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Bicyclic hydrocarbons, bicyclo[1.1.1]pentanes (BCPs) in particular, play an emerging 
role as saturated bioisosteres in pharmaceutical, agrochemical, and material chemistry. 
Taking advantage of strain release strategies, prior synthetic studies have featured the 
synthesis of bridgehead-substituted (C1, C3) BCPs from [1.1.1]propellane. This work 
describes a novel approach to accessing multi-substituted BCPs via a new type of 
intramolecular cyclization. In addition to the C1, C3-disubstituted BCPs, this method 
also enables the construction of yet underexplored multi-substituted (C1, C2 and C3) 
BCPs from readily accessible cyclobutanones. Also, the broad generality of this method 
is examined through synthesis of a variety of other caged bicyclic molecules, ranging 
from [2.1.1] to [3.2.1] scaffolds. The modularity afforded by the pendant bridgehead 
Bpin resulted from the cyclization is demonstrated via several downstream 
functionalizations, highlighting the ability of this approach for programmed and 
divergent synthesis of multi-substituted bicyclic hydrocarbons. 

 
Caged bicyclic molecules that exhibit considerable ring strain have long been the 

subject of intense study due to their unusual geometries, physical properties and theoretical 
interest1. Recent developments in medicinal chemistry shine a new light on the potential 
utility of these C(sp3)-rich hydrocarbons2. Owing to their unique physical and chemical 
properties, bicyclic hydrocarbons exhibit the ability to modulate the pharmacokinetic and 
physiochemical properties of drug candidates3. Bicyclo[1.1.1]pentanes (BCPs) containing 
substitutions at bridgehead positions (C1, C3) are now widely recognized as saturated 
bioisosteres for para-substituted benzenes4. Analogously, related caged scaffolds with 
differentiated substitutions (Figure 1A) are expected to be ideal bioisosteres of ortho- or 
meta- substituted benzenes5,6. Currently BCPs are synthesized from the highly strained 
[1.1.1]propellane (6) (the strain energy of the C–C bond = ~59~65 kcal/mol)7-9, using 
methodologies pioneered by Wiberg7, Michl10, Baran11, and others12-20, wherein 6 is 
transformed to symmetric and asymmetric BCPs using either single- or two-electron transfer 
pathways (Figure 1B). These efforts have primarily focused on accessing C1 and/or C3- 
substituted BCPs until two recent reports21,22 disclosed strategies for the systematic 
functionalization of the backbone (C2) of BCPs. In addition to strain-release, Wurtz 



coupling23, Norrish–Yang cyclization24, [2+2] photo-cycloaddition25, ring expansion26, and 
ring contraction27 represent other means to access BCPs. However, these methods are often 
plagued by low yields or limited substrate scope. In light of the aforementioned issues, 
practical and efficient methodologies to construct multi-substituted (C1/C2/C3) BCPs 8 are 
highly desirable as they represent elusive bioisosteres of ortho-/meta-substituted benzene 
rings and would enable access to novel chemical space. Herein we describe a novel approach 
for the construction of multi-substituted BCPs via the intramolecular coupling of 
cyclobutane-tethered sulfonyl hydrazones and boronic esters. This intramolecular cyclization 
strategy not only provides a general and operationally simple method for the synthesis of 
BCPs but can also be expanded to access a wide range of bicyclic alkyl boronates, all of 
which have the potential to serve as useful benzene bioisosteres. Additionally, the pendant 
bridgehead alkyl boronate allows for subsequent downstream functionalizations, resulting in 
a modular and programmable template for the construction of multi-substituted caged 
bicyclic molecules. 
 

 
Figure 1. Bridged Hydrocarbons and BCPs Syntheses. (A) 
Substituted hydrocarbons provide novel chemical space as 
potential bioisosteres; (B) The state-of-art for BCP synthesis 
using strain releasing strategy; (C) Proposed intramolecular 
cyclization to access strained multi-substituted BCPs from 
cyclobutanone. 
 

