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ABSTRACT: The first total synthesis of the cytotoxic alka-
loid ritterazine B is reported. The synthesis features a 
unified approach to both steroid subunits, employing a 
titanium-mediated propargylation reaction to achieve 
divergence from a common precursor. Other key steps 
include gold-catalyzed cycloisomerizations that install 
both spiroketals, and late stage C–H oxidation to incor-
porate the C7ʹ alcohol.  

Ritterazine B (1) is a bis-steroidal pyrazine (BSP) 
natural product that was isolated in 1995 from the ma-
rine tunicate Riterella tokioka off of Japan’s Izu Peninsu-
la.1 The BSPs include some of the most potent anti-
cancer compounds discovered to date,2 and 1 in par-
ticular has been described as “among the most potent 
growth inhibitors ever tested” by the National Cancer 
Institute (NCI).3-5 It possesses sub-nanomolar activity 
against P388 leukemia cells (0.17 nM GI50)6 and an aver-
age GI50 of 3.2 nM in the NCI-60 cell line screen.5,7 Given 
that the BSPs display distinct activity patterns in NCI-60 
COMPARE analyses, they are proposed to act by a dis-
tinct mode of action from existing chemotherapies.4,7,8 

Although the BSPs are known to induce apoptosis,3 
a lack of natural material has hampered translational 
investigations of 1 and related compounds. Landmark 
studies from Shair and co-workers implicated BSPs as 
high-affinity ligands for oxysterol binding proteins,4 
while more recent evidence has suggested that the en-
doplasmic reticulum-specific heat-shock protein GRP78 
may be their efficacious target.9,10 Given these promis-
ing foundational studies, improved synthetic access to 1 
is required to fully evaluate its potential as a chemo-
therapeutic.2,8 In this communication, we report the 
first total synthesis of 1. Our approach uses a common 
strategy to prepare both of the steroid spiroketals from 
trans-dehydroandrosterone, a commercially available 
and inexpensive steroid. 

Figure 1. Retrosynthetic analysis. 

In line with prior efforts to the BSPs,5,11 our retro-
synthetic analysis began with scission of the central py-
razine ring, revealing the ‘western’ and ‘eastern’ ster-
oids 2 and 3, respectively (Figure 1). To streamline our 
route development, we sought to prepare both 2 and 3 
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from a common starting material, using the same gen-
eral tactics for C–C bond formation and spiroketaliza-
tion. In this vein, steroids 2 and 3 were simplified to the 
corresponding alkynes 4 and 5, where transition metal-
catalyzed cycloisomerization12 would be used to form 
the respective spiroketals. This retrosynthetic step shift-
ed the synthetic challenge to the union of differentiated 
alkyne fragments with a common steroid core. We envi-
sioned preparing alkynes 4 and 5 by 1,2-addition of the 
propargyl-metal species derived from 6 or 7 to an a-
hydroxy ketone accessible from trans-
dehydroandrosterone (8). The choice of 8 as the starting 
material was seen as strategic: the C5–C6 alkene would 
provide a handle for late-stage B-ring oxidation. This 
tactic has yet to be utilized in synthetic approaches to 
the BSPs,11 which could be why BSPs with C7/C7ʹ oxida-
tion have not previously been synthesized.7 

In the forward sense, known steroid 9 (prepared in 
two steps from 8)13 was treated with excess tert-
butyldimethylsilyl triflate and triethylamine (Et3N) to 
protect the C3 and C12 alcohols and form of a silyl enol 
ether at C17 (Scheme 1A). Direct addition of isopropa-
nol and N-bromosuccinimide to the reaction mixture 
afforded a-bromo-ketone 10 in quantitative yield in one 
pot. Elimination of the C16 bromide under basic condi-
tions gave an inconsequential mixture of isomeric 
enones (D14–15 and D15–16, not shown), which converged 
to dienol ether 11 on treatment with Et3N and trime-
thylsilyl triflate. Selective epoxidation of the C16–C17 
alkene with dimethyldioxirane and subsequent addition 
of tetrabutylammonium fluoride (TBAF) provided a-
hydroxy-ketone 12 in 92% yield, which would serve as 
our divergent intermediate. 

At this stage, we turned our attention to preparing 
the distinct spiroketals found in the western and east-
ern steroids 2 and 3, respectively. To this end, titanium-
mediated propargylations based on conditions reported 
by Sato and co-workers proved uniquely effective 
(Scheme 1B).14 Deprotonation of the C16 alcohol by 

treatment of 12 with n-butyllithium, followed by addi-
tion of the organotitanium species derived from either 
propargyl bromide 6 or 7 resulted in 1,2-addition to give 
alkyne 13 in 54% yield or 14 in 56% yield. These addi-
tions occurred with exclusive b-face selectivity despite 
the axial methyl group,15 possibly due to the formation 
of an a-disposed cyclic chelate between the C16 and 
C17 oxygens. While excellent diastereoselectivity was 
obtained at C17, 13 and 14 were formed as 1:1 mixtures 
of epimers at C20ʹ/C20 (vide infra).  

While the a-stereoisomer of the C16 alcohol was 
crucial for imparting the desired stereocontrol in the 
propargylation reactions, we required the b-oriented 
alcohols to elaborate to the required spiroketals. For the 
preparation of the western steroid (2), stereoinversion 
was accomplished by oxidation to the enone followed 
by cleavage of the p-methoxyphenyl ether16 and hy-
droxyl-directed 1,2-reduction, which furnished spiro-
ketal precursor 4 in 86% yield (Scheme 2A). After exten-
sive experimentation,17 treatment of diol 4 with catalyt-
ic CyJohnPhos·AuCl (10 mol %) and AgBF4 (5 mol %) pro-
vided spiroketal 15 in 68% yield as a single diastere-
omer.12 To our delight, this reaction not only provided 
the correct configuration at the spiroketal, but also pro-
ceeded with convergence of the C20ʹ epimers, furnish-
ing 15 with the required a-disposed methyl group. The 
overall selectivity was found to be critically dependent 
on the choice of dichloroethane solvent, CyJohnPhos 
ligand, and tetrafluoroborate counterion.  

