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Abstract 

In recent years, deep molecular generative models have emerged as novel methods for de novo 

molecular design. Thanks to the rapid advance of deep learning techniques, deep learning 

architectures such as recurrent neural networks, generative autoencoders, and adversarial networks, 

to give a few examples, have been employed for constructing generative models. However, so far 

the metrics used to evaluate these deep generative models are not discriminative enough to separate 

the performance of various state-of-the-art generative models. This work presents a novel metric 

for evaluating deep molecular generative models; this new metric is based on the chemical space 

coverage of a reference database, and compares not only the molecular structures, but also the ring 
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systems and functional groups, reproduced from a reference dataset of 1M structures. In this study, 

the performance of 7 different molecular generative models was compared by calculating their 

structure and substructure coverage of the GDB-13 database while using a 1M subset of GDB-13 

for training. Our study shows that the performance of various generative models varies 

significantly using the benchmarking metrics introduced herein, such that generalization capability 

of the generative model can be clearly differentiated. Additionally, the coverage of ring systems 

and functional groups existing in GDB-13 was also compared between the models. Our study 

provides a useful new metric that can be used for evaluating and comparing generative models. 

Keywords: deep generative models, chemical space coverage, ring systems, functional groups 

 Introduction 

Deep learning has been successfully used in many fields to learn relationships that are too complex 

to learn using traditional computer algorithms, including early image classification,[1, 2] facial 

recognition, and music recognition.[3] Deep learning even surpasses the performance of human 

experts in some challenging tasks, such as playing GO.[4] Moreover, deep generative models play 

important roles in tasks like music composition,[5] image generation,[6] and language translation. 

[7] In the last five years, deep generative modeling has also been applied in the fields of 

cheminformatics and molecular design. One interesting example is using deep neural networks for 

compound structure generation. [8-11] 

The number of chemically feasible, drug-like molecules has been estimated to be on the order of 

1060 – 10100 compounds.[12] For such a large chemical space, it is clearly impossible to synthesize 

and test every compound for pharmaceutical applications. To efficiently explore the space, 
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molecular generative models have emerged in recent years with the aim of better navigating 

through this huge chemical space for de novo molecule design.  

De novo molecular design has long been put forward as a way to accelerate the drug discovery 

process as it is expected to save time and resources in drug discovery, where it can take over a 

decade and billions of dollars in investment to bring a single drug to market.[13] Historically, de 

novo design methods have been mainly rule-driven and used brute force algorithms to achieve 

their goal. For example, creating a virtual library using fixed rules and building blocks, then 

scoring each compound in the virtual library to find the best compound. In contrast, deep 

generative molecular design is the concept of generating molecules using deep neural networks. 

Deep generative models are data-driven methods which generate compound structures by learning 

the underlying probability distributions in a compound dataset instead of screening existing 

databases for molecules that fit the desired profile. Deep generative models are powerful as they 

allow chemists to bypass models using hard-coded chemical rules which do not scale to larger 

datasets. Furthermore, not all chemical rules are easy to define. Using deep generative models, one 

can avoid enumerating all possible structures for a given application and then screening them (a 

daunting task). Instead, one can simply train a model using known compounds, and sample the 

model for the desired set of properties (e.g. ADMET profile) to get out promising structures. De 

novo generative models can generate structures that are in significantly narrower, but more 

promising, regions of chemical space. Moreover, deep learning methods can take advantage of all 

the information available in ever-increasing large public datasets, thanks to automation 

technologies used in high-throughput screening and parallel synthesis.[14] 
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In recent years, many molecular generative models have been published, such as CharRNN, VAE, 

and REINVENT, which are remarkable at sampling molecules both in- and outside the training set 

used to learn chemistry rules.[11, 15-18] Notably, many of these generative models have been 

benchmarked using existing “distribution-based” metrics implemented in open-source programs 

such as MOSES[10] or GuacaMol.[19] However, these methods are in general non-discriminative as 

many of these state-of-the-art (SOTA) models perform quite well across all the included metrics, 