 
Figure 2. Cyclization Optimization to Access BCPs 

 
 
 
 
 
 
 

 
Our retrosynthetic analysis to multi-substituted BCPs (strain energy ~71 kcal/mol) 

relies on cyclization from cyclobutanones 9 (strain energy for cyclobutane ~26 kcal/mol)28. 
However, previous studies indicated that base-initiated intramolecular substitution proved 
unsuccessful in BCP formation29, presumably due to the unusual strain energy present in the 
desired target. Taking inspiration from our30 and other’s prior studies31-35 on base-promoted 
cross-coupling between alkyl sulfonylhydrazones and boronic acids, we surmised that base-
mediated intramolecular coupling of cyclobutane-tethered sulfonyl hydrazones and boronates 
might enable the formation of a high energy bicyclic [2.1.1] zwitterionic intermediate 10. 
Furthermore, we hypothesized that this high-energy intermediate might undergo subsequent 
1,2-metallate rearrangement to form BCP 11 via extrusion of N2. While the C–B bond in 10 
is not perfectly aligned with the leaving group, the loss of N2 could help drive the subsequent 
1,2-metallate rearrangement and contraction to the desired BCP scaffold 11.36,37 Aryl and 
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alkyl boron pinacol esters (Bpin) have a priori been reported as recalcitrant coupling partners 
in Barluenga-Valdés coupling31 and its modifications.30 However, from a both practicality 
and ease of access perspective, alkyl Bpins were identified as ideal starting materials. 
Additionally, we envisioned that the short spatial distance between the tethered coupling 
partners might help overcome the poor reactivity of the Bpin, thereby enabling the 
intramolecular cyclization to occur. To test this theory, the key intermediate 13 was prepared 
in one-step using our boron-preserving cross-coupling conditions from cyclobutane aldehyde 
12 (Figure 2, see SI for more details)30. Subjecting 13 to in situ hydrazone formation 
followed by our previously reported conditions for intermolecular cross-coupling, 
gratifyingly afforded the desired bridgehead Bpin substituted BCP product 14 in 78% yield 
(Entry 6). Subsequent optimization of sulfonylhydrazide, base, solvent and temperature 
(summarized in Figure 2; see SI for additional information) resulted in the identification of 
optimal conditions, employing mesitylsulfonyl hydrazide, cesium carbonate and dioxane to 
afford the coupling product 14 in 83% isolated yield (88% GC yield) (Entry 1). The use of 
mesitylsulfonyl hydrazide as the activation reagent was found to be the key for effecting 
efficient hydrazone condensation and in situ generation of the diazo intermediate (Entries 2 
and 3, starting material 13 is left for these two cases). The selection of base (Entries 4 and 5) 
and solvent (Entries 6 and 7) were also important for obtaining high yield for this cyclization. 
Varying the temperatures also afforded the desired product 14 (Entries 8 and 9), albeit in 
lower yields. It is noteworthy that the reaction does not require inert atmosphere and proceeds 
smoothly under air, presumably due to the improved stability of the Bpin motif in comparison 
to its B(OH)2 counterpart (Entry 10).  
 

With the optimal conditions in hand, the substrate scope of this intramolecular 
cyclization to access di-, tri-, and tetra-substituted BCPs was systematically investigated 
(Figure 3). With the hypothesis that this cyclization would be influenced by the conformation 
of cyclobutane 9, our exploration commenced with a sterically large phenyl group (A value = 
3.0) on cyclobutane ring38. The cyclobutanone Bpins 9 were prepared from the corresponding 
aldehydes, ketones, esters and halides (see SI for detailed synthetic information)39-44. A 
primary alkyl Bpin (R2 = H, R3 = H) underwent smooth cyclization to the C1, C3 
disubstituted BCP Bpin 16. Starting from secondary alkyl Bpins, a variety of C1, C2 and C3 
trisubstituted BCPs, including C2-alkyl (17–22, 14) and C2-aryl substituted (23) BCP Bpins 
were prepared. Lastly, subjecting tertiary alkyl Bpin starting materials to cyclization 
condensations afforded BCPs with di-substituted C2 side chains (24, 25). The structures of 
BCPs 16, 20 and 26 were unambiguously assigned by single crystal X-ray analysis. From this 
structural data, it is clear to observe that the substitution on the C2 of BCP reduces the C1–
C2–C3 angle due to Thorpe–Ingold effect (75.7° in 16, 73.6° in 20, 72.1° in 26). In addition 
to Ph at C1, other medicinal chemistry relevant motifs such as, halogenated aryls (4-
chlorophenyl, 31), electron-rich heterocycles (2-thiophene, 27), and Lewis-basic heterocycles 
(3-pyridyl, 28) were all compatible in this cyclization. Smaller alkyl substitutions, including 
methyl (A value = 1.7, 29) or isopropyl (30) could also be incorporated at R1 to promote 
smooth cyclization to the corresponding products. It is noteworthy that the cyclization could 
also be performed with a variety of functional groups that allow for further downstream 
functionalizations, including amide (32), isopropyl ester (A value = 1.2, 33), vinyl (A value = 
1.35, 35), terminal alkyne (A value = 0.41, 36) and amine (34). In addition to the aryl- and 
alkyl substitutions at C2, productive cyclization of gem-diborylated45 precursors provides the 
37 di-Bpin substituted BCP. This substrate opens avenues for further diversification. The 
asymmetric BCP 38 was cyclized from its chiral Bpin precursor in a 69% yield with slightly 
ee erosion. Besides the above-mentioned substitutions on the cyclobutanone side chain (R2 
and/or R3) to C2-substitued BCPs, the cyclobutane ring itself can be prefunctionalized 



