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Abstract 

 

We explore the impact of adding attention to generative VAE models for molecular design. Four model types are 

compared: a simple recurrent VAE (RNN), a recurrent VAE with an added attention layer (RNNAttn), a transformer 

VAE (TransVAE) and the previous state-of-the-art (MosesVAE). The models are assessed based on their effect on 

the organization of the latent space (i.e. latent memory) and their ability to generate samples that are valid and novel. 

Additionally, the Shannon information entropy is used to measure the complexity of the latent memory in an 

information bottleneck theoretical framework and we define a novel metric to assess the extent to which models 

explore chemical phase space. All three models are trained on millions of molecules from either the ZINC or PubChem 

datasets. We find that both RNNAttn and TransVAE models perform substantially better when tasked with accurately 

reconstructing input SMILES strings than the MosesVAE or RNN models, particularly for larger molecules up to 

~700 Da. The TransVAE learns a complex “molecular grammar” that includes detailed molecular substructures and 

high-level structural and atomic relationships. The RNNAttn models learn the most efficient compression of the input 

data while still maintaining good performance. The complexity of the compressed representation learned by each 

model type increases in the order of MosesVAE < RNNAttn < RNN < TransVAE. We find that there is an unavoidable 

tradeoff between model exploration and validity that is a function of the complexity of the latent memory. However, 

novel sampling schemes may be used that optimize this tradeoff and allow us to utilize the information-dense 

representations learned by the transformer in spite of their complexity. 
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Introduction 

 

The design and optimization of molecular structures for a desired functional property has the potential to be greatly 

accelerated by the integration of deep learning paradigms within existing scientific frameworks for molecular 

discovery. Traditional “direct” design approaches, in which a set of molecules are selected based on expert intuition 

and tested for a given property, are often time-consuming and require extensive resources to explore a small, local 

region of chemical phase space.1 By contrast, “inverse” approaches, in which structures are derived based on their 

likelihood to exhibit a given property value, are desirable as they are far less limited in scope and allow for high-

throughput screening of thousands to hundreds of thousands of structures.2 Given the size and complexity of chemical 

phase space,3 successful implementation of an inverse design algorithm would allow researchers to reach global 

structural optima more rapidly thereby increasing the speed of discovery. 

 

A variety of deep generative model architectures have been explored for this purpose4, with a particular focus given 

to the variational autoencoder (VAE).5–10 A VAE is capable of broadcasting a machine-interpretable representation of 

molecular structure (e.g. a SMILES string11, SELFIES string12 or molecular graph13) to a dense, continuous latent 

space or “model memory”. This memory has several unique features that make VAEs promising for inverse design: 

(i) It can be embedded with a property and thus serve as an approximation of the joint probability distribution of 

molecular structure and chemical property. (ii) During training, it will organize itself meaningfully so that similar 

molecules are near each other in phase space. (iii) Due to its mapping from discrete to continuous data, it can be 

navigated with gradient-based optimization methods.14 

 

In spite of these benefits, generative VAE models suffer from a set of complicating issues that have been the focus of 

much recent work. Although more robust than their adversarial counterparts, VAEs are still subject to experiencing 

posterior collapse in which the decoder learns to ignore the latent memory altogether and reconstruct a fuzzy 

approximation of the input distribution.15 On the other hand, even with a meaningful posterior there are often pockets 

of phase space within the latent memory that do not map to any valid chemical structures. Many recent innovations in 

architecture, featurization and hyperparameter selection have centered around these problems and have proven quite 

successful at improving reconstruction accuracy and sampling validity.13,16,17 

 

However, we lack a holistic view of the effect of these improvements on the practical utility of a model’s latent 

memory. For instance, metrics to examine the diversity and novelty of sampled molecules are not well-defined.18 