such that it is difficult to compare them and gain a deep understanding of each model’s strengths 

and weaknesses. We previously proposed a new metric: the percent coverage of functional groups 

present in GDB-13.[20]  GDB-13 contains 977,468,314 structures, which enumerate small organic 

molecules containing up to 13 atoms of C, N, O, S, and Cl by following simple chemical stability 

and synthetic feasibility rules.[21] The generalization capability of deep generative models is 

assessed by computing how much of the whole GDB-13 can be recovered by a model trained from 

a small GDB-13 subset. In the current study, as an extension of our previous work,[20] we apply 

the idea as a way for benchmarking the performance of multiple generative models. 

Substructure has long been used to characterize the composition of compounds. One concept is 

the so-called functional group, frequently used in many fields in chemistry, including medicinal 

chemistry. A functional group is defined as a subset of connected atoms in a molecule that in some 

way endow specific intrinsic properties (or functions) to a molecule. Furthermore, the presence or 

absence of a functional group in a molecule could determine whether a molecule will react in a 

given reaction. Some of the most common groups in medicinal chemistry include amides 

(RC(=O)NR’R”), ethers (R–O–R’), and amines (RR’NR”), where R, R’, and R” represent organic 

groups or hydrogen atoms.[22] Another substructure-based concept is the ring system; ring systems 

are the key components of molecular scaffolds. They play an important role in a molecule’s 
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observed properties, such as the electronics, scaffold rigidity, molecular reactivity, and toxicity. 

On average six new ring systems enter the drug space each year and approximately 28% of new 

drugs contain a new ring system.[23] 

In this study, we extend our previous analysis on chemical space coverage of generative models 

from compound coverage of GDB-13 to include coverage of functional groups and ring systems. 

We investigated the percentage of chemical space covered in terms of full structures, functional 

groups, and ring systems by published SOTA generative models. The size of GDB-13 was 

hypothesized to be large enough to highlight differences between the various models. 

Three major classes of deep generative models are benchmarked and studied in this work, 

including those based on recurrent neural networks (RNNs), autoencoder (AE) based networks , 

generative adversarial networks (GANs), and graph neural networks (GNNs). The deep generative 

models based on RNNs include REINVENT[15, 20, 24] and CharRNN,[25] which use SMILES as the 

input and output strings. VAE,[26] AAE,[18, 27] ORGAN,[17] and LatentGAN[11] adopt either an AE 

or GAN for structure generation using SMILES. Besides the SMILES-based generative models, 

one graph-based generative model, GraphINVENT,[28] which uses GNNs in its core architecture, 

is also included in the benchmark study. An effort was made to cover most of the major types of 

generative model architectures in this study, in the hopes that this would provide a comprehensive 

comparison for existing generative models.  

Methods 

Extraction of functional groups and ring systems. To identify functional groups (FG) in the 

various sets of molecules in this work (generated molecule sets, and GDB-13), the RDKit 

functional group identification package,[29] which is based on an algorithm introduced by Peter 
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Ertl for automatically identifying functional groups, was used.[30] The advantage of the method is 

that it is not based on manually curated lists of functional groups, and thus can be applied to any 

chemical series. It is important to note that different chemists have slightly different definitions of 

what is a functional group; however, as the benchmark introduced here calculated ratios of 

functional groups in the generated and reference sets, a difference in opinions between chemists 

shouldn’t be relevant. The extraction of compound ring system (RS) was done using RDKit. First, 

all monocyclic rings were retrieved; monocyclic rings were then fused depending on if individual 

ring systems shared atoms or not. 

Generative models. The models studied in this study include CharRNN, REINVENT, AAE, 

VAE, ORGAN, LatentGAN, and GraphINVENT. The REINVENT code available at the 

github.com/undeadpixel/reinvent-randomized repo[24, 31] was used;  the CharRNN, AAE, VAE, 

and ORGAN codes available at the MOSES GitHub repository[10, 32] were used; the LatentGAN 

code available at the github.com/Dierme/latent-gan repo[11, 33] was used; finally, the 

GraphINVENT code available at the github.com/MolecularAI/GraphINVENT repo[28, 34, 35] was 

used. All methods except for GraphINVENT are string-based generative models, whereas 

GraphINVENT is a graph-based generative model.  

