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ABSTRACT:    Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly 

multiplexed, unlabeled mapping of analytes from tissue sections.  However, further work is needed to improve sensitivity and 

depth of coverage for protein and peptide IMS. Laser-based post-ionization MALDI-2 has been shown to increase sensitivity 

for several molecular classes but thus far this has not been reported for peptides. Here, we demonstrate signal enhancement of 

proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (termed MALDI-1), and conventional 

MALDI augmented using a second ionizing laser (termed MALDI-2).  Proteins were digested in situ using trypsin prior to IMS 

analysis.  For identification of peptides and proteins, a tissue homogenate was analyzed by LC-MS/MS for bottom-up proteomics 

and the corresponding proteins identified.  These proteins were next fully ‘digested in silico’ to generate a database of theoretical 

peptides to then match to MALDI IMS datasets. Peptides were tentatively identified by matching the MALDI peak list to the 

database peptide list employing a 5 ppm error window.  This resulted in 314 ± 45 (n=3) peptides and 1 112 ± 84 (n=3) peptides 

for MALDI-1 and MALDI-2, respectively. Protein identifications were similarly made by linking IMS data to the LC-MS/MS 

peptide database.  With positive protein identifications requiring two or more peptides per protein, 55 ± 13 proteins were 

identified with MALDI-1 and 205 ± 10 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity 

for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.

The spatial mapping of peptides and proteins is crucial 

for understanding the underlying molecular drivers of tissue 
biology and pathology.1–8 Protein distributions in tissue are 

highly dependent on expression within cell types and on 

molecular changes in the tissue microenvironment.9–13 
Generally, peptides and proteins are identified by mass 

spectrometry technologies from bulk tissue homogenates, but 

spatial information is not typically retained with these methods. 

In contrast, imaging of tissue using immunohistochemistry 
allows for sensitive analyte detection and high spatial resolution 

mapping, but requires a priori knowledge of the analyte of 

interest and is limited in the number of targets that can be 
imaged in a single experiment. Matrix-assisted laser 

desorption/ionization imaging mass spectrometry (MALDI 

IMS) of peptides and proteins combines the advantages of both 
MS and immunohistochemistry by providing high sensitivity 

and specificity analyte detection as well as untargeted, 

multiplexed mapping of hundreds-to-thousands of peptides and 

proteins from a single experiment. 
 Protein IMS has been reported for the intact detection 

of large proteins up to 200 kDa14 but the practical upper mass 

limit is ~50 kDa.15–18 High performance mass analyzers (e.g. 
FT-ICR and Orbitrap) provide superior mass resolving power 

and accuracy but have limited ion transmission efficiency at 

high m/z and analyses are typically limited to <30 kDa for 
protein IMS epxeriments.19–22 Many proteins have molecular 

weights above this value and combined with their low 

abundance in tissue are typically not detectable intact by IMS. 

To access large proteins, we employ the approach of bottom-up  

experiments by applying a proteolytic enzyme such as trypsin 
to the tissue surface and imaging the resulting peptides.23–28 

Using mass accuracy, multiple peptides with similar 

localization that match to a single protein we are able to derive 
a preliminary identification for the proteins.23,24 

Although peptide and protein IMS workflows are 

routine, proteomic coverage and sensitivity remain as 

challenges. Strategies to improve sensitivity through sample 
preparation approaches have included development of novel 

MALDI matrices29,30 and tissue washes to remove interfering 

lipid and metabolite species that suppress peptide signals.31–33 
Other approaches include denaturing proteins using methods 

such as antigen retrieval to allow trypsin to access more sites 

for digestion.25 Digestion condition variables such as time, 
temperature, and humidity have also been optimized to improve 

digestion efficiency while maintaining peptide localization 

within a tissue section.27,34 Nevertheless, increased sensitivity is 

needed to improve proteomic coverage for bottom-up IMS 
experiments.  

Many instrumental technologies can be employed for 

improving sensitivity for IMS experiments.35–39 One technology 
that has been shown to dramatically increase signal for MALDI 

IMS for some analytes is laser-based post-ionization.40–45 This 

approach ionizes some of the abundant neutrals that are 
generated during the initial MALDI event. Post-ionization by 



 

 

MALDI-2 employs a secondary laser positioned parallel to, and 

above the sample to irradiate the plume generated by the initial 
MALDI event thereby increasing the fraction of molecules that 

are ionized. MALDI-2 has been shown to increase ion intensity 

up to 100-fold for lipids and thereby increase the number of 
identified species by a factor of two.41,43 MALDI-2 post-

ionization has been demonstrated to increase intensity for many 

classes of biologically relevant analytes including lipids,40–

43,45,46 saccharides,40 liposoluble vitamins,40 N-linked glycans,47 

certain pharmaceutical compounds,46 and some protein 

complexes.48 However there have been no reports of intensity 

gains using MALDI-2 post-ionization of peptides. Here, we 
demonstrate the use of MALDI-2 post-ionization for the 