These traits are arguably as important as validity, if not more so. Generating samples is orders of magnitude faster 

than training and a model that can generalize to regions of chemical phase space far outside the training set is extremely 

valuable for exploration. Although fewer studies have evaluated generative VAE models in this way, the results 

reported in the Moses Benchmarking Platform indicate that there is still significant room for improvement.19 
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The rapid technological progression within the field of natural language processing (NLP) may offer some hints 

towards a future where AI-designed molecules are the norm rather than the exception. Despite the overwhelming 

number of similarities between model architectures used for molecular generation and those used for NLP, the state-

of-the-art in the former lags notably behind that of the latter. Attention mechanisms, which have produced some of 

the more impressive feats in AI in recent memory, have been used sparingly for graph-based analysis of chemical 

structure20 and have not yet been incorporated into any generative algorithms. Attention-based models can learn long-

range syntactical dependencies within a sequence and have shown immense capabilities in machine translation21, text 

generation22, protein structure prediction23 and AI-composed music24. They’ve also shown a surprising aptitude for 

style with their ability to combine wit, poetic prose and the tenets of philosophy into cogent metaphysical self-

reflections on the meaning of virtual existence25,26. Although perhaps not as amusing, we anticipate they may exhibit 

a similar sense of coherence when tasked with exploring novel chemistries. 

 

An examination of the performance of standard recurrent neural networks (RNN), RNN+Attention and Transformer 

VAE architectures for the purpose of molecular generation follows. We show the effect of attention on reconstruction 

accuracy for both the ZINC and PubChem datasets. Novel metrics are proposed that define the models’ ability to 

explore new regions of chemical phase space and compare the relative information density of the latent memory. We 

show that for all model types there exists a relationship between sample validity and exploration that mimics closely 

the tradeoff between complexity and generalization within an information bottleneck. Finally, we suggest a simple 

sampling scheme that offers a compromise between the two and look towards a future where we may optimize this 

directly during training with more precise control during the nascent development of the latent memory. 

 

Variational Autoencoder and the Information Bottleneck 

 

A VAE consists of an encoder that takes a sequence as input, i.e., a SMILES string, and a decoder that attempts to 

reconstruct the input as accurately as possible.27 Prior to decoding, the encoder transforms the input, x, into an 

intermediate latent representation, z, that serves as the “model memory.” Information is bottlenecked between the 

encoder and decoder such that 𝑑!"#$%# ≪	𝑑&%'(# where 𝑑 is the dimensionality of a given layer. In this sense a VAE can 

be thought of as a compression algorithm that produces compact, information dense representations of molecular 

structures. The encoder learns how to compress the input data and the decoder learns how to reconstruct the full 

sequence from the compressed representation (Fig. 1). 

 

The training objective seeks to minimize the reconstruction loss between the input and output while simultaneously 

learning the ground truth probability distribution of the training data. The latter half of this objective is especially 

important to the generative capacity of the model. Knowledge of the marginal likelihood, 𝑝(𝒙|𝒛), allows us to  
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directly sample new data points by first querying from the model’s memory, z, and then decoding. To achieve this, 

we assume the true posterior can be adequately approximated by a set of Gaussians. The Kullbach-Leibler divergence 

(KLD)28 between z and the standard normal distribution 𝒩(0,1) is minimized alongside the reconstruction loss and 

thus the full objective function can be formalized according to the variational lower bound as 

 

𝑙𝑜𝑔𝑝)(𝒙|𝒛) ≥ 	ℒ(𝜃, 𝜙; 𝒙, 𝒛) = 	𝔼*!(𝒛|𝒙)[𝑙𝑜𝑔𝑝)(𝒙|𝒛)] −	𝐷./(𝑞0(𝒛|𝒙)|=𝑝(𝒛)>					(1) 

 

where the term on the left is the reconstruction loss of the decoder, 𝑝)(𝒙|𝒛), and the term on the right is the KLD loss 

between the encoder output, 𝑞0(𝒛|𝒙), and the standard normal distribution, 𝑝(𝒛). 
 

Intuitively, the addition of gaussian noise can be thought of as a way to increase the “spread” of samples within the 

latent memory. Rather than encoding individual molecular structures as a single point in phase space, it encodes them 

as a probability distribution. This allows the model to smoothly interpolate between the continuous representations of 

known molecular structures and make informed inferences outside of the set of training samples.   