Training. The GDB-13 database is used as the reference chemical space for this study.[20] A one 

million (1M) molecule subset of GDB-13 was randomly selected and used as the training set for 

all the generative models. Another 200K molecules of GDB-13 were selected as the validation set 

for calculating the validation loss. During training, a check point model was saved at every epoch. 

The check point model with the lowest validation loss was chosen as the final model for sampling 

1 billion (1B) SMILES. 
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Hyperparameters. For REINVENT, hyperparameters were taken from the GitHub repo.[31] For 

CharRNN, AAE, VAE, and ORGAN, the parameters were taken from the models’ config file in 

MOSES GitHub repo without further optimization. For LatentGAN, , the default values of 

parameters in the GitHub repo were adopted.[11, 33] For GraphINVENT, parameters and 

hyperparameters for the best performing model (cGGNN) in the original publication were used 

and not further optimized.[35] Detailed hyperparameters for each model can be found in SI Table 

S2. 

Sampling. Once each model was trained, 1B compounds were sampled from each trained model. 

The functional groups and ring systems were then identified for all sample sets as well as the full 

GDB-13 set. All compounds in the analysis were standardized by converting to RDKit canonical 

SMILES. Molecular graphs generated using GraphINVENT were further sanitized during the 

conversion to canonical RDKit SMILES for a more fair comparison to the other models. 

Technical details. For models in the MOSES repository and REINVENT, the training was done 

using Python 3.6[36] and PyTorch 1.4[37]. To accelerate sampling for 1B SMILES, the largest batch 

size allowed by the GPU memory was adopted; for example, ORGAN, AAE, and VAE adopted a 

sampling batch size of 25, 000, and CharRNN adopted a sampling batch size of 20,000. Also, 

LatentGAN was trained using tensorflow-gpu 2.2, which adopted a sampling batch size of 50,000. 

All the computations were performed on Linux workstations with GeForce RTX 2080Ti graphic 

cards using CUDA 10.1. Canonical SMILES and dataset analysis were carried out using RDKit.[29] 

The Wasserstein distances[38] between distributions in Figure 2 were calculated with an in-house 

script using SciPy.[39] Finally, GraphINVENT runs using Python 3.6 and PyTorch 1.2. 

Results and Discussions 



 8 

Analysis of the GDB-13 database 

GDB-13 contains theoretically drug-like compounds whose heavy atom count is less than or equal 

to 13 and, in total, comprises of 975,820,210 molecules, 21,852,845 ring systems, and 4,401,506 

functional groups. The distribution of the occurrence frequency of these ring systems and 

functional groups is shown in Figure 1.  Figure 1 indicates that ~80% of ring systems and ~66% 

functional groups in GDB-13 occur in compounds only 1-2 times, while only ~1% of ring systems 

and functional groups are observed in GDB-13 molecules more than 200 times. In general, most 

of the ring systems (~93%) and functional groups (~91%) appear in GDB-13 less than 20 times.  

 

Figure 1. Distribution of ring systems (RS) and functional groups (FG) in GDB-13 according to 

the frequency of occurrence. Y-axis is the percentage plotted on a logarithmic scale. 

Analysis of the 1M training dataset 

One million SMILES were randomly selected from the GDB-13 database for the training set, 

which corresponds to roughly 0.1% of the total GDB-13 dataset. The training set contains around 

0.9% of the ring systems and functional groups in the whole GDB-13 database (Table 1). The 

coverage of the ring systems and functional groups is nine times as high as the coverage of 
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compounds, which is obviously due to the fact that some ring systems and functional groups occur 

far more than once in GDB-13, as shown in Figure 1. 

