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Abstract 

Metabolomics, the systematic investigation of metabolites in biological fluids, cells or tissues, 

reveals essential information about metabolism and diseases. Metabolites have functional roles 

in myriads of biological processes, as substrates and products of enzymatic reactions, but also 

as cofactors and regulators of large numbers of biochemical mechanisms. These functions 

involve interactions of metabolites with macromolecules. Yet, methods to systematically 

investigate these interactions are hitherto still scarce. In particular, there is a need for techniques 

suited to identify and characterize weak metabolite-macromolecule interactions directly in 

complex media such as biological fluids. Here, we introduce a method to investigate weak 

interactions between metabolites and macromolecules in biological fluids. Our approach is 

based on high-resolution NMR relaxometry and does not require any invasive procedure or 

separation step. We show that we can detect interactions between small and large molecules in 

human blood serum and quantify the size of the complex. Our work opens the way for 

investigations of metabolite- (or other small molecules) protein interactions in biological fluids 

for interactomics or pharmaceutical applications.  
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Introduction  

Biological fluids are complex mixtures of low-molecular weight molecules, i.e. metabolites, 

macromolecules, i.e. proteins and nucleic-acid fragments, and cells.1-2 Metabolites, such as 

amino acids, lipids and carbohydrates, are intermediates or end products of metabolism. They 

constitute a unique chemical fingerprint of the metabolic status and represent valuable markers 

for various diseases. Metabolites also affect cellular activities by binding to macromolecules to 

carry out their functions in signaling, regulation and other cellular processes.  

During the last twenty years, metabolomics3-7 and proteomics8-11 have been established as 

crucial analytical fields for the identification of metabolites and proteins, respectively, with a 

strong impact in biology and medical diagnostics.11-14 NMR has proven to be a powerful tool 

for metabolomics.15-24 On the other hand, the investigation of the interactions between all 

biological molecules in living organisms (i.e. metabolites, proteins, nucleic acids), called 

interactomics, has developed non uniformly.25-26 The systematic determination of protein-

protein interactions (PPIs) has been performed at the scale of full proteomes, including the 

human proteome,27-32 and has proven to be an accelerator for drug discovery through systematic 

determination of host-pathogen protein-protein interactions.33 On the other hand, the 

determination of metabolite-protein interactions (MPIs) is still under development.34-35 MPIs 

are amongst the least studied in interactomics, mainly due to the lack of systematic analytical 

techniques. Analytical methods to probe MPIs have been reported, but most of them involve 

chemical modification of metabolites (e.g. by inserting radioactive or fluorescent handles) or 

proteins (with tagging or isotope labelling),36-37 or tedious separation methods (electrophoresis, 

chromatography, ultrafiltration, etc.).36, 38-39 Despite being fairly robust, these approaches can 

be time-consuming, they rely on complex protocols and none of them is performed in situ (i.e. 

within a biological tissue or liquid), which increases the risk of bias. Weak interactions between 

metabolites and macromolecules in biological fluids are particularly challenging to characterize 

with existing approaches and an analytical method designed to systematically identify 

interactions between metabolites and macromolecules, particularly weak MPIs, is in need. 

Many NMR methods have been developed to investigate specific interactions between small 

and large molecules. They often rely on physical properties that are different in the small 

molecule and the complex. Several methods, based on the difference in dipolar cross-relaxation 

in small and large molecules are efficient at identifying interactions between a small molecule 

and a macromolecule, with little information on the macromolecule.40-44 Diffusion-edited NMR 

experiments probe the effective size of small molecules.45 Effective transitional diffusion 
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coefficients are weakly altered by low-affinity binding.46-47 In addition, estimating the size of a 

complex from the apparent diffusion of a small molecule requires, at least, a titration 

experiment. By contrast, nuclear magnetic relaxation is probably the most sensitive property 

for assessing molecular dynamics and size. The magnetic-field dependence of relaxation rates 

identifies clearly rotational diffusion correlation times, which change dramatically depending 

on molecular size. By measuring relaxation rates over a broad range of magnetic fields 

(typically 100 μT to a few T), fast field-cycling (FFC) relaxometry48 can determine overall 

diffusion correlation times of all the species in a sample.49-52 However, FFC is a low-resolution 

technique, characterizing the collective relaxation of nuclei of the whole samples and it is not 

suitable for the identification of individual interactions in complex mixtures.  

Here, we introduce high-resolution NMR relaxometry as a powerful analytical method to 

investigate MPIs in biological fluids. High-resolution relaxometry (HRR) combines the 

analytical power of high-resolution NMR with relaxometry, exploiting the stray field of a 

commercial NMR magnet as variable field.53-55 We demonstrate that weak interactions of 

metabolites with proteins can be identified from the field-dependence of proton relaxation rates 

of metabolites in human blood serum. We show that the size of the metabolite-protein complex 

could be determined for two small molecules and serum albumin, in a model sample as well as 

in human blood serum. Finally, we demonstrate that our approach can be used to characterize 

binding competition. Our work illustrates the potential of high-resolution relaxometry for the 

investigation of interactions of small molecules and proteins in complex media, in particular 

biological fluids, with potential applications in interactomics and drug screening. 

 

High-resolution relaxometry 

The principle of relaxometry is to measure nuclear spin relaxation rates over several orders of 

magnitude of magnetic fields. In FFC, after polarization, an electro-magnet is switched to lower 

magnitude for relaxation and back to higher magnitude before detection. Another way of 

sampling a large span of magnetic fields is to physically move the sample away from the center 

of the coil of a high-resolution NMR magnet.54-60 The latter approach allows one to couple 

high-resolution NMR detection with relaxometry. For example, phosphorus-31 high-resolution 

relaxometry has been used to probe the binding of a small molecule to a protein in vitro.61-62 

Here, we discuss how proton high-resolution relaxometry can be used as a ubiquitous probe of 

metabolite interactions in biological fluids. The rotational diffusion correlation time (τc) is 

proportional to the volume of a molecule, thus it changes dramatically when a small molecule 
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binds to a macromolecule. In solution, unbound metabolites have small τc of about tens to 

hundreds of picoseconds, whereas macromolecule-bound metabolites have τc from a few 

nanoseconds to about a microsecond.50, 63 If the exchange between the free and bound form of 

the metabolite is fast with respect to relaxation rates, kex≫|R1B – R1F| the measured effective 

longitudinal relaxation rate R1eff can be written as the weighted average between the 

longitudinal relaxation rates of the free form 𝑅!" and that of the bound form 𝑅!#: 

𝑅!
$%% = 𝑝"𝑅!" + 𝑝#𝑅!# 	 [1] 

where pF and pB are the populations of the free and bound states of the small molecule (pF + pB 

= 1).  

Here, we present a simple model for the relaxation of methyl group protons in a small molecule 

binding transiently to a macromolecule. In the free form, we only consider the dipolar 

interactions between identical protons inside the methyl group: 

𝑅!" = 𝐴&$'()*[𝐽(𝜔+ , 𝜏,") + 4𝐽(2𝜔+ , 𝜏,")]. [2] 

where the effective dipolar constant is 𝐴&$'()* = 𝑆- .
.-

/!"0#
$ℏ"

2"3##
%  , S2 is the order parameter for 

intra-methyl dipole-dipole interactions, 𝜇4  is the permeability of vacuum, g+  is the 

gyromagnetic ratio of the proton and rHH is the distance between two protons inside the methyl 

group (as found in Ref. 64). The spectral density function J(ω, τc) is the Fourier transform of 

the correlation function for nuclear spin interactions, where 𝜔+ = −g+𝐵4  is the Larmor 

frequency of the considered proton, B0 is the magnetic field, and τcF is the rotational correlation 

times of the small molecule free in solution. Assuming infinitely fast rotation of the methyl 

group, the dipolar constant is simply scaled by the order parameter 𝑆- = 1 4⁄ . In the bound 

form, we consider that relaxation is dominated by dipole-dipole interactions between methyl-

group protons and surrounding protons of the environment, including intramolecular and 

intermolecular contributions: 

𝑅!# = 𝐴#[𝐽(0, 𝜏,#) + 3𝐽(𝜔+ , 𝜏,#) + 6𝐽(2𝜔+ , 𝜏,#)]. [3] 

The dipolar constant is 𝐴# = 𝑆- !
56

/!"0#
$ℏ"

2"3&'(% , where renv is the distance between the methyl group 

protons and a single effective proton representing all other protons in the complex, and τcB is 

the rotational correlation times of the small molecule when it is bound to a macromolecule (i.e. 

the correlation time of the macromolecule). We introduce the additional hypothesis that the 

population of the bound form is much smaller than the population of the free form: 𝑝# ≪ 𝑝" 

and 𝑝" ≈ 1. Under these hypotheses, the number of free parameters in the model is reduced to 

three: the correlation times τcF and τcB and the product 𝑝#𝐴#. These hypotheses have been tested 
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in the analyses of high-resolution relaxometry profiles of a model compound (see below and 

SI). 

