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Pd-catalyzed nucleophilic fluorination reactions are important methods for the synthesis of 

fluoroarenes and fluoroalkenes. However, these reactions can generate a mixture of 

regioisomeric products that are often difficult to separate. While investigating the Pd-

catalyzed fluorination of cyclic vinyl triflates, we observed that the addition of a 

substoichiometric quantity of TESCF3 significantly improves both the efficiency and the 

regioselectivity of the fluorination process. Herein, we report a combined experimental and 

computational study on the mechanism of this transformation focused on the role of TESCF3. 

We found that in the absence of additives such as TESCF3, the transmetalation step produces 

predominantly the thermodynamically more stable trans isomer of the key LPd(vinyl)F 

complex (L = biaryl monophosphine ligand). This intermediate, rather than undergoing 

reductive elimination, preferentially reacts through an intramolecular β-deprotonation to 

form a Pd-cyclohexyne intermediate. This undesired reactivity is responsible for the low 

efficiency (11% yield) and poor regioselectivity (1.8:1) of the catalytic reaction. When 

TESCF3 is added to the reaction mixture, the cis-LPd(vinyl)F complex is instead formed, 

through a pathway involving an unusual dearomatization of the ligand by nucleophilic attack 

from a trifluoromethyl anion (CF3–). In contrast to the trans isomer, this cis-LPd(vinyl)F 

complex readily undergoes reductive elimination to provide the vinyl fluoride product with 

desired regioselectivity, without the generation of Pd-cyclohexyne intermediates. 
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Introduction 

 Fluorine-containing molecules1 are a valuable class of compounds with wide 

applications2,3 and desirable biological properties.4 Pd0/II-catalyzed C–F cross-coupling is an 

attractive approach for the preparation of fluorinated compounds from readily available starting 

materials.5,6 Due to the challenging C–F reductive elimination from a Pd(II) intermediate,7 this 

transformation was not realized until recently.8  

 The generation of undesired regioisomeric fluorinated side products is a significant 

obstacle affecting Pd0/II-catalyzed fluorination reactions.8b,9c Previous mechanistic studies on the 

fluorination of aryl triflates indicated that the Pd-benzyne intermediates, generated from a base-

induced elimination pathway, are responsible for producing undesired regioisomers.9c In certain 

cases, nonpolar solvents such as cyclohexane could be used instead of polar solvents to minimize 

this undesired process.8a,8d In addition, catalysts based on new ligands were developed, which 

promoted the aromatic fluorination reaction with higher degrees of regioselectivity and 

reactivity.8d,8e  

 In 2016, motivated by the utility of fluorine-substituted olefins as amide surrogates in 

medicinal chemistry and chemical biology,10,11 we developed a Pd0/II-catalyzed fluorination of 

cyclic vinyl triflates.12 The addition of TESCF3 to the reaction mixture was found to significantly 

improve both the yield and regioselectivity of the fluorination process. Under the standard reaction 

conditions using 30 mol% TESCF3 as the additive, the desired fluorinated product A was generated 

in high yield with excellent regioselectivity (Scheme 1, with TESCF3, 74% yield, A:B > 99:1). 

However, in the absence of TESCF3, the same reaction provided the fluorinated products in low 

yield and poor regioselectivity (Scheme 1, without TESCF3, 11% combined yield, A:B = 1.8:1).   

Scheme 1. Pd-Catalyzed Fluorination of Cyclic Vinyl Triflates. 
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combined experimental and computational study on the fluorination of cyclic vinyl triflates, 

comparing the mechanisms of reaction with and without TESCF3 as an additive. During our study, 

we uncovered a hitherto unrecognized transmetalation mechanism with fluoride involving an 

unusual dearomatization of the ligand by nucleophilic attack by a CF3– nucleophile. 