Table 1. Summary of GDB-13 coverage in the training set, consisting of 1M randomly selected 

molecules. 

Item Counts in the training dataset (1M) Coverage of GDB-13 

Compounds 1,000,000 ~0.1% 

Ring systems 202,848 ~0.9% 

Functional groups 38,209 ~0.9% 

 

 

Figure 2. The molecular weight distributions for the different substructures in GDB-13. The 

different colors indicate distributions involving substructures that occur in GDB-13 a similar 

number of times (i.e. orange is substructures that occur >20,000 times in GDB-13, brown is 

substructures that occur ≤ 2 times). In the key, the numbers in parentheses indicate the Wasserstein 

distance between the training set distribution and the indicated distribution. (a) Ring systems (RS). 

(b) Functional groups (FG). 
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The molecular weights (MWs) of ring systems and functional groups in the training set, grouped 

by frequency of occurrence, are shown in Figure 2. The MWs here were calculated from the 

composition of specific ring systems and functional groups rather than the full compound.  It is 

observed that their probability of occurrence decreases with increasing MW. For example, the 

mean MW of RS and FG which occur with a frequency >20,000 is around 100; however, for RS 

and FG which occur <=2 times in GDB-13, the mean MW is around 170. More basic RS and FG, 

such as C1CC1 (cyclopropyl) and C=O (carbonyl), respectively, tend to have smaller MW 

compared to complex RS and FG. Furthermore, many complex RS and FG can be built from the 

basic components via enumeration and combination following the chemical rules extracted from 

the training dataset. 

Training and sampling speed 

All deep molecular generative models were trained with the same training set of 1M compounds. 

Each epoch of training took 17-20 min for most models (Figure 3), except CharRNN (28 min) and 

GraphINVENT (36 min). In general, the training speed of all the models is acceptable. We 

observed that training SMILES-based models is faster than the graph-based model; this is 

understandable because the action space of the graph-based model is much larger than any of the 

SMILES-based models.  

Nonetheless, the sampling speed of the generative models was observed to vary significantly. The 

sampling speed of REINVENT, AAE, ORGAN, and VAE were all above 7000 compounds per 

second, while the sampling speed of CharRNN, LatentGAN, and GraphINVENT were only 200, 

100, and 1100 compounds per second, respectively. It should be noted that both training and 

sampling speeds are strongly related to the batch size that is limited by the memory of the GPU. 
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In current work, the default batch size as specified in the code was used during the training, while 

for sampling, the largest batch size allowed by the GPU memory was chosen. 

Given the relatively small size of the training set (1M molecules), all the deep generative modes 

had a tractable training speed. In terms of sampling, the sampling speed was limited by each 

model’s architecture and size; using a larger sampling batch size allowed by a greater GPU 

memory could boost the sampling speed. 

 
Figure 3. Training and sampling speeds of the generative models benchmarked in this work. (a) 

Training speed, which is the time required per epoch during training. (b) Sampling speed, which 

is the number of SMILES/graphs generated per second (including invalid ones). 

Validity and repetition rate of sampled molecules 

We first check the validity of the molecules generated by all the deep generative models, which is 

defined as the percentage of chemically valid SMILES/graphs in the 1B generated set. Table 1 

shows that the validity in general is satisfactory for all models, where all models achieve validity 

higher than 90 percent. RNN based models (REINVENT and CharRNN) have the highest validity 

which is above 99.3% (Table 2). The validity of LatentGAN and GraphINVENT are 94.7% and 

95.3% respectively, which are lowest among all the models. In order to check how much 
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duplication is generated among the sample sets, the repetition rate (𝑅_𝑟𝑒𝑝𝑡) was calculated via the 

formula below: 

𝑅𝑟𝑒𝑝𝑡 =
𝑁𝑣𝑎𝑙𝑖𝑑 − 𝑁𝑢𝑛𝑖𝑞𝑢𝑒

𝑁𝑢𝑛𝑖𝑞𝑢𝑒
,                                                                   (1) 

where, 𝑁𝑣𝑎𝑙𝑖𝑑 is the number of total valid molecules in the 1B generated set and 𝑁𝑢𝑛𝑖𝑞𝑢𝑒 is the 

number of unique molecules in the 1B generated set (i.e. duplicates removed). The compound 

repetition rates of most deep generative models were around 1.0, that is to say, most compounds 

were sampled twice on the average. ORGAN and CharRNN have the highest repetition rates, 

which are 3.6 and 1.4 respectively, whereas GraphINVENT has the lowest (0.7). 