enhancement of tryptic peptides from human kidney tissue 

sections. 
To evaluate the feasibility of using MALDI-2 for IMS 

of tryptic peptides, sections of fresh frozen human kidney were 

prepared in technical triplicate. Human kidney tissues were 
collected as part of normal non-neoplastic portions of 

nephrectomy samples. Tissue blocks were frozen using an 

isopentane/dry ice slurry, embedded in carboxymethyl 

cellulose, and cryosectioned at 10 µm thickness. Sections were 
washed to remove the carboxymethyl cellulose embedding 

material using ethanol and water49 followed by a Carnoy’s 

solution wash to remove salts and lipids. Antigen retrieval was 
performed to thermally denature the proteins prior to trypsin 

application with a pneumatic sprayer, as previously described25 

and samples were digested at 37°C overnight in a 100% relative 
humidity oven (Espec North America). The MALDI matrix (α-

cyano-4-hydroxy-cinnamic acid) was applied by pneumatic 

sprayer (HTX Technologies). Tissue sections were analyzed in 
positive ion mode using an Orbitrap Elite instrument equipped 

with a MALDI ion source (Spectroglyph), which included a 

second laser for MALDI-2 functionality (266 nm, CryLaS) as 

described previously.43 Samples were analyzed at 50 µm spatial 
resolution with MALDI-1 and MALDI-2. Similar and adjacent 

regions of the same section were analyzed and the ion images 

contained a comparable number of pixels (~15 000 in each 
region). Sample preparation for peptides was optimized to 

maximize signal with MALDI-1 and to maintain the spatial 

distribution of peptides across the tissue. Averaged spectra were 
deisotoped and peak picked based on a signal-to-noise ratio 

(S/N) threshold of 10. A comparison of representative averaged 

mass spectra generated from both analysis modes is displayed 

in Figure 1. Analysis with MALDI-1 resulted in 515 peaks 
whereas MALDI-2 allowed for detection of 1443 peaks. 

Additionally, the overall spectral intensity was greater with 

MALDI-2 (2.6 x 103) as compared to MALDI-1 (8.0 x 102). 
These data show that there are significant signal and molecular 

coverage improvements for peptide IMS experiments with 

MALDI-2. 

For image visualization, ion images were converted to 

vendor-neutral imzML format using ImageInsight software 

(Spectroglyph) and imported into SCiLS (Bruker, version 
2019b). The IMS data were processed with root mean square 

normalization prior to image generation. Example ions and their 

localization (Figure 2) are compared to an autofluorescence 

image obtained of the same tissue section prior to analysis50 
(Figure 2 A). The human kidney tissue sections analyzed 

contain the major functional units of the kidney including the 

cortex, medulla, and glomeruli. Highlighted ion images were 

selected to provide examples of peptides that localize to these 

regions and throughout the tissue (Figure 2 B-E).  

Peptide identification from IMS data was performed 

in three steps. First, a tissue homogenate was analyzed using 

bottom-up LC-MS/MS proteomic protocols.51–55 Briefly, tissue 
sections were homogenized and digested with trypsin, mass 

spectra were acquired on an Thermo Fusion Tribrid mass 

spectrometer, and the data analyzed using MaxQuant56,57 to 
identify proteins.  Next, these proteins were digested in silico 

using Protein Prospector to obtain a database of all possible 

tryptic peptides. Finally, deisotoped IMS peak lists from 

MALDI-1 and MALDI-2 analyses (with S/N of 10 or greater) 
were compared to the peptide data from the in silico digestion. 

The database constructed by in silico digestion contained 

144,619 unique peptides to compare with IMS data. While this 
could potentially increase the number of false positives for 

proteins, this approach allows for annotation of possible 

peptides detected by MALDI-1 and MALDI-2 that may have 
gone undetected during LC-MS/MS analysis. The theoretical 

m/z values of protonated peptides from the in silico digestion 

were matched to peak lists from the average IMS mass spectra 

with a mass tolerance of 5 ppm. Protein identification was 
completed by peptide mass fingerprinting wherein the detection 

of two or more peptides corresponding to the same protein was 

used for protein identification.34,58 To deal with multiple peptide 
matches to a single MALDI ion, a simple scoring system was 

Figure 1. Average mass spectra of ion images with (A) 

MALDI-1 and (B) MALDI-2 from IMS of human kidney 

sections digested in situ. The increase in sensitivity and 
number of peaks in the mass range of peptides (m/z 1000-

2000) demonstrates peptide signal increases with MALDI-2. 

Number of peaks for MALDI-1 (515) and MALDI-2 (1443) 
are based on a signal-to-noise ratio of 10 with isotopes 

removed. Intensity of spectra is scaled to 50% relative 

abundance to highlight spectral differences. 