Here, we use the following simple expression for the spectral density function J(ω, τc) to model 

the overall rotational diffusion:  

𝐽(𝜔, 𝜏,) =
2
5

𝜏,
1 + 𝜔-𝜏,-

. [4] 

 

NMR relaxation dispersion (NMRD) profiles, obtained through a broad range of magnetic 

fields, allow one to map the spectral density function over a wide range of frequencies and, 

hence, determine correlation times. As noted in the expressions for J(ω, τc), when the 

correlation time is small (free state of a small molecule), we have ωτc << 1 over the entire range 

of magnetic fields. This is the so-called extreme narrowing regime, where longitudinal 

relaxation rates due to dipole-dipole interactions are small and mostly independent of the 

magnetic field. For macromolecules, a strong dispersion is expected over the range of magnetic 

fields where wτc ~ 1. The low-field limit of longitudinal relaxation rates is proportional to the 

correlation time τc, making NMRD profiles of macromolecules very sensitive to the molecular 

size. A dispersion at low magnetic fields (B0 < 1 T) in the NMRD profile of a proton in a small 

molecule is a clear signature of transient binding to a macromolecule, (Fig. 1). Recording a full 

NMRD profile provides enough information to determine unambiguously the correlation time 

for the small molecule in its bound state.  

 

Figure 1. Illustration of the effect of binding of a small molecule (τcF = 50 ps) to a macromolecule (τcB = 25 ns) on 

the longitudinal relaxation dispersion profile of the small molecule. The yellow, green and blue curves show 

NMRD profiles of the small molecule with a bound fraction of 0%, 1% and 5%, respectively. The model presented 

in Equations 1-4 was used for the calculation and only the dipolar interaction with the effective protein protons is 

considered in the bound form. The effective dipolar interaction amplitude is set to 109 s-2, corresponding to renv = 

229 pm.  
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High-resolution relaxometry provides relaxation rates for each individual signal in a high-

resolution spectrum. Each nucleus will show a different relaxometry signature due to its specific 

tumbling correlation time and internal dynamics. When components of different sizes interact 

in a mixture, we expect a clear signature of this interaction in individual NMRD profiles (Fig. 

1). An HRR experiment starts with polarization of nuclear spins at the high-field position (Fig. 

2, 2). The sample is then transferred to a predefined position of the stray field of the magnet 

(Fig. 2, 3) for relaxation. Finally, the sample is sent back to the high-field position for detection. 

This setup allows one to benefit from both high-sensitivity and high-resolution provided by the 

homogeneous high magnetic field, and to collect relaxation rates across a broad range of 

magnetic fields (here, 15 mT to 14.1 T).  

 

 

Figure 2. Schematic cross-section view of the high-resolution relaxometry system: (1) shuttle tube with an active 

volume of 60 µL and end caps (brown rectangles) protecting the tube during transfers and landing; (2) Magnet 

operating at 14.1 T (600 MHz) for polarization and detection, and triple-resonance shuttle probe with z-gradient; 

(3) Magnetic fields as function of the distance to the magnetic center. The plateau at 0.33 T is due to the presence 

of ferroshims in the bore of our magnet.65 During an HRR experiment, the sample is transferred between the probe 

(sample shown in solid-line contours) and a preset position inside the magnet (sample shown as dashed icon). A 

detailed description of the system is given in reference 59.  

 

Results and discussion 
Model studies  

The feasibility and reliability of the method was first evaluated on a model sample, composed 

of alanine, sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP) and bovine serum albumin 

(BSA) in buffer solution. Alanine is a metabolite naturally present in many biological fluids, 

such as blood serum, and it is reported to not show any significant interaction with 
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macromolecules.66 TSP is often introduced as an internal standard in metabolomic studies and 

its interaction with macromolecules is well known.67-68 Serum albumin is the most abundant 

blood protein and it is known to bind many different molecules,69 including TSP. We used BSA 

as reference macromolecule (MW = 66.7 kDa, 0.5 mM). We employed highly-purified and fat-

free BSA in order to avoid interference or competition arising from small impurities. Alanine 

and BSA were used at physiological concentrations encountered in blood serum.70-71 

The NMRD profiles of the methyl protons of alanine and TSP are strikingly different (Fig. 3). 

The longitudinal relaxation rate of the methyl protons of alanine has no noticeable dependence 

over the magnetic field, indicating the absence of interaction with BSA. The relaxation rate is 

close to 0.85 s-1 over the entire range of magnetic fields. This uniform longitudinal relaxation 

rate shows that the methyl protons of alanine are in the “extreme narrowing” regime, typical 

for a small molecule in the absence of interactions. On the other hand, the NMRD profile for 

the methyl protons of TSP shows strong evidence of binding to BSA. The NMRD profile of 

trimethylsilyl (TMS) protons shows a first dispersion between 1 and 10 T, corresponding to a 

sub-nanosecond correlation time that likely corresponds to the tumbling of the free TSP with a 

correlation time 𝜏cF. A second, stronger dispersion is observed between 30 mT and 0.3 T, and 

is the signature of binding of TSP to BSA, characterized by a correlation time 𝜏cB.  
 

 

Figure 3. NMRD profiles for the methyl protons of TSP (blue crosses) and alanine (orange crosses) in the model 

sample. Fitted-model curves are shown as solid line for TSP (purple) and alanine (green). Equations for model 

curves are reported in the SI. 

The quantitative analysis of the two NMRD profiles was performed with molecule-specific 

models. Models and experiments are in excellent agreement (see SI for full expressions of 

relaxation rates and spectral density functions). For alanine, only dipolar interactions between 
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methyl group protons were considered and the self-rotation of the methyl group was assumed 

to be infinitely fast, the population of the free form of alanine was set to pF = 1. The results 

from the fitting revealed a correlation time of 36 ± 5 ps for the overall tumbling of alanine. For 

TSP, we considered the measured relaxation rates to be a weighted average between the 

longitudinal relaxation rates in the free and bound forms (Eq. 1). A very simple model is 

sufficient to reproduce the experimental NMRD profile of TSP (Fig. 2). In this model we 

assume infinitely fast rotation of methyl and trimethylsilyl (TMS) groups for the free molecules, 

but TMS rotation is considered to be hindered in the bound state. The order parameters are 

imposed by geometry.72 Finally, we consider the limit where the population of the bound state 

pB << 1. Models with additional parameters are presented as supporting information but 

selection based on Akaike Information Criteria73 favored the simplest model.  

Using this model, we found that the global rotational correlation time for free TSP is 𝜏cF = 0.52 

± 0.03 ns and the rotational correlation time of the TSP-BSA complex is	𝜏cB = 39.4 ± 1.9 ns. 

This is in very good agreement with an estimation of the rotational correlation time of BSA of 

40 ns obtained by Ferrer et al.74 by extrapolation of experimental data to 1 cP and 20°C. Overall 

diffusion of BSA is not expected to be isotropic: the diffusion tensor of BSA is estimated by 

HYDRONMR75 to a harmonic mean correlation time τchm = 44.5 ns, with effective correlation 

times, depending on the orientation in the diffusion tensor, that vary between 41.7 ns and 47.8 

ns (see SI for details). In this calculation we have assumed that the effective, microscopic, 

viscosity is that of the solvent,76 which for water at 25°C is 0.89 cP.77 Note that HYDRONMR 

calculations do not include any contribution of the internal mobility in the complex. Slow 

internal motions are expected to lower the apparent value of tcB	as compared to a fully rigid 

case, which might explain why the value of the correlation time 𝜏cB is at the lower bound of the 

range predicted by HYDRONMR.	

 

Metabolite binding in human serum 

In order to demonstrate the potential of HRR, we have investigated interactions of metabolites 

with proteins in human blood serum. Blood serum is commonly investigated by metabolomics, 

as it contains biomarkers of great interest for clinical tests.78 Proteins are also abundant in blood 

serum, making it a perfect target for discovering and measuring metabolite-protein interactions. 

