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ABSTRACT: Enantioselective synthesis of a wide range of structurally 
diverse β-chiral amides has been achieved through nickel-catalyzed 
regio-reversed hydroalkylation of α,β-unsaturated amides with alkyl 
iodides in the presence of a hydrosilane. Different from the classical 
homolysis/enantioconvergent recombination process of Ni(III) in-
termediates as the enantio-determining step, chiral induction in this 
reductive hydroalkylation was achieved through an enantiodifferentiat-
ing regio-reversed syn-hydrometallation process of α,β-unsaturated 
amides. 

A method to improve the clinical activity of a compound, is to in-
crease the stereocenters in drug candidates.1 Construction of sp3-
hybridized carbon with stereochemical control has long been a goal in 
organic synthesis, and significantly involves transition metal catalysis.2 
As a catalyst, nickel has many advantages such as its easy access to di-
verse oxidation states and its ability to allow facile oxidative addition. 
Over the past two decades, it has emerged as a powerful catalyst in 
enantioselective C(sp3) cross-coupling reactions.3 

Generation of organometallic reagents in situ by catalytic hydro-
metallation of alkenes with metal hydrides is a strategy which avoids 
the special preparation of organometallic reagents.4 This attractive 
method could also circumvent another issue encountered in conven-
tional cross-coupling, that the basic and nucleophilic nature of pregen-
erated organometallic reagents can often lead to limited functional-
group compatibility rendering it unable to handle sensitive functionali-
ty. With alkenes as potential organometallic replacements, metal-
hydride catalyzed asymmetric hydrofunctionalization can substantially 
streamline synthetic efforts and has led to the discovery of a variety of 
valuable transformations proceeding under mild reaction conditions.  

Recently, nickel hydride5-11 has proved to be an efficient catalyst for 
enantioselective reductive hydrofunctionalization8,10 (Figure 1a). In 
this process, chiral induction could occur in one of two possible steps: 
(i) enantioconvergent conversion of Ni(III) intermediates through fast 
homolysis and enantioconvergent recombination to form enantioen-
riched Ni(III) intermediates before reductive elimination - an example 
is hydroarylation10e,10h,10i; or (ii) enantioselective syn-hydrometallation 
of NiH with an alkene to form enantioenriched alkylnickel species. 
Hydroalkylation10d,10g,10j-l is an example of the latter process. Previously, 
when electron-deficient alkenes such as β-alkyl-α,β-unsaturated car-
bonyl compounds were used in hydrocupration reactions, an α-copper 
intermediate was produced in a manner consistent with the electronic 
requirements which limit the subsequent functionalization to the α-
position12 (Figure 1b, left). We questioned if the classical regioselectivi-
ty of hydrometallation could be reversed13 by nickel hydride and 
whether the stereoselectivity could be simultaneously controlled. In 

such a case, a wide range of structurally diverse, enantiopure β-
functionalized carbonyl compounds could be obtained (Figure 1b, 
right). As shown in Figure 1c, we speculated that the amide group 
could serve as a good directing group for an appropriately ligated NiH 
species to undergo a regio-reversed syn-hydrometallation. In terms of 
enantiomeric control, such a hydrometallation step with an appropriate 
chiral ligand could be enantioselective producing enantioenriched β-
nickel(I) intermediates which could undergo subsequent stereospecific 
cross-coupling with alkyl iodides to produce the enantioenriched β-
alkylation product. Successful implementation of this transformation 
will also require that the obtained oxidative addition Ni(III) interme-
diates obtained in this way will not undergo homolysis and recombina-
tion before reductive elimination to form the final product. This is 
essential as otherwise, loss of enantiomeric purity would result. In this 
communication, we report a mild and robust protocol for such a strate-
gy and demonstrate that by using a chiral PyrOx-nickel complex as the 
sole catalyst, a highly enantioselective hydroalkylation of α,β-
unsaturated amides can be realized through such an enantioselective 
regio-reversed hydrometallation step (Figure 1c). 



 

 
Figure 1.  Enantioselective regio-reversed hydroalkylation of α,β-unsaturated 
amides. 