 

The latent memory can also be analyzed within the framework of information bottleneck (IB) theory.29 During 

compression, there is an unavoidable tradeoff between the amount of useful information stored in the model’s memory 

and the amount of low information complexity stored in the model’s memory.30 The IB objective can be written as 

 

max
),0

C𝐼 E𝑞0(𝒛|𝒙);	𝑝)(𝒙|𝒛)F − 	𝛽𝐼 E𝒙; 𝑞0(𝒛|𝒙)FH
31
			(2) 

 

where 𝐼 is the mutual information between two variables and 𝛽 is a scaling parameter. We seek a solution that 

maximizes the amount of mutual information between the latent memory and the reconstructed output while 

minimizing the amount of mutual information between the latent memory and the input. Since there is rarely a unique 

solution to the reconstruction objective, the 𝛽 parameter discourages the model from finding a needlessly complex 

(but still valid) local minimum. Thus, in addition to controlling the “spread” of information, the KLD term  

 

Figure 1. Major structural components of the VAE architecture. A machine-interpretable representation of a molecular structure is sent to an 
encoder where it is compressed to a dense latent representation within the bottleneck. Each of the compressed molecular embeddings represent 
one point within a larger probability manifold aka “model memory”. During training, the model learns to fit this manifold to the true 
probability distribution of the input data. To ensure the compressed embeddings contain structurally meaningful information, they are sent to a 
decoder which learns to reconstruct the original molecular structure. 
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can be interpreted as a filter of irrelevant information with pore size 1/𝛽. It will be useful to keep this framework in 

mind as we observe the development of the latent memory during training. 

 

Adding Attention to the VAE 

 

The encoder and decoder of a VAE are implemented as two sets of neural network hidden layers. Current best practice 

on generative VAEs for molecular design calls for both the encoder and decoder to be built from gated recurrent unit 

(GRU) layers,19 however convolutional layers were originally thought to be better suited for the encoder and have also 

been used in some studies.14,32 Due to the simplicity and generality of the encoder-decoder style of model, it is feasible 

to build VAEs in a modular fashion; swapping out different encoder and decoder architectures while maintaining the 

variational restrictions of the bottleneck between them. 

 

 

Figure 2. a-c) Schematic illustrations of the sequential layers for each model type – RNN (a), RNNAttn (b) and Transformer (c). d) Full 
schematics for each model type. The RNN model consists of three recurrent GRU layers in both the encoder and decoder. The RNNAttn model 
has the same architecture as the RNN with the addition of a single attention head after the final recurrent GRU layer in the encoder. The 
transformer is modeled after the original implementation as reported by Viswani et al.55 However, rather than passing the output of the encoder 
directly into the source attention layer, the encoder output is first stochastically compressed and then fed into the decoder. 
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In standard RNNs, the first recurrent cell takes the first element of the sequence and outputs a hidden state. That hidden 

state is then propagated down the sequence with each subsequent recurrent cell taking the previous cell’s hidden output 

and the next sequence element as inputs until the entire sequence has been traversed. The final hidden state is the 

“contextual embedding” of the sequence (Fig. 2a). In some architectures the contextual embedding and the latent 

memory may be the same size. However, oftentimes there will be an additional set of linear bottleneck layers that 

further compress the output of the encoder GRU layers (𝑑!"#$%!& →	𝑑'()!")). 

 

In attention-based recurrent models (RNNAttn), the flow of information proceeds similarly to a standard RNN. 

However rather than only using the final hidden output state, a weighted combination of all the hidden states along 

the sequence is used as the contextual embedding (Fig. 2b). The attention weights are learned during training by letting 

the input sequence “attend” to its own hidden state matrix. This allows the model to eschew the linearity imposed by 

the RNN architecture and learn long-range dependencies between sequence elements. 

 

Transformer (Trans) models remove recurrence altogether and exclusively use attention head layers.33 The inputs are 

a set of keys, values and queries transformed from the initial input sequence that are sent through a series of matrix 

multiplications to calculate the attention weights and the contextual embedding (Fig. 2c). The set of values are 

analogous to the hidden state matrix output of an RNN and the attention weights are determined by matrix 

multiplication of the keys and queries. Transformers have the advantage of reducing the path length of information 

traveling through the model and are highly parallelizable.  