Results and Discussion 

Kinetic Profiles of the Fluorination Reaction with and without TESCF3 Additive 

 We commenced our investigation by monitoring the progress of a model reaction with and 

without TESCF3 using 19F NMR analysis. In the absence of TESCF3, after 5 h, a mixture of 

isomeric products was formed in ca. 10% combined yield with poor selectivity (Figure 1, without 

TESCF3). In a separate reaction in which 30 mol% TESCF3 was used as an additive, in the initial 

stage of the reaction (t = 0–120 min), no vinyl fluoride products were formed. During this time, 

TESCF3 was continually consumed, and approximately 15% of 1a decomposed via an unknown 

pathway. Then, after the TESCF3 was fully consumed, the fluorination proceeded smoothly 

providing the desired vinyl fluoride product A in good yield (70% yield in 4 h) and with excellent 

regioselectivity (Figure 1, with TESCF3). Compared to the kinetic profile without TESCF3, the 

addition of a substoichiometric amount of TESCF3 had a dramatic impact on the reaction in several 

ways. First, the rate of the fluorination process was increased and the regioselectivity was 

significantly improved. We hypothesized that a new catalytic species with better fluorinating 

activity might be forming in the presence of TESCF3. Second, an induction period was observed 

at the beginning of the reaction, during which time no fluorinated product was formed. We 

reasoned that the presence of TESCF3 inhibited the fluorination process, because fluoride anions 

would react preferentially with TESCF3, preventing the generation of any Pd–F species that is 

required for product formation.13 It was probable that of the 30 mol% TESCF3 added at the 

beginning of the reaction, only a small amount participated in the formation of the active catalyst 

species, while the rest decomposed to either CHCF3 or CF2CF2 (observed by 19F NMR analysis of 

the crude reaction mixture) under the reaction conditions. We found that approximately 30 mol% 

was the minimal amount of TESCF3 required to achieve the optimal regiochemical ratio of 

products (see the Supporting Information for details). 

 

 

 

 



 

 4 

Figure 1. Reaction Kinetic Profiles with and without TESCF3 as an Additive.a 

 

without TESCF3: 

 
with 30% TESCF3: 

 
 aThe reaction was conducted at 1.0 mmol scale. Yields were determined by 19F NMR analysis of 

aliquots taken from the reaction mixture using 1-fluoronaphthalene as an internal standard. 
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generate L1Pd(vinyl)F (5), and C–F reductive elimination from 5 would provide the fluorinated 

product A. Alternatively, the Pd(II)-vinyl species, such as 3 and 5, could undergo intramolecular 

deprotonation at the vinylic position to form an L1Pd(II)-cyclohexyne intermediate 6A, 

eliminating HF in the process. If possible, rapid, reversible isomerization of 6A into 6B would 

explain the formation of the regioisomeric vinyl fluoride product B. Specifically, the reaction of 

6B with HF would provide L1Pd(vinyl’)F (7B), which could undergo C–F reductive elimination 

to generate the vinyl fluoride B with the undesired regioselectivity.  

Scheme 2. Proposed Catalytic Cycle for Pd(II)-Catalyzed Fluorination of Cyclic Vinyl 

Triflates in the Absence of TESCF3. 
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 We wanted to test whether the improvements in regioselectivity associated with the 

addition of TESCF3 might be due to an avoidance of these cyclohexyne intermediates. Thus, we 

conducted an analogous deuterium-labeling crossover experiment in the presence of 30 mol% 

TESCF3 (Scheme 3c). In this experiment, A and 2,6,6-A-d3 were the only fluorination products 

formed, and no deuterium crossover or regioisomeric products were observed. Thus, the pathways 

involving L1Pd(II)-cyclohexyne intermediates (6A or 6B) were indeed not operative under these 

conditions. 

Scheme 3. Deuterium Labeling Experiments Under TESCF3-Free Conditions.a 

 

 

 

aReactions were run at 0.10 mmol scale and at elevated temperature (110 ºC) and 1,4-dioxane to 

get better yields for analysis. Yields were determined by 19F NMR analysis of the crude reaction 

mixture using 1-fluoronaphthalene as an internal standard. In (c), maximum yield is 50% for each 

of A and A-d3. 
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DFT Calculations on the Mechanism of the Fluorination Reaction without TESCF3 

 To gain further insight into these experimental observations, we evaluated the proposed 

mechanism with the aid of density functional theory (DFT) calculations. Geometry optimization, 

vibration, and solvation energy calculations were performed with M06/LACVP/6-31G** level of 

theory, and the electronic energies of all optimized structures were reevaluated with 