Protein concentrations are widely distributed from 10-12 to 10-3 M, many of which are around 

10-6 M or above (see Figure 7 and Table S4).1, 79-86 The molecular weights of serum proteins 

span several orders of magnitude, from thousands of Da to the MDa range, corresponding to 
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rotational correlation time from a few ns to a few µs. In addition, blood serum has favorable 

properties for methodological developments: it is self-buffered and has a stable composition, 

thus allowing for long experiments with satisfactory sample preservation.87 

Experiments were carried out on blood serum samples from three healthy donor. In order to 

evaluate the ability of relaxometry to probe the size distribution of macromolecules in blood 

serum, we measured NMRD profiles on the three serum samples by FFC relaxometry, which 

has currently a broader range of accessible fields than HRR.63 The NMRD profiles of serum 

samples (Fig. 4) from different donors were very similar, with variations of relaxation rates of 

5% at most. The analysis of NMRD profiles (Table S2) shows contributions of correlation times 

between ca. 10 ns and ca. 1 μs, which is in good agreement with the size distribution of the 

proteins present in serum (Figures 7, S8 and Table S2). 

 

Figure 3. 1H NMRD of three serum samples from three different donors obtained by fast field-cycling relaxometry 

at 25°C. The analysis of the three profiles with a distribution of correlation times is described in Table S2 (see SI). 

We have previously demonstrated that high-quality spectra could be obtained with HRR on 

small macromolecules.59, 72, 88 Yet, recording spectra of small molecules in complex mixtures 

is even more demanding in terms of resolution. Nevertheless, we clearly identified 20 

metabolites as suitable targets for HRR analysis on a 1H NMR spectrum. The only adaptation 

of a typical 1D-NOESY experiment used in metabolomics89-90 is the addition of a 

WATERGATE element91 for the suppression of the water signal, as the polarization of water 

builds up during shuttle transfers and stabilization delays. Here, we show the NMRD profiles 

of four representative metabolites in order to show different signatures of interactions with 

proteins (Fig. 5). The measured relaxation rates are very similar in the three serum samples for 

each metabolite, which reflects the expected similar compositions of serum in healthy donor. 
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The NMRD profile of lactate shows evidence of an interaction with macromolecules in serum 

(Fig. 5a). Importantly, we observe an inflection of the NMRD profile at the lowest magnetic 

fields, which indicates that a quantitative analysis is possible. The analysis of the NMRD profile 

of lactate provides the overall rotation correlation time of the complex, hence, an estimation of 

the size of the complex (see SI). Using Equations 1-4 (Model 1 in the SI), we characterized the 

rotational dynamics of the free and bound forms of lactate (Table 1). The rotational diffusion 

correlation time of free lactate 𝜏cF ranges between 22.8 and 35 ps, and the correlation time of 

the complex tcB	between 32.0 and 35.2 ns. The values of the parameters, particularly the product 

of the dipolar constant and population of the bound state ABpB, as well as the correlation time 

for the complex tcB, are remarkably reproducible across samples of different donors. The 

interaction of lactate with human serum albumin (HSA) has been previously reported66, 92-93 

and HSA is the most abundant protein in serum, therefore we can assume that lactate is 

prevalently binding to HSA. Analogously to our model sample with BSA and TSP, we can 

consider that serum is diluted enough to not cause any variation in the microscopic viscosity,76 

and use HYDRONMR75 to estimate the diffusion tensor of HSA. The estimated harmonic mean 

of the correlation time is 47.8 ns, with a minimum of 44.0 ns and a maximum of 51.4 ns 

depending on the orientation in the molecular frame (see SI for details). As mentioned above, 

there are several reasons for the discrepancy between our measurement and HYDRONMR 

calculation. Rotational anisotropy and internal motion in the protein could be significant, as 

well as the possible interaction of lactate with smaller proteins which are present in serum at a 

relatively high concentration (see Table S4 and Fig. 7 and S8).  

By contrast, alanine and glutamine (Fig. 5c-d) have relatively flat NMRD profile. They do not 

show significant signs of binding. The analysis of the NMRD profiles estimates the correlation 

time for tumbling τc to be between 0.08 ns and 0.10 ns. These results are close to our expectation 

for small molecules in serum, and in good agreement with the literature.94  

The NMRD profile of creatinine indicates evidence of binding with macromolecules (Fig. 5b). 

In this case, however, we can observe some systematic differences between sample 3 and the 

other two samples. Unfortunately, we could not obtain reliable quantitative analyses of these 

NMRD profiles, due to low precision and the possibly incomplete determination of the spectral 

density function (the maximum relaxation rate is clearly not reached even at the lowest field of 

measurement). Nevertheless, the binding of creatinine to HSA has been reported and none of 

the major endogenous metabolites are known to compete with it.95 If we consider that this 

interaction is weak, the partial dispersion profile is compatible with the binding of creatinine to 
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HSA, within the large error bars due to the low concentration of creatinine (about 80 µM). This 

hypothesis was confirmed by measurements of the transverse relaxation rate of the creatinine 

methyl protons in a buffer, with and without BSA (see SI for details). However, we cannot rule 

out additional interactions of creatinine with other proteins. 

 

Figure 5. Proton NMRD profiles of (a) lactate (1.24 ppm), (b) creatinine (2.94 ppm), (c) alanine (1.38 ppm), and 

(d) glutamine (2.37 ppm) of the same three serum samples in Fig. 4. As in Figure 4, relaxation rates for the blood 

serum of donor 1, 2 and 3 are shown in green, yellow and blue, respectively. The fit of the NMRD profile of lactate 

for donor 2 is shown in (a) (solid red line). 

Table 1 Parameters of the model obtained from the analysis of the NMRDs profile of the methyl protons of lactate 

in blood serum 

Donor ABpB (106 s-2) 𝜏cF (ps) 𝜏cB (ns) 

1 15.7 ±1.5 35 ± 7 32.0 ± 4.9 

2 15.8 ± 0.7 22.8 ± 3.7 35.2 ± 2.5 

3 15.8 ± 1.0 27 ± 6 34.7 ± 4.2 
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Binding competition between metabolites and TSP 

Binding competition is an indirect method to characterize a broader set of interactions, in 

particular tighter interactions, than those accessible by HRR. We have shown that TSP is 

binding to BSA, and investigated the interaction of lactate to human serum albumin (HSA). R. 

Barrilero et al.68 have shown evidence for competition between lactate and TSP for binding to 

HSA. As a proof of concept, we investigated this binding competition by HRR. We prepared 

two blood serum samples (donor 1) with and without TSP (14 mM) and we recorded the NMRD 

profile of lactate and creatinine (Fig. 6). The NMRD profiles of creatinine for the two samples 

are similar (Fig. 6a), as expected from a study by R. Barrilero et al.68 On the contrary, the 

proton longitudinal relaxation rates of the methyl group of lactate are much lower in the sample 

with TSP, confirming the binding competition between the two molecules for HSA (Fig. 6b). 

Interestingly, the rotational correlation times for the free and bound form of lactate are identical 

in the samples with and without TSP (Table 2). The only difference between the two NMRD 

profiles of lactate is found to originate from the different values of the parameter ABpB, which 

decreased from 15.7 ± 1.5 106 s-2 in the absence of TSP to 5.9 ± 0.4 106 s-2 upon addition of 

TSP. This decrease by a factor of 2.7 ± 0.3 in the presence of TSP can be assigned to a change 

in the bound fraction, which decreases by more than 60% in the presence of 14 mM of TSP. 

HRR provides a clear evidence of binding competition, and the analysis of the NMRD profiles 

leads to a quantitative determination of the changes in binding populations.  
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Figure 6. NMRD profiles of the methyl protons of (a) creatinine and (b) lactate from blood serum samples of 

donor 1, with 14 mM of TSP (yellow squares) and without TSP (green squares). The red lines are the results of 

the fit with Equations S6, providing parameters presented in Table 2. 

Table 2 Parameters from the analysis of the NMRDs of lactate in serum samples with and without TSP.  

Sample ABpB (106 s-2) 𝜏cF (ps) 𝜏cB (ns) 

With 14 mM TSP 5.9 ± 0.4 33 ± 3 33.3 ± 4.8 

Without TSP 15.7 ±1.5 35 ± 7 32.0 ± 4.9 
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Figure 7. (a) Distribution of molecular weights and concentrations of human serum proteins. The arrow spans 

indicate the known concentration variability of each protein. (b) Distribution of correlation times and 

concentrations of human serum proteins. The solid black symbols indicate the harmonic mean of the correlation 

times of proteins calculated using HYDRONMR. The open symbols indicate correlation times of proteins 

calculated using a simple linear relationship between molecular weight and correlation time (see Eq. S8). The 

dashed lines represent estimates of the limits of detection of our current setup (imposed by sensitivity and range 

of accessible magnetic fields), and the light blue area represents the currently accessible region. 

