing that the Na+ hydration and the interfacial water 

network disordering have a similar dependence on the negative charging of the Au surface (Fig. 5 

A/C). 

 Intriguingly, a very different behaviour upon increase of the surface charge is observed for 

positive potentials.  The experimental spectral component in Fig.2-B is assigned to hydrated Cl- 

after comparison with the theoretical spectra in panel E. Analogously to the cationic case for 

negative bis potentials, the spectra in panel E are obtained by multiplying the theoretical spectrum 

of solvated Cl- (39) by the variation of the number of hydration water molecules with  in the first 

solvation shell of Cl- in the MD simulations. Therefore, any change in intensity for this component 

can be associated to a change in the number of hydration waters solvating the anions at the 

interface. The spectral intensity is virtually constant in a large window of bias potentials/surface 

charges, implying that the Cl- coordination shell is almost unaffected, while the stripping off of the 

anions occurs only at the most positive values, when the intensity starts to decrease in both 

experimental and simulated spectra. In the experiments (panel B), the onset of such decrease is at 

ΔV > 140 mV. 

 Concomitantly, a second component is observed for positive potentials (panel C in Fig. 2), 

and assigned to the water network at the interface (see also Figure S5 in the SI for comparison 

with the THz absorption spectrum of bulk water). Strikingly, the center frequency of the 
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underlying peak (147±5 cm-1, Figure S6 of the SI) resembles the hydration water band observed 

experimentally and theoretically in the hydration shell around hydrophobic alcohol chains (43). 

This band arises from a wrapped hydrogen-bond (HB) interfacial-water network, (44) reminiscent 

of the planar 2-dimensional-HB-network formed at the hydrophobic air-water interface (45) and 

at other planar interfaces such as graphene-water (65), where interfacial water HBs preferentially 

orient parallel to the surface. A similar in-plane interfacial water orientation has been reported for 

Au-water interfaces (21,33). Importantly, this band is systematically red-shifted with respect to the 

196 cm-1 band observed for bulk water (33, 41, 47). We base this assignment on the comparison 

with the spectra in panel F, which show the experimental spectrum of the HB stretching mode of 

water molecules hydrating a hydrophobic surface (41), weighted by the variation of the number of 

hydrogen bonds within the 2-dimension HB network as a function of σ.  

 The initial increase of the relative partial amplitudes for ΔV ≤ 80 mV in Figure 2-C is 

therefore attributed to a strengthening of the interfacial water network, i.e. to an increase in the 

number of HBs formed parallel to the Au surface in the interfacial layer. By contrast, the decrease 

for higher ΔV values reflects a partial breaking of the interfacial water structure. A comparison of 

the trends in panel B and C reveals that, at positive potentials, the spectral signature of the stripping 

off of the Cl- hydration shell starts to be detected (in panel B) only at the potential values when the 

interfacial water network is partially broken (C).  

 Merging all the experimental results, we can infer that, for low positive potential values, 

the anions keep their full hydration layer and the interfacial HB-network is strengthened, while 

cations directly lose part of their hydration shell already at the lowest negative potential in our 

experimental window. This contrasts with what is described in a number of electrochemical 

models, in which Na+ is expected to be more anchored to its hydration waters due to its higher 
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charge density compared to Cl- (48). At high positive/negative potentials, the classical 

electrochemical picture is restored, and the hydration shells of both Cl- and Na+ are depleted.  

 

In order to confirm and rationalize the asymmetric stripping off of the Cl- and Na+ hydration shells 

at the molecular level, we use a combination of classical MD simulations and ab initio calculations 

that naturally incorporate the PZC as their internal reference. While the (static) ab-initio 

calculations allow us to properly account for polarization and charge-transfer effects as a function 

of the applied voltage, the classical MD simulations allow us to simulate the low ionic 

concentrations used in the experiments and to perform a systematic investigation of the effects of 

surface charging, which are currently unfeasible by ab initio MD simulations with explicit solvent 

and applied bias. Therefore, these calculations allow us to investigate whether the asymmetric 

behaviour observed experimentally still holds true when either the applied bias (ab initio) or the 

surface charge (classical MD) is varied symmetrically around the Au PZC. 