M06/LACV3P/cc-pVTZ(-f).14 Greater details of the computational methods are given in the 

supporting information. As shown in Figure 2, L1Pd(0) (1) engages 1a through an initial 𝜋-

complex 2, from which oxidative addition proceeds with a barrier of 12.7 kcal/mol (via transition 

state 2-TS) to afford L1Pd(vinyl)OTf (3). Subsequent dissociation of the triflate counterion from 

3 gives the intermediate L1Pd(vinyl)+ (4). The ensuing addition of a fluoride anion to intermediate 

4 could potentially provide either the trans-isomer 5 or the cis-isomer 5A, in which the name 

indicates whether fluoride is bound trans or cis to the phosphine ligand, respectively. DFT 

calculations showed that the trans-isomer 5 is 2.4 kcal/mol lower in energy than 5A due to the 

relative trans influences of the ligand on palladium. In addition, the dissociation energy of fluoride 

from 5 is 10.1 kcal/mol lower than from 5A, indicating 5 would be formed dominantly in the 

reaction. This is consistent with what we observed previously in the aromatic fluorination 

reactions.8a 

 
Figure 2. Energy profiles of partial of the proposed mechanism under TESCF3-free conditions 
with optimized structure of 5 and 5A.  
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 As the trans-isomer 5 is the major isomer generated after fluoride association, we 

considered the reactivity of this complex. As shown in the proposed mechanism (Scheme 2), 5 

could either provide the fluorinated product A via reductive elimination or undergo deprotonation 

to yield the L1Pd(II)-cyclohexyne intermediate 6A. DFT calculations indicated that the reductive 

elimination from 5 is associated with a barrier of 24.9 kcal/mol via 5-TS, while the competing 

deprotonation to form 6A requires a lower activation energy of 22.2 kcal/mol via 6A-TS (Figure 

3). The 2.7 kcal/mol energy difference favoring deprotonation suggested that the generation of the 

L1Pd(II)-cyclohexyne intermediate 6A is significantly favored over the productive reductive 

elimination pathway. Once 6A is formed, it readily rearranges to 6B through rotation of the 

cyclohexyne group (via 6AB-TS), with an approximate barrier of 10 kcal/mol. Recombination of 

6B and HF generates 7B (the trans-isomer is preferentially formed due to trans influence, see the 

Supporting Information for details). As with 5, 7B also favors deprotonation, regenerating 6B, 

rather than reductive elimination. The calculations suggest that a Curtin–Hammett situation is 

operative in the vinyl fluorination process when additive is absent: 5 and 7B rapidly interconvert 

via L1Pd(II)-cyclohexyne intermediates, each proceeding slowly but irreversibly to a different 

isomer of product (A and B, respectively) with low selectivity. 
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Figure 3. Energy profile of potential transformations of 5. 
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consistent with the estimated theoretical regioselectivity (1:1) based on the computed energies 

using L2 (see the Supporting Information for details).  

Scheme 4. Stoichiometric Study on the Reductive Elimination of C2. 
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regioselectivity (Table 1, entry 3). The use of CF3-modified ligand L4-CF3 under the same reaction 

conditions gave trace amount of the fluorination products (Table 1, entry 4). Moreover, when 

TESCF3 was added to reactions using either L4-vinyl or L4-CF3 as the ligands, although less 

significant than the standard reaction condition using L1, improvements in regioselectivity and 

reactivity were observed (Table 1, entry 5 and 6). Together, these experiments suggest that an in 

situ 3’-substitution of the phosphine ligand did not account for the observed TESCF3 effect. 

 Accordingly, we had to consider that the Pd-CF3 intermediate 8 may not be formed at all 

in this fluorination process. The rigidity of the ligand backbone and the steric hindrance of the two 

tert-butyl groups on the phosphorous of these ligands (L1 and L2) might render CF3– attack on the 

cationic Pd(II) center rather slow.20a,b Consistent with this observation, palladium catalysts bearing 

Pt-Bu2 ligands have been observed to be incompetent for Pd0/II-catalyzed aryl trifluoromethylation, 

despite the associated C-CF3 reductive elimination barrier being thermally accessible.20c  

Scheme 5. Proposed Formation of L1Pd(vinyl)CF3 (8) and Its Potential Impact on 

Fluorination Process. 
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Scheme 6. Dearomative Rearrangement of the Oxidative Addition Complex in the 

Fluorination of Aryl Bromides. 