 

Discussion 

In blood serum, about 60 metabolites are easily detectable by NMR and 35 proteins have 

concentrations above 1 µM, which should be accessible to the current method.18, 70, 96-97 This 

means that potentially over 2000 different interactions could be probed by HRR. Here, we 

identified twenty metabolites by 1D proton NMR on our prototype and we show NMRD 
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profiles for four of them: lactate, creatinine, glutamine and alanine. The experiments were 

carried out on three different serum samples from healthy donors and the results were uniform 

for all of them. The NMRD profiles of the metabolites show that for some of them (i.e. lactate 

and creatinine) there is a significant interaction with macromolecules, whereas others (i.e. 

glutamine and alanine) have little to no interaction with proteins. For lactate, we obtained a 

correlation time of its bound form, 𝜏cB = 34.0 ± 3.9 ns, which is, within a reasonable error 

margin, compatible with the one estimated by HYDRONMR for HSA. Note that decay rates in 

high-resolution relaxometry experiments deviate from longitudinal relaxation rates by as much 

as 15% in proteins.72, 98-99 Here, our analysis assumes that the decay rates are the longitudinal 

relaxation rates, which should minimally impact the obtained values of correlation times.72 

Finally, we were also able to identify competitive binding of small molecules to serum albumin 

in human blood serum, which could prove to be a new approach for performing fragment-based 

drug design directly in a complex biological fluid.  

HRR benefits from several advantages as compared to other methods to investigate MPIs. First, 

there is no separation step during sample preparation: experiments are directly performed on 

the serum obtained from blood by standard procedures. Second, relaxometry is able to probe 

weak transient interactions, which are extremely difficult to detect by existing methods.34-35 

Third, the analysis is quantitative and provides information to identify the protein interacting 

with the observed metabolite. Currently, the range of magnetic field that we can probe allows 

to quantify the rotational correlation time of a complex as slow as ~50 to 100 nanoseconds. The 

determination of this correlation time provides an estimate of the size of the complexes, hence 

of the size of the proteins that interact with a given metabolite (see SI).100 The accuracy of 

correlation times determined by HYDRONMR is within about 10%.75 If we estimate the error 

on the correlation times given by HRR to be around 10%, we can consider the agreement of 

HYDRONMR and HRR within a range of ±20%. Our current HRR system is less sensitive than 

a state-of-the-art NMR system (10% of the sensitivity of a room-temperature probe). We 

estimate the sensitivity limit for a quantitative analysis to 100 μM for metabolites and 1 μM for 

the complex (for ~1% of bound metabolite). Considering only serum proteins that are present 

in concentrations above 1 μM, the correlation times within a ±20% range indicate only a few 

interacting proteins as potential candidates. The distribution of correlation times is not uniform 

so that the number of candidates in this range varies from 1 to 8, depending on the value of the 

correlation time (Fig. 7b). Note that the amplitude of the relaxation dispersion is proportional 
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to the bound fraction and the correlation time of the complex. Thus, the minimal bound faction 

for detection is expected to be inversely proportional to the size of the complex.  

 

Conclusion 

We have introduced an approach based on high-resolution relaxometry to investigate 

metabolite-protein interactions in biological fluids. We have measured with HRR and analyzed 

site-specific proton longitudinal relaxation rates in metabolites over three orders of magnitude 

of magnetic field (from 15 mT to 14 T). The method was first established on a model sample, 

containing alanine, TSP and BSA. We clearly identified the weak binding of TSP to BSA and 

obtained an estimate of the rotational correlation time of BSA in good agreement with what is 

expected from its molecular weight and the literature. We demonstrated that this method could 

be used in a biological fluid such as human blood serum. We used HRR to determine the NMRD 

profiles of lactate, creatinine, alanine and glutamine. We found clear evidence that, in serum, 

lactate and creatinine interact weakly with macromolecules, i.e. proteins, whereas alanine and 

glutamine do not. The quantitative analyses of the NMRD profiles of lactate provided nearly 

identical estimates of the rotational correlation time of the complex in the blood of three 

different healthy donors. These estimates are in good agreement with the known interaction of 

lactate with HSA but could also reflect weak binding to a smaller protein. We also demonstrated 

that the interactions could be investigated indirectly through a binding competition experiment, 

which opens the way for the investigation of strong interactions by HRR. Upon addition of TSP 

to blood serum, the dispersion amplitude of lactate is reduced and the variation of the bound 

fraction of lactate was quantified. Our investigation demonstrates the potential of high-

resolution relaxometry as a non-invasive and quantitative analytical tool for biological fluids. 

With HRR, NMR can become a powerful tool for the investigation of metabolite-protein 

interactions for interactomics and, in general, for the analysis of small-molecule‒

macromolecule interactions in complex media, for chemical and pharmaceutical applications. 

 

Materials and methods 
Samples preparation. Each analyzed sample was placed in a custom-sized NMR tube made 

of amorphous quartz, with an active volume of ~60 µL, sealed with glue (Eleco-EFD Vitralit® 

2009 F) and capped with specifically designed polyimide tops, which fit the probe cavity and 

help absorbing shocks upon shuttling.  
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The model sample contains 0.5 mM alanine, 50 mM TSP, and 0.5 mM BSA, as a substitute for 

human serum albumin. All compounds were dissolved in a phosphate buffer (pH 7.4, 35 mM 

Na2HPO4, 0.58 mM NaN3 in H2O/D2O 90/10 (v/v)). All compounds were purchased from 

Sigma Aldrich – Merck. 

The serum samples were collected, prepared and stored according to standard metabolomic 

procedures.87 Before being transferred to a shuttle tube, frozen samples were thawed at room 

temperature and homogenized with an agitator. 5% v/v of D2O was added for lock purposes 

and they were sealed directly into shuttle tubes.  

The serum sample with TSP as competing molecule contained 30% (v/v) buffer (pH 7.4, 35 

mM Na2HPO4, 0.58 mM NaN3, and 46 mM TSP in H2O/D2O 90/10 (v/v)). The final 

concentration of TSP in this serum sample was then 14 mM. 

NMR spectroscopy. HRR experiments were carried out on a Bruker Avance III HD 

spectrometer operating at 14.1 T,	with a shuttle apparatus and a 3.2 mm triple-resonance probe 

with a z-axis gradient.59 A temperature calibration sample contains deuterated acetic acid buffer 

(50 mM) and 7% D2O was used to perform blank relaxation experiment by reproducing real 

experimental conditions, including shuttle transfers, relaxation at the low field position, etc. 

Then the temperature was calibrated using deuterium chemical shift difference between acetic 

acid and water (OD) signals. We ensured that NMR measurements were performed at (298.0 ± 

0.2) K for all delays at all fields.101 The pulse sequence for the high-resolution relaxometry 

experiment was adapted from a standard 1D NOESY, by adding a relaxation delay at low field 

and WATERGATE91 blocks (see SI for details). 1H longitudinal relaxation rates were measured 

at different magnetic field magnitudes over 3 orders of magnetic strength from 14.1 T down to 

15 mT (14.1, 10.0, 5.0, 2.5, 1.25, 0.625, 0.33, 0.23, 0.16, 0.12, 0.10, 0.08, 0.07, 0,06, 0.05, 0.04, 

0.03, 0.02, 0.015 T). Each relaxation decay was characterized by 7 relaxation delays (from 

0.001 s to a maximum of 1 s depending on the field). The number of scans varies between 288 

and 2304 depending on the field for sufficient signal to noise ratios. 

HRR Data analysis. HRR experiments were processed using NMRPipe using the solvent filter 

option and a sine-bell apodization function.102 Signals of individual molecule were measured 

by summing up intensities over a chosen interval. Baseline correction was applied after Fourier 

transform of the FID. For minor baseline corrections, the averaged intensities at the extremities 

of the chosen intervals were used to define a linear function subtracted from the spectra. The 

peak for lactate overlaps with a large signal of lipids aliphatic protons and baseline correction 

was applied using the NMRPipe102 POLY function. The intensity uncertainty was estimated 

from signal-free regions of the spectra. Intensity decays were fitted using a mono-exponential 
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decay function, and errors in the relaxation rate evaluated by Monte-Carlo analysis in Octave.103 

The NMR dispersion profile were analyzed to yield parameters of the models using 120,000 

steps Markov-Chain Monte-Carlo (MCMC) using Octave.103 The first 25,000 stabilization 

points were removed from the analysis. The MCMC trajectory was then analyzed to extract the 

optimized parameters, their confidence intervals, and visualize correlations between the 

parameters. 