 

As the size of the contextual embedding is significantly larger for the two attention-based architectures vs. the simple 

recurrent architecture (𝑛*!+𝑥𝑑!"#$%!&	𝑣𝑠.		𝑑!"#$%!&), using a linear bottleneck is practically infeasible because it would 

explode the number of trainable parameters. Instead, a convolutional bottleneck similar to those used in generative 

image nets34 is employed.  

 

Model Type dmodel dlatent dfeedfoward 

RNN-128 128 128 n/a 

RNN-256 256 128 n/a 

RNNAttn-128 128 128 n/a 

RNNAttn-256 256 128 n/a 

Trans1x-128 128 128 128 

Trans4x-128 128 128 512 

Trans1x-256 256 128 256 

Trans4x-256 256 128 1024 

    

 

Table 1. Model Architectures. The dimensionality of the model (dmodel) is defined as the size of the sequential layers. Recurrent model names are 
written as ModelType-{dmodel}. Transformer model names are written as Trans{dfeedforward / dmodel}x-{dmodel}. All models used in this study have a 
latent dimensionality of size 128. 
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The concepts of attention and the variational bottleneck have rarely been used in tandem. Of those studies that have 

surveyed this type of model, all have used natural language tasks as the basis of their evaluations. A variational 

attention-mechanism was used for sequence-to-sequence models35 and a few novel variational transformer 

architectures have recently been proposed.36–38 We opt for simplicity, adapting the architecture from Vaswani et al.33 

with as few modifications as possible. This allows us to easily compare the bottlenecks of different model types and 

is sufficient for the task given the much smaller vocabulary size of SMILES strings compared to NLP vocabularies.39 

Full schematics for each model type are shown in Fig. 2d and model dimensions listed in Table 1. In addition to the 

model types listed above, we also trained the Moses implementation of a SMILES-based VAE with the 

hyperparameters suggested by Polykovskiy et al.19 Trained model checkpoint files and code for training models and 

generating samples is available at https://github.com/oriondollar/TransVAE. 

 

Results & Discussion 

 

Impact of Attention 

 

We first analyze the models’ ability to reconstruct molecules from the ZINC and PubChem datasets to determine the 

role attention plays in learning molecular structure. One of the original motivations for the use of attention was to 

increase the length of sentences that could be accurately translated by machine translation models.21 Thus, we expect 

a similar increase in accuracy when encoding and decoding longer SMILES strings.  

 

 

 

Figure 3. Assessing model reconstruction performance on the PubChem dataset (trained for 60 epochs). Input data molecular size distributions (a) 
and reconstruction accuracies for all model types as a function of the token position (b). Zoomed comparison of attention-based models (inset)  
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Fig. 3a shows the distribution of SMILES string lengths for both datasets where length is determined by the number 

of tokens (excluding padding, start and stop tokens). The length of a SMILES string is highly correlated with its 

molecular weight (Fig. S3) and can be used as a proxy for molecular size. It is clear that by this metric the PubChem 

dataset has a broader distribution of sizes than ZINC. Both have approximately equal mean lengths (35.4 tokens for 

ZINC vs. 39.8 tokens for PubChem) however the PubChem data is significantly right skewed with a maximum token 

length over 50 tokens longer than the maximum within the ZINC dataset.  
 

We can see the downstream effect that widening the molecular size distribution has on reconstruction accuracy in Fig. 

3b where we show the average reconstruction accuracy for all tokens at a given position within the sequence. With 

the exception of the Moses architecture, all of the models exhibit high fidelity reconstruction on the ZINC dataset, 

regardless of model type or model size (Fig. S3/Table S2). However, accuracy decreases when larger molecules are 

embedded into the latent memory. The model types with attention mechanisms maintain high reconstruction accuracy 

at longer sequence lengths than the simple recurrent models with the Trans4x-128 architecture maintaining > 99% 

accuracy on SMILES up to 82 tokens long (~700 Da). This validates our hypothesis that attention will expand the 

number of potential applications for which these models can be used by increasing the maximum molecule size that 

can be reliably embedded within the latent memory. 