(Figure 3B). To that end, the methyl substituted cyclobutanone 39 (single diastereomer, 
stereochemistry unassigned) was cyclized to 17 in 42% yield. This compound exemplifies the 
possibility of accessing more complicated BCPs via cyclobutanone prefunctionalization. 
 

 
Figure 3. Substrate Scope of BCPs via Intramolecular Cyclization. Starting materials and products are racemic mixtures, unless 
annotated. (A) Substrate scope; (B) Asymmetric BCP example; (C) Substitutions on cyclobutanones; (D) Limitations of current reaction. 
Reaction conditions: a Cyclobutanone 9 (1.0 equiv.), MesSO2NHNH2 (1.2 equiv.) in dioxane (0.1-0.2 M) stirred at rt for 3-12 h, monitored 
by TLC; then Cs2CO3 (3.0 equiv.) was added and stirred at 100 °C for another 3 h; b 3.7 mmol scale;c 1) NaOAc, H2O2, 0 °C, 1 h; 2) DMAP, 
4-bromobenzoyl chloride, DIPEA; d ee values were measured after conversion to their alcohol derivatives. e the stereochemistry is 
unassigned; See the Supplementary information for experimental details.  
 
The robustness of this reaction was highlighted by accessing 20 on gram scale (3.7 mmol, 
89%) in a similar yield to that on 0.1 mmol scale and under identical conditions. Consistent 
with our initial hypothesis that an axial conformation of the Bpin-containing side chain is 
crucial for the success of this cyclization, lower yields were observed when a smaller R1 
group was incorporated on the cyclobutanone starting material (as observed by A value 
trends, vide supra). Currently, the only limitation for this methodology (Figure 3C) was 
found when attempting the cyclization of substrates with a small R1 group (e.g. R1=H, 40) 
and when R1 = Bpin (41)46.  
 

As illustrated in Figure 4, the strategic impact of this methodology shines in its ability 
to combine the modularity of preparing C2-substituted BCP Bpins (via cross-coupling) and 
leveraging the plethora of existing transformations for Bpin functionalization for downstream 
diversification of the BCP bridgehead position. (Figure 4). For example, the oxidation of 
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boronic ester 20 led to the alcohol (42) in high yield. Additionally, 20 was subjected to 
Zweifel olefination47,48, Aggwaral’s arylation protocol49, and Matteson homologation50 to 
afford C–C bond-forming products 43, 44 and 45, respectively. The Bpin group can also be 
transformed to the more stable trifluoroborate salt (46), which opens further functionalization 
opportunities. Radical proto-deborylation51 results in C1, C2-disubstitued BCPs (47), and 
C(sp3)–C(sp2) Pd catalyzed Suzuki cross-coupling conditions52,53 enables arylation at the 
bridge head (48). Lastly, cross-coupling of the in situ-generated boronic acid with 
sulfonylhydrazone 49 affords the Bpin 50 in 92% yield. Therefore, this strategy allows for 
systematic introduction of substitutions at any position of the BCP, including the bridgeheads 
(C1 and/or C3) as well as the backbone (C2, mono- and di-). Importantly, this enables the 
practitioner to access a wide range of substituted BCPs that can serve as bioisosteres for 
ortho-, meta- or para-substituted benzene rings.  
 

 
Figure 4. Derivatization and Synthetic Application of BCP Bpins. See the Supplementary information for experimental details.  
 