FFC NMRD profiles. Water 1H FFC NMRD profiles were obtained by measuring the water 

proton relaxation rates, R1, as a function of the applied magnetic field. The profiles were 

measured with a SPINMASTER2000 fast field cycling relaxometer (Stelar, Mede (PV), Italy) 

operating in the 0.01−40 MHz proton Larmor frequency range. The measurements are affected 

by an error of about ±1%, when fitted to a monoexponential decay/recovery of the 

magnetization in the field cycling experiment. The profiles were fitted using the sum of the 

contributions from the homonuclear dipole-dipole relaxation with four different correlation 

times (see SI). 
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Experimental setup 

The relaxometry experiments were derived from the conventional 1D NOESY pulse-sequence1 by introducing a 
relaxation delay at low field after the mixing time (τmix) and before the last π/2 pulse (Figure S1). The sample is 
transferred to a desired low field BLF (from 0.015 to 10 T) with a transfer time 55 ms < τHF-LF < 210 ms, held in 
that position for a variable relaxation delay Trel and transferred back to high field with a transfer time 60 ms < 
τLF-HF < 260 ms for detection. To measure relaxation rates at 14.1T, the shuttle transfers are simply omitted, such 
that the sample stays at high field during the whole experiment. The polarization of water can recover during 
the shuttle transfers and the stabilization delay τst so that it is necessary to perform an additional water sup-
pression before detection with the WATERGATE (WG) scheme.2 Proper suppression of the strong signal of the 
solvent at each scan is necessary to suppress artefacts due to residual vibrations of the sample. 

 

Figure S1. 1D NOESY experiment adapted for high-resolution relaxometry experiment: a relaxation delay is added after the mixing 
time and WATERGATE block is inserted before detection for better solvent signal suppression. 1D NOESY_WG pulse sequence used to 
measure relaxation dispersion profiles. The sample is moved from the high-field magnetic center of the spectrometer to a chosen 
position at low field and back during the period 55 ms < τHF-LF < 210 ms and 60 ms < τLF-HF < 260 ms, respectively. The variable relaxation 
delay at low magnetic field is labelled Trel, the stabilization delay after the sample returns to the high-field position is labelled τst = 100 
ms. Narrow and wide rectangles represent π/2 and π proton pulses, respectively; and the bell shapes represent 1.5 ms selective π/2 
sinc-shaped pulses on the water signal. Striped rectangles stand for continuous-wave pre-saturation irradiation applied for durations 
τsat1 = 4 s and τsat2 = 10 ms with a low amplitude (75 Hz). The phase cycles were : φ1=(x, -x); φ2=8(x), 8(-x); φ3=2(x), 2(-x), 2(y), 2(-y); 
φ4=2(y), 2(-y), 2(-x), 2(x); φ5=2(-y), 2(y), 2(x), 2(-x); φacq= (x, -x, -x, x, y, -y, -y, y, -x, x, x, -x, -y, y, y, -y). The maximum amplitudes of the 
“smoothed squared” 1 ms pulsed field gradients G1, G2 and G3 applied along z-axis were 8.5, 4 and 20 G/cm, respectively.   
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Proton-proton distances used in the analyses 

Here, we give the proton-proton distances rHH used for the quantitative analysis of NMRD profiles of three compound. 

Molecule rHH Source 
3-TrimethylSilyl Propionic Acid (TSP) 179 pm https://pubchem.ncbi.nlm.nih.gov/compound/3-_Trimethylsi-

lyl_propionic-acid 
Alanine 175 pm https://pubchem.ncbi.nlm.nih.gov/compound/DL-Alanine  
Lactic acid/Lactate 177 pm https://pubchem.ncbi.nlm.nih.gov/compound/Lactic-acid 
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Fitting models for NMRD profiles of TSP in the model sample 

In all models, the rotation of the trimethylsilyl group is considered possible in the free form and hindered in the 
bound form with an order parameter imposed by geometry.  

M1: model adopted as most reliable 

Model 1 is the simplest model of spectral density function (see Equations 1-4), with only dipolar contributions 
from non-methyl protons in the bound state, a small population of the bound form: pB << 1, and infinitely fast 
rotation of the TMS group in the free form. Model 1 is the model used in the data analysis given in Figure 3. It 
is the best fitting model based on the Akaike information criterion (see Table S1).  

𝑅! = 𝐴"𝑝"[𝐽(0, 𝜏#") + 3𝐽(𝜔, 𝜏#") + 6𝐽(2𝜔, 𝜏#")] + 𝑆$%&' 𝐴()*+,-[𝐽(𝜔, 𝜏#.) + 4𝐽(2𝜔, 𝜏#.)]   
             [S1] 

where, pB is the population of the bound form, 𝜏#" and 𝜏#.  are the correlation times of the bound and free states, 

respectively. 𝐴" = 𝑆' !
/0

1!"2#
$ℏ"

4"5%&'(  is the amplitude of dipolar interaction with the environment, scaled by the order 

parameter due to infinitely fast methyl group rotation S2 = ¼, 𝜇6 is the permeability of vacuum, g7is the proton 

gyromagnetic ratio, 𝑟)89 is the effective proton-proton distance. 𝐴()*+,- = 𝑆' :
:'

1!"2$ℏ"

4"5##
(  is the dipolar interaction 

amplitude inside the methyl group, calculated based on the distance between two protons inside the methyl 
group (rHH = 179 pm), scaled by the order parameter due to infinitely fast methyl group rotation S2 = ¼. Moreo-
ver, the contribution for the free form accounts for the rotation of the TMS group, also considered to be infi-
nitely fast, so that the constant 𝐴()*+,-  is multiplied by the order parameter 𝑆$%&'  = ¼. 

 

Figure S2. Plot of correlations between the 3 parameters fitted in model M1 and the variances. 
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Model 2: 

Model 2 is similar to model 1. Model 2 includes as a parameter the correlation time for TMS rotation in the free form. We 
assumed that pB is very small, so that 1 - pB ≈ 1. The intra-methyl dipolar interaction is neglected in the bound form. In this 
way, the product 𝐴!𝑝! is a single free parameter.  

𝑅" = 𝐴!𝑝![𝐽(0, 𝜏#!) + 3𝐽(𝜔, 𝜏#!) + 6𝐽(2𝜔, 𝜏#!)] + 𝐴$%&'() 2𝑆*+,- [𝐽(𝜔, 𝜏#.) + 4𝐽(2𝜔, 𝜏#.)] + (1 −

𝑆*+,- ) 7𝐽 8𝜔, /!
"/!#$%

/!"0/!#$%
9 + 4𝐽 82𝜔, /!

"/!#$%

/!"0/!#$%
9:;.         [S2] 

 

 

Figure S3. Plot of correlations between 4 parameters fitted in model M2 and the calculated variances.  
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Model 3: 

Here, we assume that the rotation of the TMS group is infinitely fast in the free form but we do not assume that 
pB is very small. Hence, we include the contribution of intra-methyl dipole-dipole interactions in the bound form: 

𝑅! = 𝑝"6𝐴"[𝐽(0, 𝜏#") + 3𝐽(𝜔, 𝜏#") + 6𝐽(2𝜔, 𝜏#")]+𝐴()*+,-[𝐽(𝜔, 𝜏#") + 4𝐽(2𝜔, 𝜏#")]7 + (1 −
𝑝")𝐴()*+,-𝑆$%&' [𝐽(𝜔, 𝜏#.) + 4𝐽(2𝜔, 𝜏#.)].          [S3] 

 

 

Figure S4. Plot of correlations between 4 parameters fitted in model M4 and the variances. 

The strong correlation between 𝐴" and 𝑝" indicates that the approximations of models 1 and 2, which consist 
of considering only the product 𝐴"𝑝", are justified. 
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Model M4:  

In this model, we considered the contributions of intermolecular dipolar interaction in the free and bound 
states (as in Model M3), and dipolar interaction with the proton environment in the bound form. The rotation 
of methyl group is infinitely fast in the free and bound forms, while the rotation of the TMS with a correlation 
time 𝜏#$%& (as in Model M2) in the free form is hindered in the bound form. The longitudinal relaxation rate is: 

𝑅! = 𝑝"6𝐴"[𝐽(0, 𝜏#") + 3𝐽(𝜔, 𝜏#") + 6𝐽(2𝜔, 𝜏#")] + 𝐴()*+,-[𝐽(𝜔, 𝜏#") + 4𝐽(2𝜔, 𝜏#")]} + (1 −

𝑝")𝐴()*+,-{𝑆$%&' [𝐽(𝜔, 𝜏#.) + 4𝐽(2𝜔, 𝜏#.)< + (1 − 𝑆$%&' ) =𝐽 >𝜔, ;)
*;)+,-

;)*<;)+,-
? + 4𝐽 >2𝜔, ;)

*;)+,-

;)*<;)+,-
?@},   

             [S4] 

 

 

Figure S5. Plot of correlations between 5 parameters fitted in model M2 and the calculated variances. 