 

A comparison of the two attention-based architectures (Fig. 3b inset) shows that transformers and recurrent attention 

models perform approximately the same until they approach the data-sparse regime of SMILES longer than ~90 

tokens. At this point there is an abrupt drop in performance for the transformer models vs. a gradual decline for the 

recurrent attention models. The transformer appears to be more sensitive to the choice of model size as increasing the 

dimensionality of either its attention layers or feedforward layers improves accuracy whereas there is little 

performance boost when increasing the dimensionality of the recurrent attention model. Even with these 

improvements, the best performing transformer still exhibits a steeper decline than the worst performing recurrent 

attention model suggesting that a simpler attention scheme is beneficial to the model’s ability to generalize on data 

that is outside the distribution of the training set.  
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There are benefits to the added complexity of the transformer, however. Analysis of the transformer attention weights 

reveals the model has learned a distinct set of human interpretable structural features that are much more detailed than 

those learned by the recurrent model with only a single attention head. We use a drug-like molecule from the ZINC 

dataset, diproxadol, as an illustrative example of the differences between the two (Fig. 4). The four transformer 

attention heads exhibit unique syntactical patterns that demonstrate the model’s ability to develop its own “molecular 

grammar,” i.e., rules that define the relationships between atoms and other structural features within a molecule 

including branches, double bonds, etc. Conversely, the grammar of the recurrent attention model appears to be less 

well-defined. 

 

The lone nitrogen atom in diproxadol shows us how a single, centralized atom attends to its immediate molecular 

environment (Fig. 4b). With no supervision, the model extracts its own set of substructures that it has identified as 

important in relation to the nitrogen atom. Not only does it recognize defining features like the aromatic ring, it can 

also find non-contiguous features that depend on the structural context around a given atom (see Transformer Head 3 

in Fig. 4). In this way, the machine-learned substructures are more powerful than graph-based methods that rely on a 

set of pre-defined substructures because they can extract contextual patterns that are difficult to pre-define but still 

relevant and interpretable.  

Figure 4. Analysis of the attention weights of the Trans4x-256 and RNNAttn-256 models when attending to the molecular structure of 
diproxadol. The full nxn set of weights are plotted for each attention head (a) using the tensor2tensor library.55  The lines show how each 
atom/structural feature within the SMILES string is attending to all other features within the same SMILES string (self-attention). The different 
patterns that emerge from each head represent a unique set of grammatical rules that the model has learned. We also show the attention of a 
single N atom within diproxadol (b). This molecule was chosen because it is a representative example of the emergent aggregate grammatical 
trends. From the perspective of the nitrogen, the transformer model has identified the importance of a nearby aromatic ring (head 1), an 
aliphatic carbon chain of which the nitrogen is a part of (head 2) and a set of structural features including a carbon branch point and nearby 
double bond (head 3). The attention of the nitrogen in the RNNAttn-256 model is less focused. 
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When analyzing the attention weights across a set of 5000 randomly selected molecules, we find that each attention 

head corresponds to a different set of higher-level relationships between atomic or structural groups such as aromatic 

carbons, heteroatoms, branches and rings. We assess this quantitatively by averaging the attention weights between 

these groups for each head (Fig. S6). As an example, the average attention weights between heteroatoms and aromatic 

carbons are 0.15 and 0.07 for heads 1 and 2. Conversely, the average attention weights between heteroatoms and non-

aromatic carbons are ~0.00 and 0.14 for heads 1 and 2, thus the model has partitioned information on the higher-level 

relationship between heteroatoms and carbon substructures based on their aromaticity. We see this directly reflected 

in the substructures that were extracted from the diproxadol example and show the learned weights for a variety of 

structures in Fig. S7. Attention plays a significant role in the machine-learned “understanding” of molecular structure 

and as complexity is scaled up, the extracted features become more refined and meaningful. The question then 

becomes how we can balance the richness of the structural features learned by the transformer with the increased 

complexity that is required to obtain them. 