It seems that all the deep generative models had a satisfactory high percent validity that was above 

94% in this study. The validity of CharRNN reached as high as 99.7%. Most models had a 

repetition rate around 1 except CharRNN and ORGAN. ORGAN had a repetitive rate as high as 

3.6, which means that each generated compound was sampled 4.6 times on average. The high 

repetition rate resulted in a low overall compound coverage for ORGAN, where the coverage was 

as low as 16%.   

Table 2. Percentage of the valid molecules and molecular repetition rate in the 1B generated set 

for each model in this study. The uncertainty in the percent validity was less than a fraction of a 

percentage point for each model. 

Model REINVENT CharRNN AAE ORGAN LatentGAN VAE GraphINVENT 

Validity 

(%) 
99.3 99.7 97.8 97.2 94.7 98.2 95.3 

Repetition 

rate 
0.9 1.4 0.8 3.6 0.9 1.0 0.7 

 

Coverage of GDB-13 chemical space 
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The molecule and substructure coverage of GDB-13 space for all generative models studied herein 

is shown in Figure 4a. It can be seen that all the models possess good capabilities for 

generalization, surpassing the coverage of the 1M training set used, which has a ~0.1% coverage 

of GDB-13 compounds, ~0.9% coverage of GDB-13 ring systems, and ~0.9% coverage of GDB-

13 functional groups. REINVENT achieves the highest compound and FG coverage (39% and 

25%, respectively), while AAE achieves best RS coverage (41%). The GAN models (ORGAN 

and LatentGAN) have lowest coverage at all three levels.  

Using these new metrics, the difference in performance among these models is more pronounced; 

this is in contrast to a previous benchmarking study using the MOSES metrics,[10] where the two 

GAN models appear to perform similarly with the CharRNN, AAE, and VAE models. 

Overall, REINVENT, CharRNN, AAE, and VAE are the top-ranking models in this benchmarking 

study. They have a compound coverage, RS coverage, and FG coverage around 34%, 34%, and 

21%, respectively, in all cases. The performance of GraphINVENT is between the two classes of 

models discussed above, and demonstrates coverage scores of 22%, 30%, and 24% for compound 

coverage, RS coverage, and FG coverage, respectively. 
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Figure 4. Coverage of GDB-13 chemical space using 1B sampled molecules. (a) Coverage of 

compounds, ring systems (RS), and functional groups (FG) in GDB-13 (𝑃𝑐𝑜𝑣𝑒𝑟𝑒𝑑). (b) Percentage 

of sampled molecules, RS, and FG that are outside the chemical space of GDB-13 (𝑃𝑜𝑢𝑡). 

Coverage of compounds, RS, and FG in GDB-13 was calculated via the formula below: 

𝑃𝑐𝑜𝑣𝑒𝑟𝑒𝑑 =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛

𝑁𝐺𝐷𝐵13
 ∗ 100% ,                                                       (1) 

where 𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛 is the number of unique sampled compounds, RS, or FG that are also found in 

GDB-13, and 𝑁𝐺𝐷𝐵13 is the total number of compounds, RS, or FG present in GDB-13.  

The percentage of sampled compounds, RS, or FG that are outside the chemical space of GDB-13 

was calculated via the formula below: 

𝑃𝑜𝑢𝑡 =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑜𝑢𝑡

𝑁𝑢𝑛𝑖𝑞𝑢𝑒
 ∗ 100% ,                                                               (2) 

where 𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑜𝑢𝑡 is the number of unique sampled compounds, RS, or FG that are not found in 

GDB-13, and 𝑁𝑢𝑛𝑖𝑞𝑢𝑒 is the total number of unique compounds, RS, or FG in the generated sets.  