 While the comparison with experimental results has been discussed earlier in the text, 

Figure 3 displays the resulting molecular picture of the fundamental microscopic electrochemical 

processes derived from the classical MD simulations. We report the average ion distribution as a 

function of the vertical distance from the Au surface for all investigated positive (left) and negative 

(right) σ values. Both ion profiles show two peaks centered around 3 and 5 Å, corresponding to 

the inner and outer Helmholtz planes (IHP/OHP), respectively. The definition of the two planes is 

based on the distinct average coordination number of the ions. The density peak associated with 

the OHP identifies ions fully solvated within the water 2D-HB-Network located between 3 and 7 

Å from the Au surface (see also sections S9-11 of SI), where they maintain their hydration layer 

intact, i.e. same as in the bulk. By contrast, both anions and cations in the IHP directly face the 
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bare Au surface and lose on average one hydration water molecule.  The change in the coordination 

of both ions with respect to the surface charge can hence be solely attributed to the way Cl-/Na+ 

populate the IHP. As shown in Figure 3, Cl- preferentially stays in the OHP for low and 

intermediate positive σ and only migrates from the OHP to the IHP for the highest σ>100 mC/m2, 

with a corresponding partial stripping off of its hydration shell. On the contrary, Na+ ions 

immediately populate the IHP at the lowest σ=-20 mC/m2 and start to occupy the OHP only when 

the IHP is saturated at around σ= -70 mC/m2. When chloride ions are accumulated in the OHP, we 

observe an increase in the number of interfacial water molecules oriented with both O-H groups 

parallel to the Au surface, leading to an increase in the number of parallel H-bonds forming the 

2D-HB-network. This is shown in Figure 5-D (see also Figure S13 of the SI for water O-H groups 

orientation). This strengthening effect is lost once the anions are moved from the OHP to the IHP. 

Water molecules are then forced to align with respect to the high electrostatic field generated by 

the charged surface. Due to the reorientation, the number of in-plane H-Bonds formed between 

interfacial waters decreases, thereby weakening the 2D-HB-network. As long as the 2D-HB-

network is still present at the interface (σ≤100 mC/m2), anion location in the OHP is therefore 

favoured by both ion-water and water-water interactions. On the contrary, the 2D-HB-network 

strengthening is not observed for negatively charged surfaces (Fig.5-C) for which interfacial water 

molecules orientation progressively changes from in-plane to pointing toward the surface. Thus, 

insertion of Na+ into the IHP starts immediately upon application of a negative voltage as observed 

in the experiments and simulations. The reported changes in interfacial water structure are in good 

agreement with a recent combined experimental and ab-initio study (21), concluding that the 

topmost interfacial layer at the Au-water interface is mostly oriented parallel to the surface at 0 V. 

When applying an increasingly negative potential, water was found to reorient first with one OH, 



15 

 

and finally with both OH pointing toward the surface (Figure S12). Such behaviour has been also 

described by MD simulations in Ref. (13), revealing that under a negative bias the re-orientation 

of water molecules with H atoms toward the gold surface disrupts the HB-network in the interfacial 

layer. Furthermore, our results on the in-plane orientation of water that persists longer under 

positive surface charging supports the idea of an asymmetric reorientation of water at 

positive/negative electrodes as described in Refs. (13,49). The novel result provided here is that 

the building-up of an in-plane oriented interfacial layer exclusively at positively charged gold 

surfaces causes anions and cations to migrate differently when positive/negative potentials are 

applied.  

 

Figure 3: Microscopic view of the double layer formation at the Au electrode. Average number of ions (Cl- in 

blue, Na+ in green) as a function of the distance from a positively (left) and negatively (right) charged Au surface. 

Dashed lines mark the borders of the IHP and OHP. Left and right: six key scenarios for ion distributions at zero, low 
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and high surface charge values (from top to bottom). The average number of ions in the IHP and OHP, as obtained 

from integration of the ions distributions in each of the two regions, can be found in Table S2 of the SI. 

 

However, these calculations do not account for polarization and chemical changes induced by the 

ions and the applied bias. Energy decomposition analysis of charged gold cluster models (Figure 

4-A and section S16) demonstrates that polarization plays a role but is independent of the charge. 

These calculations also reveal charge-transfer from the chloride ion to the gold cluster that is 

completely absent in the Na+-Au interaction. However, the fact that these effects are independent 

of cluster charge rules them out as the source of the different behavior of Na+ and Cl- at the 

electrochemical double-layer. Grand-canonical (in electrons) periodic slab calculations on a 

Au(100) surface additionally confirm that the polarization of the electrode as measured by the 

change of number of electrons present in the metal slab is largely independent of the applied bias 