 
Table 1. Fluorination Reaction Employing Ligand L4, L4-vinyl and L4-CF3. 

 

 

 

entry ligand and TESCF3 A (%) B (%) A:B 

1 L4 11 8 1.4:1 

2 L4 + TESCF3 56 6 9.3:1 

3 L4-vinyl 9 5 1.8:1 

4 L4-CF3 trace trace / 

5 L4-vinyl + TESCF3 67 3 22:1 

6 L4-CF3 + TESCF3 21 2 11:1 

 

MeO

MeO

P

i-Pr

i-Pr

t-But-Bu

Pd

i-Pr

Br

n-Bu

MeO

MeO

P
i-Pr

i-Pr

t-But-Bu

Pd

i-Pr

Br
n-Bu

MeO

MeO

P
i-Pr

i-Pr

t-But-Bu

i-Pr

n-Bu
Pd(0)dearomative 

rearrangement rearomatization

D2

OMe

MeO P(t-Bu)2

i-Pri-Pr

i-Pr
n-Bu

3'

L3

D1
t-BuBrettPhosPd(n-BuPh)Br

– HBr

L3Pd

OMe

MeO P(t-Bu)2

i-Pri-Pr

i-Pr

t-BuBrettPhos

Me
Me

Me

Me
i-Pr

i-Pr

i-Pr
P(t-Bu)2

CF3

Me
Me

Me

Me
i-Pr

i-Pr

i-Pr
P(t-Bu)2

Me
Me

Me

Me
i-Pr

i-Pr

i-Pr
P(t-Bu)2

L4 L4-CF3L4-vinyl

Ph

OTf [(cinnamyl)PdCl]2 (2 mol%)
Ligand (5 mol%)

w/o TESCF3 (30 mol%)
KF (2.0 eq.)

1,4-dioxane, 110 ºC, 12 h Ph

F

Ph

F
+

1a A B



 

 13 

aReactions were run at 0.10 mmol scale. Yields were determined by 19F NMR analysis of the crude 

reaction mixture using 1-fluoronaphthalene as an internal standard. 

An Alternative Role of TESCF3: Ligand Dearomatization 

 In searching for other potential roles for TESCF3, our attention was drawn to a 2012 report 

from Amgen chemists in which they observed the generation of complex E1 (Scheme 7a, E1) with 

a dearomatized ligand during Pd-catalyzed cross-coupling.21a It was proposed that the 

dichlorocarbene, which formed from chloroform under basic conditions, attacked the bottom ring 

of t-BuXPhos and formed a bond at the para-position, on the face anti to the palladium. In 2014, 

our group also observed a similar dearomatized complex when exposing AdBrettPhos-Pd(0) to 

CDCl3 (Scheme 7b, E2).21b,c We wondered if such an analogous process could occur in the 

fluorination reaction wherein the trifluoromethyl anion (CF3–) or the difluorocarbene (:CF2) attacks 

the para-position of the bottom ring of the ligand. We found experimentally that in the presence 

of TMSCF3 and a fluoride source, a dearomatized Pd(II) complex supported by t-BuXPhos was 

generated in approximately 30% yield in two steps (Scheme 7c, F). Single-crystal X-ray diffraction 

structure analysis demonstrated that F was structurally similar to E1 and E2. In this case, the 

structure possesses an a-disposed CF3 substituent at C4 position of a dearomatized ring, while the  

Pd center binds to the dienyl system in an h3 fashion.  
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Scheme 7. Discovery of Pd Complexes Supported by Dearomatized Ligand. 