 

Information Entropy of Model Memory 

 

The concept of model complexity has been alluded to, previously, as it relates to the number of attention heads, but 

we must also define it quantitatively. The most intuitive way to do so is to return to the framework of the information 

bottleneck. The latent memory provides us a uniform comparison between model types as every molecular embedding 

within a model’s memory is the same size. By evaluating the loss function as written in Eq (2), we have instructed the 

model to store as much structurally relevant information within the memory as possible while also minimizing the 

amount of low information complexity. Therefore, we know that the complexity we have introduced qualitatively will 

be stored within the memory as long as that complexity contains structurally significant information. We can use the 

average Shannon information entropy 40 across all molecular embeddings to compare the information density of latent 

memories between model types. This gives us a quantitative metric where a higher entropy indicates a higher degree 

of complexity. Others have drawn similar analogies between Shannon’s entropy and system complexity,41 but to our 

knowledge this is the first time this metric has been introduced in the context of de novo molecular design. 

 

To illustrate model entropy visually, we show three archetypal memory structures that we have observed in Fig. 5a. 

From left to right the average entropy of these memories increases from 0 nats to 127.4 nats to 393.4 nats respectively. 

The entropy of posterior collapse is zero because it has learned the same embedding regardless of the input molecule 

thus the decoder does not receive new information from the memory. The selective structure is the most commonly 

observed (Fig. S8) and occurs when the dimensionality of the true probability manifold is smaller than the number of 

latent dimensions given to the model.34 In this case the model learns to ignore superfluous dimensions, assigning them 

a mean of zero and standard deviation of 1 to satisfy the KLD loss requirement. We consider the other dimensions 

meaningful because they contribute to the total information entropy of the memory. The smeared structure is an 

interesting case in which the burden of information is shared across all dimensions but with each contributing less 
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entropy than the meaningful dimensions from the selective structure. The smeared structure appears as a sudden phase 

change during training when the number of meaningful dimensions approaches zero (Fig. 5b). This effect was only 

observed for the MosesVAE model. 

 

 

 

The progression of entropy during training is shown for each model type. We observe increases in the order 

MosesVAE < RNNAttn < RNN < Transformer. The high entropy of the transformer models is expected and confirms 

that the molecular grammar they have learned is both complex and structurally meaningful. It is somewhat unexpected 

that the RNNAttn models have learned a less complex representation than even the simple recurrent models. Rather 

than learning grammatical rules, they have learned the most efficient way to distribute information to the bottleneck. 

The MosesVAE model has the most compressed representation, however it also has the worst reconstruction accuracy 

which can be attributed to the low information density and the selective to smeared transition at epoch 60. We can 

now explore the relationship between complexity and the generative capabilities of the models, namely the validity of 

molecules sampled from the memory and their novelty when compared against the training set. 

 

Strategies for Exploring Chemical Phase Space 

 

A generative model is only as useful as its ability to generate interesting samples. Early molecular design VAEs 

struggled with generating valid molecules and research has placed a premium on improving the percent validity when 

Figure 5. a) Visualizing a sample of 50 randomly selected molecular embeddings for three commonly observed memory structures (rows are a 
single molecular embedding and columns are the 128 latent dimensions). The information density (entropy) of each structure increases from left 
to right. b) Entropy of model memories during training (ZINC). Most models maintain the selective structure throughout training however the 
MosesVAE model undergoes a transition from selective to smeared at epoch 60. The KL Annealer prevents any model from experiencing 
posterior collapse. c) Exploration-validity tradeoff as a function of entropy when samples are drawn randomly from all latent dimensions. Cross 
diversity is evaluated only on valid molecules. The diversity of real molecular structures is shown to increase alongside model complexity as 
sampling validity decreases. 
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a random sampling scheme is employed. However, we believe that exploration is undervalued in the current meta and 

that a slightly more error-prone model that prioritizes exploration may actually be more successful at discovering 

novel functional compounds. Novelty has previously been defined as the percentage of generated samples that are not 

present in the training set.19 We introduce another metric, cross diversity, which is defined as follows: 

 

𝐶𝑟𝑜𝑠𝑠𝐷𝑖𝑣(𝐺𝑒𝑛, 𝑇𝑟𝑎𝑖𝑛) = 1 −
1

|𝐺𝑒𝑛| 9 max
,!"#$%∈.&(/"

𝐽>𝑚0!", 𝑚)&(/"@				(3)
,&'%∈1!"