Again, the correlation between parameters 𝐴" and 𝑝" indicates that the approximations of models 1 and 2, which 
consist of considering only the product 𝐴"𝑝", are justified. 
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Comparison of models by their corrected Akaike information criteria (AICc) 

The relative probabilities of models M1-M4 were compared based on the corrected Akaike Information Crite-
ria. The AICc for model Mi is noted AICci:3 

𝐴𝐼𝐶𝑐= = 𝑛 × 𝑙𝑜𝑔 I
χ'

𝑛 K +
2𝑘=𝑛

𝑛 − 𝑘= − 1
 

where n = 19 is the number of experimental data, here relaxation rates, and ki is the number of parameters in 
the fitting model M1: k1 = 3; k2 = k3 = 4; and k4 = 5.  The fit of the NMRD profiles and the calculated parameters 
using different models are summed up in Table S1. The lowest AICc value is AICc1, obtained for fitting model 
M1, indicating that M1 is the most probable model. This model is used for data analysis in the model sample 
and in serum.  

Table S1. Comparison of fitting results the variance 𝝈2 and χ2 obtained from different models. The quality of the models is com-
pared with AIC.  

 Number of 
parameters 

ABpB 
(109 s-2) 𝜏c

B (ns) 𝜏c
F (ns) 𝜏c

TMS (ps) 𝝈2 χ 2 AICci 

M1 3 0.034 ± 0.0016 39.4 ± 1.9 0.52 ± 0.03 - 3.45 63.92 17.6 

M2 4 0.034 ± 0.0016 34.7 ± 2.3 0.50 ± 0.03 18 ± 6 2.33 56.15 19.8 

M3 4 

A = 179 ± 
52 

pB = 0.018 ± 
0.076 % 40.1 ± 2.2 0.52± 0.03 - 3.86 65.01 21.0 

0.032 ± 0.0012 

M4 5 
A = 28.8 
± 10.5 

pB = 0.11 ± 
0.22 % 35.2 ± 4.0 0.51± 0.04 22 ± 18 4.31 56.80 23.7 

0.033 ± 0.0033 

Equation S1 was adapted to fit the NMRD profile of methyl protons of alanine ([Equation S5]) and lactate 
([Equation S6]). No interaction was detected for alanine, the expression of R1 is then, with a single free param-
eter 𝜏#.: 

𝑅! = 𝐴()*+,-[𝐽(𝜔, 𝜏#.) + 4𝐽(2𝜔, 𝜏#.)], [S5] 

 

with 𝐴()*+,- = 7.44 × 10>𝑠?'. 

 

The model used to analyze the NMR profile of the methyl group of lactate is adapted from model 1, where the 
only internal motion considered is the infinitely fast rotation of the methyl group.  

𝑅! = 𝐴"𝑝"[𝐽(0, 𝜏#") + 3𝐽(𝜔, 𝜏#") + 6𝐽(2𝜔, 𝜏#")] + 𝐴()*+,-[𝐽(𝜔, 𝜏#.) + 4𝐽(2𝜔, 𝜏#.)], [S6] 

with 𝐴()*+,- = 6.95 × 10>𝑠?'. 
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Size distribution of macromolecules in serum  

The water FFC NMRD profiles of three serum samples were fitted with 4 correlation times. The equation used 
for the fit was: 

𝑅! = 𝐴 + 𝐵∑ 𝑝=0
= U0.2𝐽(𝜔, 𝜏#=) + 0.8𝐽W2𝜔, 𝜏#=X<,    [S7] 

where A accounts both for the relaxation contributions from protons with correlation times faster than 10-9 s 
and for non-dispersive contributions, in addition to the relaxation rate of the pure solvent in the absence of 
macromolecules, B is the dipolar interaction amplitude with the macromolecules and pi is the population frac-
tion of macromolecules with effective correlation time 𝜏#= . 

Table S2. Results of water relaxation in serum samples from 3 different donors with Equation S7. 

Parameter Donor 1 Donor 2 Donor 3 

Temperature 
(°C) 25 37 25 37 25 37 

A (s-1) 0.59 ± 0.02 0.48 ± 0.02 0.58 ± 0.01 0.48 ± 0.01 0.59 ± 0.01 0.48 ± 0.01 

B (106 s-2) 82 ± 8 71 ± 2 75 ± 3 

p1 0.005 ± 0.001 0.0032 ± 0.0004 0.0039 ± 0.0004 

𝝉𝒄𝟏 (μs) 1.5 ± 0.1 1.3± 0.1 1.0 ± 0.1 1.7 ± 0.1 1.7 ± 0.1 1.5 ± 0.1 

p2 0.04 ± 0.01 0.031 ± 0.002 0.042 ± 0.004 

𝝉𝒄𝟐 (ns) 220 ± 40 170 ± 30 360 ± 30 280 ± 20 270 ± 20 210 ± 20 

p3 0.39 ± 0.04 0.31 ± 0.01 0.31 ± 0.01 

𝝉𝒄𝟑 (ns) 38 ± 4 32 ± 3 51 ± 3 42 ± 2 49 ± 3 40 ± 2 

p4 0.56 ± 0.041 0.66 ± 0.010 0.64 ± 0.011 

𝝉𝒄𝟒 (ns) 5.9 ± 2 8.5 ± 2 9.1 ± 0.8 8.5 ± 0.7 8.3 ± 0.8 8.4 ± 0.7 

  



11 
 

Measurement of transverse relaxation rate R2 of creatinine methyl protons 

The experiments for measuring the transverse relaxation rate R2 of methyl protons in creatinine were performed on two 
samples of 0.8 mM creatinine with and without 0.5 mM bovine serum albumin (BSA), respectively. The solvent was a 
phosphate buffer at pH 7.4 with 35 mM Na2HPO4 and 0.58 mM NaN3 in H2O/D2O 90/10 (v/v). The experiments were 
repeated 5 times and the results are reported in Table S3. Relaxation rates were fitted with a simple home-built Python 
script. The pulse sequence used is shown in Figure S6. 

Table S3. Results on the measurement of R2 of creatinine methyl protons with and without BSA. 

 R2 (s-1) exp. 1 R2 (s-1) exp. 2 R2 (s-1) exp. 3 R2 (s-1) exp. 4 R2 (s-1) exp. 5 Average 

Creatinine 
without 

BSA 
2.49 ± 0.02 2.52 ± 0.02 2.49 ± 0.02 2.48 ± 0.02 2.50 ± 0.03 2.50 ± 0.01 

Creatinine 
with BSA 21.94 ± 0.09 21.77 ± 0.06 21.92 ± 0.09 21.80 ± 0.06 21.87 ± 0.12 21.86 ± 0.03 

 

 

Figure S6. Experiment designed for measuring transverse relaxation rates in our model samples. Filled and open bell- 
shapes represent selective π/2 and π shaped pulses, respectively. Initially a 2 ms sinc-shaped π/2 pulse is applied on the 
desired methyl signal. The following spin-echo sequence was divided in three parts in order to limit the evolution of un-
wanted coherences. Each echo had a duration of a third of the listed delay Δ2. At the center of each echo a Q3 shaped-
pulse on the wanted methyl signal (8 ms) was applied in order to refocus the homonuclear scalar coupling. Finally, another 
echo with a fixed length was used to remove signals arising from BSA which were overlapping with the creatinine methyl 
signal. Δ1 = 4 s; Δ2 = listed delay; Δ3 = 20 ms. The phase cycles were: φ1 = (-x, -y, x, y); φ2 = (y, -x, -y, x, -y, x, y, -x); φacq = (x, 
y, -x, -y). The amplitudes of the “smoothed squared” 1 ms pulsed field gradients G1, G2 and G3 applied along the z-axis 
were 6.6, 23 and 17 G.cm-1, respectively.  
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Correlation between molecular weight and correlation time estimated by HYDRONMR 

In order to estimate the correlation time of a part of the proteins present in human serum, we used HYDRONMR 
to obtain a simple relationship between rotational correlation time and molecular weight (Fig. S7). The points 
in the plot represent proteins with molecular weight and crystal structure well defined and reported, see Table 
S4 for details. The reported correlation time is the average given by HYDRONMR, the estimated error is 8%.4 
 

 
Figure S7. Plot of the correlation between molecular weight and correlation time calculated by HYDRONMR. The red fitting line has 

the reported empiric equation. 