  

 Using L1 as the supporting ligand, however, we were not able to prepare any of the Pd(II) 

complexes stoichiometrically, presumably due to the extreme steric properties of the ligand. Thus, 

in order to investigate the plausibility of this dearomative process for L1 and its potential 

consequences on the fluorination process, DFT calculations were performed (Figure 4). Starting 

from 4’, we found that the addition of CF3– to the bottom ring of the ligand demands an activation 

energy of 10.5 kcal/mol via transition state 4’-TS* to form a dearomatized intermediate 6.20b,22 

The barrier indicates the dearomatization process is possible for L1 under the fluorination reaction 

conditions. Further, because 4’ is a cationic complex, this dearomative process releases a 

substantial amount of energy (29.1 kcal/mol). 

 After the generation of 6, reaction with a fluoride anion would form intermediate 7 or 7’, 

where the fluoride is bound either in cis or trans-position to the phosphine ligand. Unlike in the 

case of 5 and 5A where the trans-isomer 5 is more stable, we found that the cis-isomer 7 is 

energetically preferred by a substantial amount (2.3 kcal/mol).23 Once formed, 7 would then 

eliminate the CF3– through 7-TS* to provide the corresponding cis-isomer 5A. The overall barrier 

of 7-TS* from 6 is calculated to be 32.4 kcal/mol and is 2.4 kcal/mol lower than 7’-TS* which 

gives 5. 
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Figure 4. Energy profile of the proposed dearomatization reaction between CF3– and 4. (* 

represents an estimated barrier. See the Supporting Information for the details)  

 Interestingly, when we investigated the reactivity of 5A toward either β-deprotonation or 

reductive elimination, we found that 5A displays the opposite selectivity to that manifested by 5. 

As summarized in Scheme 8, the reductive elimination barrier of 5A is calculated to be 7.3 

kcal/mol lower than that of β-deprotonation pathway, while 5 prefers β-deprotonation. This 

suggested that 5A should undergo facile and regioselective reductive elimination to provide the 

fluorinated product A, and no L1Pd(II)-cyclohexyne intermediates should be generated (Figure 4). 

Of importance, the barrier to isomerization between 5 and 5A was calculated to be ~23.6 kcal/mol, 

which is higher than either 6A-TS or 5A-TS, suggesting that isomerization is unlikely under the 

reaction conditions that were employed (see Figure 2S in the Supporting Information for more 

details). 
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Scheme 8. Reaction Preferences of 5 and 5A. 

 

 Based on these results, a proposed mechanism for the fluorination of vinyl triflates with 

TESCF3 as an additive is illustrated in Scheme 9. During the induction period, TESCF3 releases 

CF3–. Most of them would be expected to decompose unproductively to form CHF3 or CF2CF2. 

Some, however, can react with 4, which was generated after oxidative addition of 1 with the 

starting material 1a, to provide the dearomatized intermediate 6. The fluoride anion would then 

react with 6 to form intermediate 7, which subsequently ejects CF3– to generate the cis-

L1Pd(vinyl)F 5A. 5A would undergo reductive elimination to provide the vinyl fluoride A with 

the desired regioselectivity. Essentially, in the fluorination process with TESCF3 as an additive, 

the CF3– released actually functions to facilitate the formation of 5A, which is responsible for the 

improved regioselectivity of the reaction.  
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Scheme 9. Proposed Fluorination Mechanism in the Presence of TESCF3. 

 

 In order to obtain experimental evidence for the formation of dearomatized intermediate 6, 

we designed a fluoro-substituted ligand L5, which could be employed as a probe to determine 

whether the bottom ring of the ligand ever undergoes nucleophilic attack by CF3– (Scheme 10). 

We hypothesized that in the reaction using L5 as the ligand and TESCF3 as an additive, in a manner 

analogous to the formation of intermediate 6 when L1 was used, the corresponding intermediate 

3F-6 would be generated. In the presence of fluoride, 3F-6 could be converted to 3F-7, which 

would undergo rearomatization by losing a CF3– to generate L5-5A. Alternatively, 3F-7 could also 

rearomatize by losing a F– to form L6-5A. If the latter pathway is followed, a new ligand L6, in 

which one fluorine was substituted by a trifluoromethyl group, would be generated. When L5 was 

used as the ligand in the fluorination reaction using TESCF3 as the additive, the fluorinated product 

was formed in 34% yield with >20:1 regioselectivity. 31P NMR analysis of the crude reaction 

mixture showed that most of the L5 remained unchanged, and the formation of L6 could not be 

verified. However, when we analyzed the crude reaction reaction mixture by HRMS, we 

unambiguously identified a new peak corresponding to L6 ([L6+H+]=543.3174, found 543.3187, 

see the Supporting Information for more details). This peak was not seen in control experiments 

in which either the Pd source or the triflate starting material were omitted, which is consistent with 