As illustrated in Figure 4B, compound 51 was developed by Merck and Co. as an 
orexin receptor antagonists to treat insomnia54. While this drug possesses a 1,3,4-
trisubstituted benzene ring within its structure, previous methods to access functionalized 
BCPs were not conducive to the preparation of a saturated trisubstituted analogue. In 
contrast, this methodology provides straightforward and modular access to its higher fraction 
sp3 (Fsp3) BCP analog 55, via a sequence of 1) cPr installation (53), 2) cyclization (31), 3) 
Bpin oxidation to alcohol, 4) alkylation (54), and subsequent hydrolysis/amide coupling (55).  
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Figure 5. Intramolecular Cyclization to Access Other Bridged Systems. Starting materials and products are racemic mixtures, unless 
annotated. a Reaction conditions: Cyclic ketone 56 (1.0 equiv.), MesSO2NHNH2 (1.2 equiv.) in dioxane (0.1–0.2 M) stirred at rt for 3-12 h, 
monitored by TLC; then Cs2CO3 (3.0 equiv.) was added and stirred at 100 °C for another 3 h. b ee values were measured after conversion to 
alcohol derivatives. See the Supplementary information for starting material preparation and experimental details. 
 

Besides BCPs, other bicyclic scaffolds have also been showcased or proposed as 
potential saturated bioisosteres. Often the bottleneck in performing SAR (Structure-Activity 
Relationship) studies on these ring systems, at the bridgehead positions in particular, is the 
lack of unified synthetic strategies to access suitable diversifiable building blocks. As 
delineated in Figure 5, this cyclization enables the construction of a wide range of bicyclic 
rings systems with the versatile Bpin preserved at the bridgehead position. Starting from a 
range of cyclobutanones (58–60, 64), cyclopentanones (66, 67) and cyclohexanones (70, 72, 
74), in combination with pendant boronic ester side chains of varying length, bicyclo[2.1.1] 
(61–63, 65), [2.2.1] (68, 69, 71), [3.1.1] (73) and [3.2.1] (75) systems were successfully 
prepared using these coupling conditions. Depending on the ease of accessibility of the 
starting material, [2.2.1] bicycles could be accessed from either cyclopentanones (66, 67) or 
cyclohexanones (70). Saturated ring systems with a heteroatom embedded in them could also 
be prepared using this protocol, as demonstrated by the aza-[3.2.1]bicycle (77). Notably, 
starting from a chiral alkyl Bpin, this protocol allows for complete transfer of chiral 

MesSO2NHNH2 
(1.2 equiv.),

dioxane, rt, 3-12 h

Cs2CO3 (3.0 equiv.), 
100 °C, 3ha

56 (1.0 equiv.)

61: R1 = H, (58%)
62: R1 = CO2iPr, (77%)
63: R1 = Ph, (95%)

Bpin

Bpin

O

Starting Material Products

[2.1.1]

Bridged System

58: R1 = H;
59: R1 = CO2iPr;
60: R1 = Ph;

O
R1

Bpin

[2.1.1] O
H

Bpin

Ph

(+)-64 (95%ee)b (-)-65: (66%, 94%ee)b

[2.2.1] O

R1

Bpin

66: R1 = H;
67: R1 = Me

R1

68: R1 = H, (72%)
69: R1 = Me, (78%)

[2.2.1]
O

Ph Bpin

71: (90%)70

R1

Bpin

R2

R3

[3.1.1]
O

H
Bpin

H

Bpin
73: (61%)72

[3.2.1]
O

H

74

Bpin

75: (72%)

aza-[3.2.1]
NCbz

O
H

76

Bpin
NCbz

Bpin
77: (78%)

R1
Bpin

x

z
y

R2 R3

x

y

z x = 1, 2
y = 1-3
z = 1-3

57

Bpin R1

Bpin R1

HPh

Bpin

Ph



information into the bicyclic products and enables the asymmetric synthesis of these valuable 
bioisosteres. For example, the chiral cyclobutanone Bpin 6435 provided chiral [2.1.1] bicycle 
65 with no erosion of ee. 
 

In conclusion, we have developed a novel intramolecular cyclization to access C1-, 
C2-, and C3- substituted BCPs. As showcased in Figures 3–4, this operationally simple and 
chemoselective method enables rapid and modular preparation of a variety of synthetically 
challenging boronate-substituted BCPs. Synergistic application with existing Bpin 
functionalization strategies allows for rapid diversification and synthesis of complex 
bioisosteres that are highly desired in drug discovery. In addition, this method was 
successfully implemented to prepare a range of other pharmaceutically relevant bicyclic 
bioisosteres (Figure 5) that have yet to be fully explored. As a result, we expect this method 
to have a substantial impact within drug discovery, specifically in how benzene replacements 
are designed and incorporated into targets of interest. 
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