There are four major metrics mentioned above, namely validity, repetition rate, coverage of GDB-

13 chemical space, and percentage outside GDB-13. Validity represents how good a generative 

model has learned the chemical rules for constructing compounds; repetition rate represents how 

much structure duplication exists in the generated compound set; generalization capacities of 

models can be measured with the coverage of GDB-13 after being trained on a smaller fraction of 

chemical space. As a supplement to above metrics, percentage outside GDB-13 shows how many 

sampled compounds fall outside the scope of GDB-13 (which are usually non drug-like 

compounds).. Also, these four metrics are not independent from each other. For example, if a 

model has a high validity and a small percentage sampled outside GDB-13, given that exactly 1B 
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compounds are sampled, the only reasonable explanation for a low GDB-13 coverage is a high 

repetition rate. 

Figure 4b shows the generated structures outside GDB-13. As GDB-13 uses filters to remove 

molecules that do not satisfy simple chemical stability and synthetic feasibility rules, such as ring-

strain criteria and valency rules, there are many structures that can be generated which violate the 

filters used by GDB-13. For example, there are around 30% valid SMILES generated by 

REINVENT which fall outside the scope of GDB-13 chemical space. However, for CharRNN and 

ORGAN, only 6% and 5% of their respective generated sets fall outside GDB-13, which is much 

lower than other models in this study. As the percent validity of the structures generated by both 

models is above 97%, we conclude that the lower fraction of compounds outside GDB-13 is due 

to the high repetition rate of compounds for these models, as shown in Table 2. As for the 

percentage of RS and FG outside of the scope of GDB-13, more than 50% of all FG and RS found 

in the generated sets for each model are outside the GDB-13 chemical space. 

After training with a subset of the GDB-13 database (0.1%), all the generative models showed 

promising performance in terms of compound coverage. Around 13% compounds of GDB-13 were 

covered with 1B SMILES sampled by the LatentGAN, which is 130 times greater than the 

coverage of the training dataset itself. The model with the best performance in this study is 

REINVENT, which has an observed compound coverage as high as 39%. Thus, we conclude that 

deep generative models in general have satisfactory learning and generalization capacities. In 

terms of overall GDB-13 compound coverage, the rank of performance in descending order is 

REINVENT > CharRNN > VAE > AAE > GraphINVENT > ORGAN > LatentGAN.  

The GDB-13 coverage of RS and FG was generally less than the coverage of compounds, except 

in the cases of AAE, LatentGAN, and GraphINVENT. However, in these cases, greater than 60% 
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RS and FG in the generated set were outside the scope GDB-13 chemical space, while less than 

40% of generated molecules were outside GDB-13. In terms of RS coverage of GDB-13, the rank 

of performance in descending order is AAE > REINVENT > VAE > CharRNN > GraphINVENT 

> ORGAN > LatentGAN. In terms of FG coverage of GDB-13, the rank of performance in 

descending order is REINVENT > VAE > GraphINVENT > CharRNN > AAE > LatentGAN > 

ORGAN. Examples of the most commonly observed groups in structures generated by the two 

best models, REINVENT and AAE, are shown in Figures 6 & 8. Examples of the most commonly 

observed groups in structures generated by one of the worst models, LatentGAN, are shown in 

Figures 7 & 9. 

Relationship between the coverage of GDB-13 and occurrence frequency 
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Figure 5. Coverage of GDB-13 chemical space from 1B sampled molecules, grouped by the 

occurrence frequency of molecules in GDB-13. (a & c) Coverage of RS and FG. (b & d) 

Distribution of generated RS and FG that are shared with the chemical space of GDB-13. The y-

axes for (b) and (d) are displayed in logarithmic scale. 