 

 

where 𝐺𝑒𝑛 and 𝑇𝑟𝑎𝑖𝑛 are the sample set and training set respectively, 𝑚 is a molecular fingerprint and 𝐽(𝑚2, 𝑚3) is the 

Jaccard similarity42 between two molecules. This metric will be close to 0 when all of the generated samples are very 

similar to molecules from the training set and close to 1 when they are all far from the training set. Therefore, it can 

be considered a measure of a model’s tendency to explore new regions of phase space.  

 

 

The structure of a model’s memory heavily influences its performance on these metrics. Random sampling favors the 

lowest entropy memories when the goal is to generate the highest proportion of valid molecules. However, low entropy  

models perform much worse on exploratory metrics (Table 2). In fact, this tradeoff between validity and exploration 

is a function of model entropy that is unavoidable and exists for all model types (Fig. 5c). 

 

The difficulty in sampling from high entropy models is a result of the curse of dimensionality43 that appears within 

selective memory structures. High entropy dimensions contain all of the meaningful structural information within a 

model’s memory (Fig. 6). When the memory is selectively structured, a high entropy means there are a greater number 

of meaningful dimensions and it becomes more difficult to avoid leaving “holes” where there is no mapping to a valid 

structure. This is not a problem for low entropy models as most of the dimensions are either meaningless or contain 

just a small amount of structural information. While we can easily sample from low entropy models, we miss out on 

the benefits of an information dense memory which is better at exploring chemical phase space. 

 

Fortunately, while the diversity of generated molecules is mostly dependent on the complexity of the contextual 

relationships that have been embedded into the latent memory during training, validity can be optimized after training 

by considering sampling schemes other than random sampling. One potential strategy that requires no additional 

training and is trivial to implement is to target high entropy dimensions exclusively. This limits our search to the 

regions of chemical phase space which we know contain meaningful structural information.  

 

Model Type Entropy (nats) 
% Reconstruction 

Accuracy (ZINC) 
% Validity % Novelty Cross Diversity 

MosesVAE 127.4 0.000 0.976 0.696 0.213 

Trans4x-128 546.4 0.998 0.365 0.998 0.530 

Table 2. Comparison of generative metrics for a low entropy (MosesVAE) and high entropy (Trans4x-128) model with random sampling 
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Fig. S9 shows validity and exploration for five different sampling schemes. By restricting the number of high entropy 

dimensions that are queried, we avoid the problems inherent to high-dimensional sampling and are able to increase 

the validity of generated molecules for all model types. This demonstrates the potential of exploiting novel sampling 

schemes that allow us to maintain the benefits of a complex, rich latent memory. For instance, we were able to achieve 

a 32.6% increase in the number of valid molecules generated by the Trans4x-256 model, from 56.7 to 75.2% validity, 

while only reducing the cross diversity by 15.9%, from 0.503 to 0.423. Moreover, this range is still about two-times 

higher than the cross diversity of the MosesVAE. We also maintain the allure of the analytical and developmental 

possibilities that the highly interpretable transformer attention heads afford us by increasing the practical viability of 

these models in the short-term. 

 

The choice of model type ultimately depends on the individual needs of the researcher, however we can submit a few 

broad recommendations. Smaller models tend to perform better on exploratory metrics whereas bigger models stick 

closer to the training set and generate a higher proportion of valid molecules. The addition of attention improves 

performance in both regards. Therefore, the RNNAttn-128 and RNNAttn-256 models are the most immediately 

practical. Transformers are the most interpretable and, in our view, have the highest potential for optimization and 

should be the focus of further development.  
 

Conclusions 

 

Herein, we have introduced the concept of attention to the field of molecular design, compared two novel architectures, 

RNNAttn and TransVAE, to the current state of the art and explored the downstream effect that the structure of the 

model memory has on a variety of sampling metrics. We find that transformers live up to their reputation based on 

their ability to learn complex substructural representations of molecular features, and we expect that there is an 

opportunity to expand our own chemical intuition as we continue to explore the relationships they have learned in 

more detail. The recurrent attention models, on the other hand, stand out for their superb practical performance 

exhibiting the best balance between reconstruction accuracy, sampling validity and cross diversity. 