(Figure 4-B and section S17) in the experimentally accessed range. In addition, a microsolvation 

analysis (section S18) demonstrates that Cl- prefers a surface-like asymmetric microsolvation 

pattern as is present in the hydrophobic OHP (cfr ref. 33), whereas Na+ prefers to be symmetrically 

solvated which can be achieved at the IHP by replacing one or two water molecules with negatively 

charged Au atoms. All in all, the quantum-chemical calculations support the results obtained from 

experiment and the classical MD simulations and hint that the deficiencies of a classical fixed 

charge model do not lead to biased conclusions in the current study. 
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Figure 4: Results of electronic structure calculations. Panel A compares the different contributions to the interaction 

energy of the Na+ (green) and Cl- (blue) ion with a negatively and positively charged Au9 cluster model, respectively, 

as calculated with ωB97X-V/def2-TZVPD. While the polarization term is of equal magnitude, charge-transfer is 

completely absent in case of Na+, whereas it contributes to the interaction energy for the Cl- case. Panel B shows the 

net charge of a grand-canonical periodic slab model with varying bias potential referenced against the computed 

potential of zero charge. The green (blue) data points show the corresponding decrease (increase) of the net charge 

upon Na+ (Cl-) binding. The change of this polarization effect is negligible in the experimental bias range (-0.15 – 

0.2V) as indicated by the constant length of the colored arrows. 

 

 In conclusion, by a novel THz spectro-electrochemical approach combined with molecular 

dynamics simulations, we have directly probed the solvation/desolvation processes at the Au 

surface under in-operando electrochemical conditions. Our results have dissected at the 

microscopic level the stripping off of the hydration shells of the electrolyte ions as well as the 

associated changes in the interfacial water HB-network. Our approach can now be used to 

investigate the crucial role of water in mediating other interfacial processes at metal as well as 

semiconductor/electrolyte interfaces. This new view will impact the understanding and 

optimization of electrochemical processes for technological applications. 

 

A B
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Methods 

THz spectro-electrochemical measurement  

THz-Far infrared (THz/FIR) absorption spectra of 10 mM NaCl (Sigma-Aldrich, purity ≥ 98%) were 

recorded in the frequency range 50-350 cm-1 with 2 cm-1 resolution. We employed a vacuum-

evacuated (10-5 mbar) Fourier transform infrared spectrometer (FTIR, IFS 125, Bruker) with an 

external 4.2 K He-cooled bolometer (Infrared Laboratories, Inc., Tucson, USA) for the detection 

of the synchrotron light (at the beamline AILES, Soleil). The source has a flux of 5·1013 

photons/s/0.1% bandwidth at 100 cm -1. Each single spectrum is the average of 128 scans 

recorded at 40 kHz at 25 °C. To apply the constant potential, we did use a potentiostat (PalmSens 

4, PalmSens BV), shortcutting the exit of the RE on the CE. 

From each spectrum at the potential Vi, the previously recorded spectrum at the potential Vref is 

subtracted. The difference spectra are then decomposed by Principal Component Analysis (PCA) 

into independent spectral components (PCs), based on their distinct response to the potential 

increase/decrease. The changes in the total spectrum are then attributed to voltage dependent 

changes of the respective partial spectra. One spectral component for the negative potential series 

and two spectral components for the positive one are sufficient to describe the voltage dependent 

changes in the spectral dataset. Thus, the acquired data sets are written as ΔA+ (ν,V) = 

scores1,neg(V) PC1,neg(ν) and ΔApos(ν,V) = scores1,pos (V)  PC1,pos(ν)  + scores2,pos (V)  PC2,pos(ν) 

for negative and positive potentials, respectively.  

Molecular Dynamics simulations 

Classical simulations were performed using the LAMMPS (50) code to simulate 17 aqueous 

solutions (17486 water molecules) of 20 mM NaCl confined between parallel charged gold Au 

(100) walls with imposed 298 K constant temperature to water and ions all along the simulation. 
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The simulated surface charge values are: 0, ±20, ±30, ±50, ±70, ±100, ±170, ±240, ±300 mC/m2. 

Since no ion-pairing interactions are detected in the MD simulations with 20 mM NaCl (<0.01 % 

probability to have an ion pair), no differences are reasonably expected between 10 mM 

(experimental concentration) and 20 mM concentrations, which are relevant to the conclusions of 

this work. The constant charge is imposed on the topmost atomic layer. The water+NaCl system 

was described using the force field developed by Kann and Skinner (51), based on the TIP4P/2005 

model of water and employing rescaled (by 0.85) charges for ions. Charge rescaling compensates 

for the underestimated permittivity of TIP4P/2005 water, and effectively describes ion 

polarizability and charge delocalisation of solvated ions (51). We systematically rescaled the 

surface charge with the same ratio as the one applied to ions. The interactions between Au atoms 

and liquid atoms were treated using the Lennard-Jones parameters introduced by Heinz et al. (52) 

and Lorentz-Berthelot mixing rules. 3-Dimensional periodic boundary conditions were applied 

with lateral ab-dimensions of 56.213 Å and counterions were added to the system to ensure 

electroneutrality. To impose a pressure of 1 atm, we used the top wall as a piston until an 

equilibrium height was reached, and we fixed the top wall height at its equilibrium position for the 

rest of the equilibration and for the production runs. The same simulation protocol with an 

equilibration run of 36 ns (with a timestep of 1 fs) followed by a production run of 36 ns (with a 

timestep of 2 fs) has been systematically followed. The total simulation time, including the 

equilibration period where the upper solid surface is used as a piston, is about 90-100 ns for each 

simulation. We carefully checked that at the end of the equilibration time ions (and water) were 

correctly distributed in the simulation box with correct density profiles. 