 

 

implemented that 1) ranked proteins in the LC-MS/MS dataset 

using sequence coverage and the number of identified peptides 
per protein normalized to molecular weight, and 2) ranked the 

mass accuracy of the MALDI-to-peptide matches as well as the 

number of potential peptides per protein for each match. The 
scoring system also considered the number of potential matches 

with the same mass difference. Overall, IMS with MALDI-2 

and subsequent protein identification by peptide mass 
fingerprinting allowed for identification of 1 112 ± 84 unique 

peptides and 428 ± 20 unique proteins, 205 ± 10 of which were 
identified by 2 or more peptides, where n=3 in these 

experiments. In comparison, MALDI-1 alone led to 

approximately 3.5-fold fewer proteins identified with 2 or more 
peptides (Table 1). Since the in silico digest contained all 

theoretical peptides, this approach allowed for identification of 

peptides that were not identified from the LC-MS/MS dataset 

and therefore the number of proteins that could be identified in 

Figure 2. Autofluorescence image of human kidney (A) 

and ion images (B-F) of peptides that localize to different 
tissue functional units of the kidney including the glomeruli 

(C), cortex (E), medulla (F), and throughout the tissue (B, 

D). Ion images were obtained via MALDI-1 (white outline, 

above) and MALDI-2 (red outline, below). Some species 
showed little change in intensity between MALDI-1 and 

MALDI-2 (B) while many species dramatically increased 

with MALDI-2 (C-F). Ion m/z values, protein identity, 
amino acid sequence of peptide, and mass error are listed 

and are based on accurate mass measurements matched to 

the in silico digest database within ± 5 ppm error for each 
peptide where at least two peptides per protein were 

detected with similar localization. The autofluorescence 

image of the tissue section (A) was acquired prior to IMS 

analysis. 

MALDI-1

MALDI-2

m/z 755.427 – Glutathione S-transferase A2, KPPMDEK, 1.58 ppm

m/z 688.327 – Inactive phospholipase C-like protein 1, DPSNQK, 1.27 ppm

m/z 953.480 – Pyruvate kinase PKM, IENHEGVR, 0.67 ppm

m/z 1071.554 – Hemoglobin subunit alpha, MFLSFPTTK, 0.09 ppm
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MALDI-20%

100%

A
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D
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Figure 3. Autofluorescence image of human kidney (A) 

and ion images (B-D) showing multiple peptide matches to 
the protein glyceraldehyde 3-phosphate dehydrogenase. 

Amino acid sequence and measured mass of each peptide 

is listed above the ion image. Eight peptides within ± 5 ppm 

mass error to the theoretical value were detected via IMS 
and match to peptide from the in silico digest database. 

Three representative peptides are shown here, full data is 

displayed in Supplementary Figure S8. Peptides localize 
similarly in the tissue (here, throughout the tissue but 

predominantly in the cortex) which is expected from 

species relating to the same identified protein. 

MALDI-1

MALDI-2

m/z 1032.592 – VKVGVNGFGR, 2.79 ppm

m/z 805.432 – VGVNGFGR, 0.53 ppm

MALDI-1

MALDI-20%

100%

A

B

C

D

m/z 760.382 – TVDGPSGK, 2.21 ppm

MALDI-1

MALDI-20%

100%

MALDI-1

MALDI-20%

100%

Glyceraldehyde 3-phosphate dehydrogenase

Table 1. Number of unique proteins and peptides identified 

from thin tissue sections for MALDI-1 and MALDI-2 (n=3). 

Identifications using the database generated from in silico 

digestion (A) allowed for significant increases versus the 
traditional approach comparing IMS data to LC-MS/MS 

results alone (B).  

 



 

 

the MALDI data significantly improved.  In many cases, 

a protein was only identified with MALDI-2 and these proteins 
may provide insight into important biological functions and 

disease states. One example is glyceraldehyde 3-phosphate 

dehydrogenase, a protein that is overexpressed in kidney and 
liver cancer compared with healthy tissue.64–66  Here, the protein 

was not detected with MALDI-1 but was detected with 

MALDI-2, and the peptides were shown to localize to the cortex 
of the kidney. The ion images of its corresponding peptides are 

shown in Figure 3 and Figure S9. An optical autofluorescence 

image of the tissue was obtained prior to sample preparation 

(Figure 3 A) and the IMS acquisition regions of MALDI-1 and 
MALDI-2 are shown in the white and red rectangular outlines, 

respectively. Ion images for peptides are shown (Figure 3 B-D) 

where each identified peptide was contained in the theoretical 
peptide database and matched to the IMS data as described 

above. Examples of other proteins identified with MALDI-2 

include alpha-enolase67,68, peroxiredoxin-169,70, and 
phosphoglycerate kinase 111,71, proteins that have been found to 

be elevated in some cancers and tumors.  

These proof-of-concept experiments demonstrate the 
utility of MALDI-2 for enhanced detection of peptides from 

tissue sections for bottom-up protein IMS. This technology will 

be beneficial for future studies to obtain both protein identity 
and corresponding spatial distribution of clinically relevant 

peptide and protein species. These technical improvements are 

also critical for providing more robust and complete molecular 

imaging capabilities for large-scale tissue mapping projects 
such as the Human Biomolecular Atlas Program (HuBMAP), 

which will help provide a systems biology view on the 

molecular drivers of health and disease. 
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