 
The empirical equation that we obtained is: 

𝜏#
1	𝑛𝑠

= 0.62	
𝑀𝑊
1	𝑘𝐷𝑎

− 0.39, [S8] 

where τc is the rotational correlation time and MW is the molecular weight. 

In order to assess the range of variation of an effective correlation time 𝜏)@@ given by HYDRONMR, we used a 
simple Python script to calculate the global maximum and global minimum of the spectral density function 
J(τ,ω=0), derived from the correlation function for a rigid body anisotropic reorientation5,6: 

𝐽(𝜔 = 0) =
2𝜏)@@
5

=
	𝐴!𝜏! + 𝐴'𝜏' + 𝐴:𝜏: + 𝐴0𝜏0 + 𝐴A𝜏A

2
, [S9] 

 

where:  

𝐴! = 6𝑚'𝑛' 
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𝐴' = 6𝑙'𝑛' 

𝐴: = 6𝑙'𝑚' 

𝐴0 = 𝑑 − 𝑒 

𝐴A = 𝑑 + 𝑒 

where: 

𝑑 =
3(𝑙0 +𝑚0 + 𝑛0) − 1

2  

𝑒 =
𝛿B(3𝑙0 + 6𝑚'𝑛' − 1) + 𝛿,(3𝑚0 + 6𝑙'𝑛' − 1) + 𝛿C(3𝑛0 + 6𝑙'𝑚' − 1)

6  

where: 

𝛿= =
𝐷= − 𝐷
√𝐷' − 𝐿'

 

D is a third of the trace of the diffusion tensor: 

𝐷 =
𝐷B + 𝐷, + 𝐷C

3  

and: 

𝐿' =
𝐷B𝐷, + 𝐷B𝐷C + 𝐷,𝐷C

3  

The correlation times are defined as follows: 

𝜏! =
1

4𝐷B + 𝐷, + 𝐷C
 

𝜏' =
1

4𝐷, + 𝐷B + 𝐷C
 

𝜏: =
1

4𝐷C + 𝐷B + 𝐷,
 

𝜏0 =
1

6W𝐷 + √𝐷' − 𝐿'X
 

𝜏A =
1

6W𝐷 − √𝐷' − 𝐿'X
 

The diffusion tensor eigenvalues were obtained from HYDRONMR. 
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The span of the variability of the correlation time due to anisotropy for each protein is reported in Figure S7 as 
error bars. 
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Proteins in human serum 

Table S4. List of the most concentrated proteins present in human serum. Rotational correlation times reported in black were calcu-
lated with HYDRONMR, correlation times reported in blue were calculated with Eq. S8 

Protein Concentration MW 
(kDa) 

No. 
aa 

PDB 
code 

Diff. vector 
eigenvalues 

Correla-
tion time 

(ns) 

Human serum  
albumin7, a 

5.3-7.6 · 10-4 M 
 35-50 g/L 66.8  585 1E7C 

Dz   2.887E+06 
Dy   3.617E+06 
Dx   3.967E+06 

47.80 

Immunoglobulin G7, b, d 3.8-12 · 10-5 M 
5.7-18 g/L 150    93.62 

Apolipoprotein A-I7, f, l 3.4-5.2 · 10-5 M 
1.0-1.5 g/L  56.1  484 3K2S  34.39 

Serotransferrin7, a 2.8-5.2 · 10-5 M 
2.2–4.0 g/L 74.9  660 3QYT 

Dz   4.605E+06 
Dy   3.053E+06 
Dx   3.357E+06 

45.40 

α1-Antitrypsin8, e, m 1.8-5.0 · 10-5 M 
1.5-2.7 g/L 

52 
(44.1) 394 1QLP  31.85 

(24.20) 

Apolipoprotein A-II7, c, d, l 1.8-2.9 · 10-5 M 
0.3-0.5 g/L 8.67  77   4.99 

α1-Acid glycoprotein9, d, e 1.4-2.9 · 10-5 M 
0.6-1.2 g/L 42  183   25.65 

Apolipoprotein C-III7, c, l 1.4 · 10-5 M 
0.12 g/L 8.7 79 2JQ3  5.00 

Vitamin D binding protein7, a, l 8.9-9.8 · 10-6 M 
0.5-0.55 g/L 51.1 458 1KW2 

Dz   5.003E+06 
Dy   3.682E+06 
Dx   3.973E+06 

39.50 

α1-Antichymotrypsin7, e, l, m 6.1-8.1 · 10-6 M 
0.42-0.56 g/L  

69 
(45.2) 400 3DLW  42.39 

(24.2) 

C3 complement7, j 5.9-9.2 · 10-6 M 

1.1-1.7 g/L 184.6 1641 2A73  114.05 

Apolipoprotein C-II7, c, l 4.5 · 10-6 M 
40 mg/L 8.9  79 1SOH  5.12 

Transthyretin7, a 3.6-7.3 · 10-6 M 
0.2-0.4 g/L 54.8 508 1ICT 

Dz   6.483E+06 
Dy   5.046E+06 
Dx   5.473E+06 

29.40 

Antithrombin III7, e, l, m 3.4-4.0 · 10-6 M 
0.22-0.26 g/L 

65 
(49.1) 432 2B4X  39.91 

(26.70) 

Apolipoprotein A-IV7, c, l 3.4 · 10-6 M 
0.15 g/L 43.2 376 3S84  26.39 

C1 inhibitor10, e 3.3 · 10-6 M 
0.25 g/L 76 478   46.73 

Apolipoprotein D7, a, l 3.2 · 10-6 M 
60 mg/L 19.1 169 2HZR 

Dz   1.630E+07 
Dy   1.399E+07 
Dx   1.410E+07 

11.30 

Inter-α-trypsin inhibitor7, h, l 3.1 · 10-6 M 
0.5 g/L 160    98.81 

Factor H7,11, d, e 2.7-4.8 · 10-6 M 
0.41-0.72 g/L  150 1213   92.61 

α2-Macroglobulin7, e, m  2.6-4.6 10-6 M 720 5804 4ACQ  446.01 
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1.9-3.3 g/L (643.1) (512) 

Immunoglobulin A7, b, d 2.5-22 · 10-6 M 
0.4-3.5 g/L 160    98.81 

Complement factor B7, a 2.1 · 10-6 M 
0.2 g/L 82.8 739 2OK5 

Dz   3.689E+06 
Dy   2.724E+06 
Dx   2.732E+06 

54.70 

Serum amyloid A12, a 1.7-4.2 · 10-6 M 
<5mg/L 11.5 104 4IP8 

Dz   2.784E+07 
Dy   1.796E+07 
Dx   1.944E+07 

7.66 

Retinol binding protein7, a 1.7-4.3 · 10-6 M 
35-90 mg/L 21.0 183 1JYD 

Dz   1.449E+07 
Dy   1.277E+07 
Dx   1.362E+07 

12.20 

C4 complement7, b, d 1.7-2.9 · 10-6 M 
0.35-0.6 g/L 204    126.09 

Ceruloplasmin7,13, a, m 1.5-3.0 · 10-6 M 
0.2-0.4 g/L 

134 
(119.9)  1046 4ENZ  82.70 

(65.50) 

C6 complement7, f 1.4-1.9 · 10-6 M 
0.18-0.24 g/L 125 913 3T5O  77.11 

Apolipoprotein B-1007, d, e, l 1.3-1.8 · 10-6 M 
0.7-1.0 g/L 550.0 4540   317.69 

Apolipoprotein C-I7, c, l 1.1· 10-6 M 
70 mg/L 6.5  57 1IOJ  3.62 

Haptoglobin14, g, n 1.0-4.5 · 10-6 M 
0.5-2.2 g/L 86-900     

C9 complement7, k 0.5-1.4 · 10-6 M 
33-95 mg/L 60.9 538 6DLW  37.36 

Apolipoprotein E7, a, l 8.8-21 · 10-7 M 
30-70 mg/L 34.1 299 2L7B 

Dz   8.330E+06 
Dy   5.673E+06 
Dx   5.836E+06 

25.20 

Immunoglobulin M7, b, d 5.2-31 · 10-7 M 
0.5-3.0 g/L 970    601.01 

Apolipoprotein J15, d, l 4.4-13.5 · 10-7 M 
35-105 mg/L 50.1 427   30.66 

Complement component 1r7, d 4.1-5.8 · 10-7 M 
34-48 mg/L 78.2 688   48.11 

Complement component 1s7, d 4.0 · 10-7 M 
34 mg/L 74.8 673   46.00 

C8 complement7, a 3.3-7.1 · 10-7 M 
49-106 mg/L 143.1 1273 3OJY 

Dz   1.927E+06 
Dy   1.693E+06 
Dx   1.772E+06 

92.70 

Thyroxine binding  
globulin16, e, m 

3.0 · 10-7 M 
16 mg/L 

54 
(44.1) 395 4X30  33.09 

(24.70) 