The differences in the total Cl-O and Na-O coordination numbers (NCl-O(σ) and NNa-O(σ), 

respectively) with respect to the positive and negative surface charging, used as “theoretical 
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scores” to calculate the spectra in Figure 2-D/E are derived as follows: 

Nion(σ) = Nion
int (σ) (coordion-O

int(σ) - coordion-O
bulk) 

where Nion
int (σ) is the number of Cl/Na in the interfacial layer (i.e. in the IHP+OHP), coordion-

O
int(σ) is the average Cl/Na coordination number in the interfacial layer at a given σ value, and 

coordion-O
bulk is the average Cl/Na coordination in bulk. The differences in the total Cl-O and Na-

O coordination numbers (shown in Figure 5-A/B) represent the variation in the coordination of all 

ions at the interface with respect to their coordination in the bulk. In order to obtain the theoretical 

spectra in Figure 2-D/E, the theoretical spectra of solvated Na+ and Cl- from Ref. (39) are scaled 

by these scores. The solvated Na+ spectrum is the sum of the cation autocorrelation and its cross-

correlations with water molecules in the first and second solvation shell (ΔCion) and the 

autocorrelation of the first-shell water molecules (ΔC1). The solvated Cl- spectrum arises from the 

H-bonds between the first and the second shell (C12
HB). The theoretical scores used to calculate 

the spectra in Figure 2-F are related to the strength of the 2D-HB-Network, measured as the 

average number of HBs formed in between water molecules in the topmost interfacial layer and 

oriented parallelly to the surface (HBs2DN/molecule). The results obtained for both positive and 

negative surface charge values are plotted in Figure 5-C/D. Water-water H-Bonds are defined using 

a mixed distance-angle criterion, with the H-Bond O-O distance cut-off of 3.2 Å and the H-Bond 

O-H··· O angle in the range [140-220]°. Different criteria (e.g. H-Bond O-O distance cut-off of 

3.5 Å and H-Bond O-H··· O angle in the range [150-210]°) lead to the same trends as reported in 

Figure 5. Moreover, the changes in the water network upon negative surface charging (panel C) 

show a similar trend as NNa-o. Therefore, PCA is not able to separate the possible spectral 

contribution of the change in the interfacial water network from the Na+ hydration. This 

observation corroborates the hypothesis that the feature at around 250 cm-1 in the spectra of Figure 
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2-A arises from a water-related contribution with the same potential dependence as the Na+ 

hydration fingerprint. 

 

Figure 5: Theoretical scores used to calculate the spectra shown in Figure 2 (lower panels) (A) Differences in the total 

Na-O coordination numbers with respect to the positive surface charging. (B) Differences in the total Cl-O 

coordination numbers with respect to the negative surface charging. (C) Average number of HBs per molecule formed 

in between water molecules in the topmost interfacial layer and oriented parallelly to the surface for positive surface 

charging. (D) Average number of HBs per molecule formed in between water molecules in the topmost interfacial 

layer and oriented parallelly to the surface for negative surface charging. 

 

Electronic Structure Calculations 

All density functional calculations for the cluster models were carried out with the Q-Chem 

electronic structure package (53). We applied the RPBE functional (54) for consistency with the 

periodic slab calculations and the ωB97X-V functional (55) for comparison. The density functional 

theory calculations for the periodic slab models were carried out on the Au (100) surface using the 

Vienna Ab Initio Simulation Package (VASP) (56,57). The surface unit cell (periodically extending 
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in the x- and y-directions) was designed as four layers of eight Au atoms, with a lattice constant of 

4.0782 Å and 20 Å spacing (in the z-direction) between two images. A k-point sampling of the 

Brillouin zone was achieved using the 4 × 4 × 1 Monkhorst−Pack mesh. The implicit aqueous 

solvent and the electrolyte were implemented with a dielectric constant 𝜀𝑟 = 78.4 and a Debye–

Hückel length 𝜆𝑏 = 9.61 Å. 

More details are found in the Supporting Information. 
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