Figure 6. The result of exclusively sampling from low entropy dimensions (avg. entropy < 5 nats) vs. high entropy dimensions. Sampling the low 
entropy dimensions has no effect on the decoded structure confirming that these dimensions are not used by the model. Sampling high entropy 
dimensions results in a diverse array of structures. 
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We anticipate there will be two primary directions in which further research may proceed. The first is the direct 

application of attention based VAEs to real-world inverse design problems. There is a growing demand for 

biodegradable organic alternatives to toxic, high-value commodity chemicals in a number of different industries.44–46 

Many of these involve molecules that are much larger than the average drug-like molecule and we are excited at the 

prospect of applying attention VAEs to these untapped areas. Generative algorithms have the potential to pair nicely 

with computational reaction networks such as NetGen47 and we can envision, as an example, a framework in which 

generated samples are used as the library for a high-throughput search of retrosynthetic pathways for the discovery of 

bioprivileged molecules.48 

 

The second direction is the continued exploration and optimization of attention VAE architectures and their 

hyperparameters, particularly with regards to the formation of the latent memory during training. There is a definite 

potential for the implementation of more complex sampling schemes, for instance the two-stage VAE34 introduces a 

second model that takes the latent memory as an input and is better able to learn the true probability manifold of the 

input data. There is evidence that the use of a Gaussian prior restricts the model’s ability to directly learn the true 

probability manifold and so it may be worth exploring alternatives like VampPrior as well.49  

 

Perhaps the most worthwhile pursuit is to continue to develop our knowledge of how the model intuits and compresses 

structural information, as this could give us insight into novel objective functions that help us encourage the model to 

better shape its memory and relate it to other pieces of chemical information outside of the current scope. Although 

the field is advancing rapidly, we are still just at the threshold of the AI-dominated era that Marvin Minsky announced 

over a half century ago.50 There may be no aim more practical than furthering our own understanding of the nature of 

synthetic intelligence to push us further past that threshold. The latent conception of molecular structure is just one 

component within the broader field of organic chemistry and if coupled with a natural language model-based 

interpretation of scientific literature, high-throughput classical and quantum calculations, robotics driven lab-scale 

experimentation and an interactive environment in which our models can communicate and act upon their learning, 

we may finally begin to approach an intelligence that can solve problems at the pace we introduce them. 

 

Methods 

 

We tested three different model types – RNN, RNNAttn and Trans – for their ability to generate novel molecules. For 

each model type we also tested multiple architectures as summarized in Table 1. The Adam51 optimizer was used with 

an initial learning rate of 3e-4 and an annealer was used to linearly increase 𝛽 during training. We employed a scaling 

function that weighed the loss for each token based on its frequency of occurrence. All models were trained for 100 

epochs unless stated otherwise.  
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There are a couple of key differences between the MosesVAE and our own RNN implementation including the size 

and number of encoder/decoder layers, the use of bidirectionality for the encoder and the absence of batch 

normalization. For more details on the implementation of the MosesVAE please refer to Fig. S4/S5, Table 2 and the 

original paper by Polykovskiy et al.19 Further details about model construction and training can be found in the SI. 

 

Two datasets were used to examine how the models perform on different training set distributions. The first is a 

modified version of the ZINC Clean Leads database52 with charged atoms removed and a molecular weight range of 

250-350 Da. It contains a total of 1,936,963 molecules with an 80/10/10 train/test/dev split. The ZINC data was used 

to evaluate the models on a traditional AI-driven molecular design task – pharmaceutical discovery. The other is a 

filtered subset of the PubChem compounds database.53 It contains molecules with a mean molecular weight of 348 

Da, a max of 2693.6 Da and includes some charged compounds with N+ or O- containing moieties. Due to the size of 

the dataset after filtering, a subset of 5,000,000 molecules were randomly selected and used for training with an 

80/10/10 train/test/dev split. The PubChem data was used to evaluate the models’ performance on reconstructing 

molecules larger than those typically found in drug-like compound databases. The RDKit54 Python package was used 

for downstream analyses of generated molecules including SMILE validity, fingerprints, and physical property 

calculations.  

 

Supplementary Material 

 

See Supplementary Information for detailed descriptions of model architectures, hyperparameters and training 

decisions and all supplementary figures referenced in text. Saved model checkpoints and code to re-create all of the 

results reported in this article is available at https://github.com/oriondollar/TransVAE. 
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