C5 complement7, a 2.8-5.8 · 10-7 M 
55-113 mg/L 186.0 1658 3CU7 

Dz   1.570E+06 
Dy   1.008E+06 
Dx   1.121E+06 

135.00 

Complement factor I7, d, e 2.8-5.6 · 10-7 M 
25-50 mg/L 88 565   54.17 

C2 complement 7, d, e 2.3 · 10-7 M 
25 mg/L 110 732   67.81 

C7 complement7, e, k 2.2-6.2 · 10-7 M 120 821   74.01 



17 
 

27-74 mg/L 

Apolipoprotein B-487, i, l  2.1 · 10-7 M 
50 mg/L 236.7 2152   146.38 

C1q complement7, b, d 1.8-2.7 · 10-7 M 
83-125 mg/L 460    284.81 

Apolipoprotein (a) 7, d, l 1.8 · 10-7 M 
0.1 g/L 498.91 4510   308.93 

C-reactive protein17, a 6.9 · 10-9 M 
0.8 mg/L 114.6 1025 3L2Y 

Dz   1.772E+06 
Dy   2.293E+06 
Dx   2.340E+06 

78.10 

a Correlation time estimated with HYDRONMR. b Entry not present in UniProt, correlation time was calculated with Eq. S8. c Lacking tertiary folding, 
correlation time could not be estimated with HYDRONMR. It was instead calculated with Eq. S8. d Full crystal structure not reported, the correlation 
time was calculated with Eq. S8. e The molecular weight is higher that what is expected from the number of residues due to glycosylation. The mass 
of the glycosylated protein was used to calculate the correlation time with Eq. S8. f Multidomain and/or loosely connected, very flexible. The corre-
lation time could not be estimated with HYDRONMR, it was instead calculated with Eq. S8. g Highly variable polymorphism, where the molecular 
weight can change of up to one order of magnitude. h It is composed by 3 heavy chain chosen between 4 different types, and one light chain chosen 
between two different types. i Molecular weight estimated from the number of residues. j Anisotropy is too high for estimating the correlation time 
with HYDRONMR, Eq. S8 was used instead. k Reported as part of a complex, the correlation time of the single component was calculated with Eq. S8. 
l Concentration in plasma. m The crystal structure of the non-glycosylated protein was used as part of the data for Fig. S7. The molecular weight of 
the bare peptide chain(s) and the correspondent correlation time are reported in brackets. n Not reported in Fig. S8. 

 

 
Figure S8. Representation of the molecular weight (green) and concentration (red) of the most concentrated proteins in human se-

rum. The dashed line corresponds to the estimate of the detection limit with our current setup. The arrows represent the variability 

of concentration in a healthy subject. 
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Estimation of diffusion tensor and rotational correlation time with HYDRONMR 

HYDRONMR Version 7.C    
                       
J. García de la Torre, M.L. Huertas and B. Carrasco, "HYDRONMR: prediction of NMR relaxation of globular pro-
teins from atomic-level structures and hydrodynamic calculations"  
J. Magnetic Reson. 147, 138-146 (2000).    
 
 
Bovine serum albumin 

Temperature:  298.0 K 
Solvent viscosity:  0.00890 poise 
Radius of atomic elements:  3.2 Angs 
Translational diffusion coefficient:  6.905E-07 cm2/s 
 
Center of diffusion (x):  4.564E-07 cm 
Center of diffusion (y):  3.249E-07 cm 
Center of diffusion (z):  4.510E-07 cm 
 
Generalized (6x6) diffusion matrix:  (Dtt  Dtr) 
                                                                      (Drt  Drr) 
 
7.132E-07  -2.253E-09  2.089E-09    -5.312E-03  -1.763E-03  1.118E-02 
-2.240E-09  6.722E-07  -1.545E-08    -1.776E-03  8.343E-03  -2.918E-03 
2.075E-09  -1.544E-08  6.862E-07     1.124E-02  -2.864E-03  -3.820E-03 
 
-5.312E-03  -1.776E-03  1.124E-02     4.202E+06  -1.297E+05  1.098E+05 
-1.763E-03  8.343E-03  -2.864E-03    -1.298E+05  3.305E+06  -1.695E+05 
1.118E-02  -2.918E-03  -3.820E-03     1.098E+05  -1.695E+05  3.738E+06 
 
ROTATIONAL DIFFUSION TENSOR 
4.202E+06  -1.297E+05  1.098E+05 
-1.298E+05  3.305E+06  -1.695E+05 
1.098E+05  -1.695E+05  3.738E+06 
 
Anisotropic rotational diffusion 
    Eigenvalue (s^-1)     -- Eigenvector ------------ 
1       3.239E+06            0.0933   0.9488   0.3018 
2       3.750E+06           -0.2985  -0.2625   0.9176 
3       4.256E+06            0.9498  -0.1757   0.2587 
 
Anisotropic rotational diffusion 
         Dx,Dy,Dz (s^-1)     -- Eigenvector ------------ 
Dz       3.239E+06            0.0933   0.9488   0.3018 
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Dy       3.750E+06           -0.2985  -0.2625   0.9176 
Dx       4.256E+06            0.9498  -0.1757   0.2587 
 
Rotational diffusion coefficient:  3.748E+06 s-1 
Rotational diffusion anisotropy:  8.809E+05 s-1 
Relaxation time (1):  4.824E-08 s 
Relaxation time (2):  4.771E-08 s 
Relaxation time (3):  4.445E-08 s 
Relaxation time (4):  4.165E-08 s 
Relaxation time (5):  4.123E-08 s 
Harm. mean relax.(correlation) time:  4.446E-08 s 
 
 
Human serum albumin 

Temperature:  298.0 K 
Solvent viscosity:  0.00890 poise 
Radius of atomic elements:  3.2 Angs 
Translational diffusion coefficient:  6.774E-07 cm2/s 
 
Center of diffusion (x):  4.184E-07 cm 
Center of diffusion (y):  2.717E-07 cm 
Center of diffusion (z):  4.836E-07 cm 
 
Generalized (6x6) diffusion matrix:  (Dtt  Dtr) 
                                                                (Drt  Drr) 
 
6.965E-07  8.498E-09  -5.937E-09     2.726E-03  -5.020E-04  -1.528E-02 
8.505E-09  6.413E-07  3.037E-09     -5.500E-04  8.201E-03  3.784E-03 
-5.942E-09  3.048E-09  6.946E-07    -1.534E-02  3.796E-03  -1.295E-02 
 
2.726E-03  -5.500E-04  -1.534E-02     3.833E+06  2.913E+04  -1.685E+05 
-5.020E-04  8.201E-03  3.796E-03       2.918E+04  2.889E+06  -3.779E+04 
-1.528E-02  3.784E-03  -1.295E-02     -1.686E+05 -3.788E+04  3.748E+06 
 
ROTATIONAL DIFFUSION TENSOR 
3.833E+06 2.913E+04-1.685E+05 
2.918E+04 2.889E+06-3.779E+04 
1.686E+05-3.788E+04 3.748E+06 
 
Anisotropic rotational diffusion 
    Eigenvalue (s^-1)     -- Eigenvector ------------ 
1       2.887E+06           -0.0238   0.9989   0.0392 
2       3.617E+06            0.6163  -0.0162   0.7874 
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3       3.967E+06            0.7872   0.0429  -0.6152 
 
Anisotropic rotational diffusion 
         Dx,Dy,Dz (s^-1)     -- Eigenvector ------------ 
Dz       2.887E+06           -0.0238   0.9989   0.0392 
Dy       3.617E+06            0.6163  -0.0162   0.7874 
Dx       3.967E+06            0.7872   0.0429  -0.6152 
Rotational diffusion coefficient:  3.490E+06 s-1 
Rotational diffusion anisotropy:  9.542E+05 s-1 
Relaxation time (1):  5.254E-08 s 
Relaxation time (2):  5.227E-08 s 
Relaxation time (3):  4.690E-08 s 
Relaxation time (4):  4.470E-08 s 
Relaxation time (5):  4.376E-08 s 
Harm. mean relax.(correlation) time:  4.775E-08 s 
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