With the western spirocycle in hand, allylic oxida-
tion of 15 at C7ʹ was achieved with oxochromate 
(Cr(V)).18 To obtain the fully saturated Bʹ ring, the in-
termediate enone (not shown) was reduced with SmI2 
and 2-naphtalene thiol to furnish 16 in 85% yield as a 
single diastereomer; low temperatures were crucial for 
preventing over-reduction of the C14–C15 alkene.17 
Protection of the C7ʹ alcohol of 16 as the tri-iso-
propylsilyl ether was followed by addition of Et3N·3HF 
to selectively reveal the C3ʹ alcohol in the same pot.  

Scheme 1. Preparation of the western and eastern alkyne fragments     
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Scheme 2. Total synthesis of ritterazine B    

 
Oxidation of 17 to the ketone and two-step a-

bromination and azidation at C2 using procedures de-
veloped by Shair11i and Fuchs11d provided the western 
fragment as keto-azide 18 in   63% overall yield. The use 
of nitropropane as solvent for the azidation instead of 
the traditional nitromethane was found necessary for 
solubilization of the intermediate bromide.11d,i This also 

significantly increased the yield by preventing undesired 
elimination of N2 from 18.  

The synthesis of the eastern steroid followed a simi-
lar sequence to that described above, but was modified 
slightly to prepare diol 5 (Scheme 2B). Following depro-
tection of the trimethylsilyl ether in 14 and Stahl oxida-
tion, the C17 alcohol was removed via ketol deoxygena-
tion with SmI2 and H2O.19  
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Figure 2. Thermodynamic evaluation of C20/C20ʹ epimers of the spiroketalization products. 
 
Diastereoselective 1,2-reduction was effected by treat-
ment with di-iso-butylaluminum hydride to give 5; the 
four electron reduction of 19 directly to give 5 could be 
accomplished with excess SmI2, though the yield and 
diastereoselectivity was greatly reduced relative to the 
two-step procedure. 

As observed for the western fragment, Au(I)-
catalyzed spirocyclization proceeded smoothly to con-
struct the 5/5 (E/F) ring system, again as a single isomer 
at both C20 and C22. Here, it was found that direct ad-
dition of Et3N·3HF to the reaction mixture resulted in 
selective deprotection of the C3 silyl ether, ultimately 
providing 20 in 85% yield. 

The remaining two stereocenters required for the 
eastern fragment were installed in a single step via hy-
drogen atom transfer (HAT) reduction of the C5–C6 and 
C14–C15 alkenes under conditions developed by Shenvi 
and co-workers.20 The fully saturated product was ob-
tained with cis-fusion at the C/D ring-junction; DFT 
studies supported the thermodynamic preference for 
the observed stereochemistry.17,20 This reaction proved 
critical for accessing late-stage material in the correct 
oxidation state, as typical alkene hydrogenation condi-
tions were unable to reduce the C14–C15 double bond. 
To complete the eastern coupling partner, the same 
oxidation/bromination/azidation protocol as described 
for the western fragment was followed by ketone con-
densation with MeONH2·HCl and Staudinger reduction21 
to furnish amino-methoxime 21 in quantitative yield.11d 

Heterodimerization under Lewis-acid catalysis, as 
originally reported by Fuchs,11d provided the desired 
pyrazine (Scheme 2C). Global deprotection with TBAF11i 
delivered ritterazine B in 82% yield, representing its first 

total synthesis. Spectroscopic characterization data 
matched that reported for the natural material.1  

The construction of each fragment hinged on the 
modular spiroketalization reaction. Given the observed 
epimerization at C20/C20ʹ, we hypothesize that the pro-
cess occurs through an initial stereoablative mono-
cyclization/isomerization, followed by a doubly-
diastereoselective ketal formation.5,12a To probe the 
preferential formation of the C20/C20ʹ stereocenters, 
ground-state energies were calculated for DFT-
optimized 15 and 22 (Figure 2). Indeed, the observed 
isomers were found to be 2.1 and 4.2 kcal/mol lower in 
energy than their un-natural C20 and C20ʹ epimers, re-
spectively.22 Conformational analysis of the disfavored 
species 23 and 24 revealed the existence of syn-
pentane-like interactions between the C20/C20ʹ-b-Me 
and the axial C13/C13ʹ-Me groups.5,23 These interac-
tions are not present with the a-disposed C20-Me 
groups, which appear less sterically encumbered.  

In summary, the first total synthesis of ritterazine B 
has been completed starting from the simple steroid 
trans-dehydroandrosterone and using a unified ap-
proach to both steroid fragments. Key features of the 
strategy include titanium-mediated propargylations to 
access differentiated alkynes as well as gold-catalyzed, 
diastereoselective spirocyclizations to forge the spiro-
ketals. The modularity of this approach has allowed ac-
cess to three additional BSPs to date, including two 
novel non-natural compounds. Investigations into the 
biological activity of 1 and related compounds are cur-
rently underway, which will be reported in due course. 
It is worth noting that several multi-milligram batches of 
these materials have been prepared thus far, and 
though we have elected to perform the final steps on 
small scale for safety, synthesis of the coupling frag-
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ments has proven to be scalable. We expect that our 
developed route will provide ample material for biologi-
cal studies, enabling further investigation of the BSPs as 
anticancer therapeutics. 
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