The coverage of GDB-13 chemical space from 1B sampled molecules, grouped by the 

occurrence frequency of molecules in GDB-13, was calculated via the formula below: 

𝑃𝑐𝑜𝑣𝑒𝑟𝑒𝑑 =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛(𝑅𝑚, 𝑅𝑛)

𝑁𝐺𝐷𝐵13(𝑅𝑚, 𝑅𝑛)
 ∗ 100% ,                                                (3) 

where 𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛(𝑅𝑚, 𝑅𝑛) is the number of unique RS or FG in the sampled set that have an 

occurrence frequency in the range of 𝑅𝑚  to 𝑅𝑛  in GDB-13, and 𝑁𝐺𝐷𝐵13(𝑅𝑚, 𝑅𝑛)  is the total 

number of RS or FG in GDB-13 with an occurrence frequency in the range of 𝑅𝑚 to 𝑅𝑛. As such, 

𝑃𝑐𝑜𝑣𝑒𝑟𝑒𝑑  represents the coverage of specific set of substructures 𝑁𝐺𝐷𝐵13(𝑅𝑚, 𝑅𝑛)  of GDB-13 

from the 1B generated set. 

In Figures 5a and 5c, the RS and FG coverage of various models is broken down into different 

frequency sections to examine the coverage performance for different types of substructures. 

Figure 5 shows that for high frequency RS and FG, the coverage is high and quite similar among 

all models, while for less frequent RS and FG, the coverage reveals differences between models. 

On the other hand, comparing with the training set, all models demonstrate clear enrichment of RS 

and FG coverage, and the enrichment gets bigger as the RS and FG frequency is lower. As for RS 

and FG at the occurrence ranges of  “>20000”, “2000~20000”, and “200~2000”, the coverage is 

close to 100% for all models, while the coverage of the training dataset is around 82%, 73%, and 

31% at these respective occurrence frequency ranges. As for RS at the occurrence range of 

“20~200”, “2~20” and “≤2”, most generative models have an RS coverage of around 80%, 60%, 
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and 30%, compared to only 5%, 1%, and 0% for the training dataset. The coverage of FG at the 

different occurrence frequency ranges has a similar pattern to the RS coverage. 

Similarly, distribution of generated RS and FG that are shared with the chemical space of GDB-

13 was calculated via the formula below: 

𝑃𝑑𝑖𝑠𝑡 =
𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛(𝑅𝑚, 𝑅𝑛)

𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛
∗ 100% ,                                             (4) 

where 𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛(𝑅𝑚, 𝑅𝑛) is the number of unique RS or FG in the sampled set that have an 

occurrence frequency in the range of 𝑅𝑚 to 𝑅𝑛 in GDB-13, and 𝑁𝑢𝑛𝑖𝑞𝑢𝑒_𝑖𝑛 is the total number of 

unique RS or FG in the generated set, which are also included in GDB-13. Thus, 𝑃𝑑𝑖𝑠𝑡  is a metric 

of the distribution of RS or FG that are shared with GDB-13 at different occurrence ranges. 

The distributions of generated RS and FG corresponding to occurrence frequency in GDB-13 are 

shown in Figures 5b & 5d. Given that most RS and FG have an occurrence frequency below 20 in 

the GDB-13 database (as shown in Figure 1), the overall coverage of RS and FG is thus dominated 

by ones with low occurrence frequency. 

The most frequent and least frequent ring systems and functional groups sampled by the deep 

generative models are listed in Figures 6-9. The most often sampled ring systems are simple carbon 

cycles or aromatic heterocycles containing O and N atoms, such as C1CC1 (cyclopropane), which 

was sampled up to 78M times in the 1B sample set, and C1COC1 (oxetane), which were sampled 

up to 26M times in the 1B sample set. For comparison, the benzene ring ranked 85th among the 

most common sampled ring systems. As for the least common sampled ring systems, they were 

usually complex macrocycles that were only sampled once out of the 1B compounds generated.  