L6 being formed through the pathway proposed in Scheme 10.  Participating by the Pd center may 

cause 3F-7 to preferentially undergoe rearomatization by losing a CF3– from the anti face of the 

aromatic system rather than a F– group from the syn face. Again, these results are consistent with 

the proposed in situ ligand dearomatization by CF3– under the fluorination conditions.  
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Scheme 10. Generation of Pd complexes Supported by ligand with a dearomatized bottom 

ring.  

 

Conclusion 

 In summary, we have investigated the mechanism of the Pd -catalyzed fluorination of cyclic 

vinyl triflates in the absence or presence of TESCF3 additives. A combined experimental and 

computational study suggested that when no TESCF3 was added, a Curtin–Hammett situation is 

operative during the fluorination process, which was responsible for the observed low yield and 

regioselectivity. In the presence of TESCF3, an alternative pathway involving an unusual 

dearomatization of the ligand by nucleophilic attack from a CF3– was proposed on the basis of 

literature precedents and our DFT calculations. Although the stoichiometric preparation and 

isolation of the dearomatized intermediate was unsuccessful, our results are fully consistent with 

the hypothesized mechanism.  
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β-deprotonation to provide the fluorinated product without isomerization. The presence of CF3– in 

the reaction is believed to disfavor the formation of the trans-isomer (5) through temporary 

dearomatization of the bottom aryl ring of the ligand. Finally, the unusual transmetalation 

mechanism disclosed in this study involving an in situ ligand modification pathway might be 

relevant in other cross-coupling processes employing bulky biarylphosphine-derived Pd catalysis.   
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all provided <5% of L2Pd(vinyl)CF3, as observed by 19F NMR analysis of the crude reaction 

mixture. (b) Pu, M.; Sanhueza, I. A.; Senol, E.; Schoenebeck, F. Divergent Reactivity of Stannane 

and Silane in the Trifluoromethylation of PdII: Cyclic Transtion State versus Difluorocarbene 

Release. Angew. Chem. Int. Ed. 2018, 57, 15081–15085. (c) Cho, E. J.; Senecal, T. D.; Kinzel, T.; 

Zhang, Y.; Watson, D. A.; Buchwald, S. L. The Palladium-Catalyzed Trifluoromethylation of Aryl 

Chlorides. Science 2010, 328, 1679–1681. 

(21) (a) Allgeier, A. M.; Shaw, B. J.; Hwang, T.-L.; Milne, J. E.; Tedrow, J. S.; Wilde, C. N. 

Characterization of Two Stable Degradants of Palladium tBuXPhos Catalyst and a Unique 

Dearomatization Reaction. Organometallics 2012, 31, 519–522. (b) Lee, H. G.; Milner, P. J.; 

Colvin, M. T.; Andreas, L.; Buchwald, S. L. Structure and Reactivity of [(LPd)n(1,5-

cyclooctadiene)] (n = 1–2) Complexes Bearing Biaryl Phosphine Ligands. Inorganic Chimica Acta, 

2014, 422, 188–192. (c) Lee, H. G.; Milner, P. J.; Buchwald, S. L. An Improved Catalyst System 

for the Pd-Catalyzed Fluorination of (Hetero)Aryl Triflates. Org. Lett. 2013, 15, 5602–5605. 

(22) Based on calculations, attacking by CF3– has a lower energy barrier than by CF2 carbene (see 

the Supporting Information for details). 

(23) The trifluoromethylative dearomatization of the bottom ring of L1 places a negative charge 

on the aryl component and turns the weakly coordinating, neutral, π-basic arene ligand into a 

stronger, anionic donor ligand. Accordingly, the energy preference for the trans-isomer (trans-

effect) becomes insignificant and the computed electronic energies of the two isomers become 

equal. The preference for the cis-isomer is therefore governed by solvation energy (see the 

Supporting Information for details). 