The most commonly sampled functional groups are ordinary small ones, such as single oxygen 

and nitrogen atoms, C-C double bonds, and C-C triple bonds. The least commonly sampled 

functional groups are those with complex structures formed by a combination of simple ones. The 
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ring systems and functional groups that are not included in GDB-13 usually do not conform to 

simple chemical stability and synthetic feasibility rules. It is worthwhile to mention that none of 

the GDB-13 compounds contain Br or F, although Br and F were obtained as functional groups up 

to 1.7M and 0.1M times when 1B compounds were generated by LatentGAN. This is due to the 

fact that LatentGAN decoder was trained on another prior dataset[11], such that LatentGAN could 

theoretically sample outside of applicability domain of the training set.  

Most of the RS (~93%) and FG (~91%) found in the generated sets that are also found in GDB-13 

are seen less than 20 times. As the results show in Figure 2, RS and FG that occur more frequently 

in GDB-13 tend to have smaller molecular weights. The building blocks of RS and FG are basic 

rings and functional groups with simple structures and small molecular weights. More complex 

RS and FG can be built via the combination of these basic components.  

The coverage of RS and FG with an occurrence frequency in GDB-13 greater than 200 was nearly 

100%. This is because these RS and FG can be easily obtained via combinations of smaller 

fragments. However, given that as many as up to 13 heavy atoms were considered in constructing 

the GDB-13 database, most RS and FG possess complex structures and were included in 

compounds of GDB-13 less than 20 times. RS and FG that occur less than 20 times in the generated 

sets dominate the coverage of the deep generative models. 

Model comparison 

It is interesting to observe that these models describe the chemical space so differently, although 

trained with the same training set. It seems that the RS and FG coverage of GraphINVENT is 

higher than its overall molecular coverage, one reason could be due to its large action space; that 

is, the number of possible “correct” sampled actions at any stage during graph generation is much 

larger than it is for SMILES-based methods which must use only tokens sampled in the training 
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set. As such, given that GraphINVENT samples actions probabilistically, it is possible that 

sequences of actions are sampled which have never been seen in the training set, thus leading to 

new molecules. Another interesting observation is that GAN based models generally perform 

worst in terms of GDB-13 coverage on all three metrics, one reason could be due to that, in the 

adversarial training, the generator is supposed to mimic the true data as much as possible to fool 

the discriminator, which deteriorates its generalization capability to a certain extent. We also 

noticed that the performance of REINVENT and CharRNN is somehow similar, while their 

sampling speed has very large difference. This is strange given that both models are based on the 

same RNN architecture, suggesting that the technical implementation of CharRNN is suboptimal. 

 

Figure 6. Typical ring systems that are sampled by AAE, which are included in GDB-13. The 

numbers below the structures in the figure are the occurrence frequency of ring systems in the 1B 

sampled compounds. 
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Figure 7. Typical ring systems that are sampled by LatentGAN, which are outside GDB-13.  

 

Figure 8. Typical functional groups that are sampled by REINVENT, which are included in GDB-

13.  

 



 22 

 

Figure 9. Typical functional groups that are sampled by LatentGAN, which are outside GDB-13.  

Conclusions 

Molecules consist of a variety of ring systems and functional groups, which are connected in 

different ways to form molecules. The most basic ring systems and functional groups have simple 

structures and small molecular weights; these can be found in GDB-13 molecules over dozens of 

times. More complex ring systems and functional groups have complicated structures and large 

molecular weights, and might only occur in GDB-13 a handful of times. However, due to their 

structural variety and enormous quantity (>90%), complex ring systems and functional groups are 

strong components affecting the coverage of GDB-13. 

All the deep generative models studied in this work have over 100 times greater chemical space 

coverage for GDB-13 using 1B samples than the training set (1M) used to train the models. In 

terms of compound coverage of GDB-13, the best model (REINVENT) reached ~39% coverage, 

far beyond the coverage of LatentGAN (~13%), which ranked lowest amongst the models in this 

study. Depending on the generative task, the deep generative model used should thus be chosen 
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carefully, as there are differences in how all these seemingly similar models sample the chemical 

space. 
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