This catalytic regio-reversed hydroalkylation was first evaluated by 
using α,β-unsaturated amide (1a) and 1-iodohexane (2a) as model 
substrates (Table 1). After examination of the reaction parameters and 
evaluation of different ligands, it was determined that Ni(NO3)2∙6H2O 
and the C6-substituted PyrOx ligand (L1) could generate the desired 
β-selective hydroalkylation product as a single regioisomer [rr (β-
product : all other isomers) > 99:1] in 90% isolated yield with excellent 
enantioselectivity (entry 1). Other nickel sources such as NiI2∙xH2O 
led to significantly lower yields and a moderate rr (entry 2). Screening 
of ligands revealed that ligands lacking the C4-methoxy substituent 
gave similar results (entry 3) while a ligand with a tert-butyl group on 
its oxazoline ring shown the highest ee (entry 3 vs. entries 4, 5). Lig-
ands with different C6-substituents on the pyridyl ring were screened 
and a ligand with sterically bulkier C6-substituent gave the best ee and 
yield (entry 3 vs. entries 6, 7). Evaluation of other hydride sources 
showed that diethoxy(methyl)silane (DEMS) and pinacolborane 
(HBpin) were equally effective (entries 8, 9). Polymethylhydrosiloxane 
(PMHS), an inexpensive, environmentally friendly and common sili-
cone industry byproduct was used in subsequent investigations. NaF 
was shown to be an unsuitable base (entry 10) and DME was shown to 
be an unsuitable solvent (entry 11). Similar results were obtained when 
the reaction was conducted at 0 oC (entry 12). A slightly diminished 
yield was obtained when the catalyst loading was reduced to 5 mol% 

(entry 13) and the reaction was found to be insensitive to moisture and 
air (entries 14, 15). 
Table  1 .  Variat ion of  Reaction Parameters  

 
aYields were determined by GC using n-tetradecane as the internal standard, the 
yield in parentheses is the isolated yield and is an average of two runs (0.20 
mmol scale). brr refers to regioisomeric ratio, representing the ratio of the major 
product to the sum of all other isomers as determined by GC analysis. cEnanti-
omeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. 
PMHS, polymethylhydrosiloxane; DMAc, N,N-dimethylacetamide; DME, 
dimethoxyethane. 

With these optimal conditions in hand, we examined the scope of 
the alkyl iodide reaction partner. As shown in Table 2, both primary 
(2a–2a') and secondary (2c '–2f ') alkyl iodides reacted. Methyl-d3 
iodide (2c) was also compatible, providing the β-methyl-d3 substituted 
amide smoothly. Under these mild conditions, not only were a nitrile 
(2f), esters (2h, 2u), a phosphonate (2i), ethers (2j–2l , 2x , 2z , 2d '), 
an acetal (2m), a N-Boc carbamate (2n), and a phthaloyl amide (2o) 
tolerated, but a trisubstituted alkene (2a ') and easily reduced ketones 
(2p, 2v) remained intact. Notably, the reaction is orthogonal to alkyl 
chlorides (2g) and aryl chlorides (2s), providing coupling handles that 
can be used for further derivatization. Various medicinally relevant 
heterocycles including furan (2t), thiophene (2u), pyrrole (2v), in-
dole (2w), pyridine (2x), pyrazole (2y), and benzothiazole (2z) were 
also found to be compatible.  
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Table  2 .  Scope of  Alkyl  Iodides a ,b  

 
aIsolated yields on 0.20 mmol scale (average of two runs). bEnantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. cDMAc (0.25 
M) was used. d1.5 equivalent alkyl iodide (2) was used. e1.5 equivalent (1a) was used. f10 mol% catalyst was used. gReaction was performed at rt. 

The optimized conditions also proved efficient for the various α,β-
unsaturated amide components (Table 3). Both β-alkyl (1b–1i) and 
β-aryl (1j) substituted acrylamides were readily accommodated but in 
case of the β-aryl acrylamide (1j), a slightly decreased enantioselectivi-
ty was observed. Under these exceptionally mild reaction conditions, a 
variety of functional groups were readily accommodated, including an 
alkyl chloride (1e), esters (1g, 1p), ethers (1h, 1i , 1n), an aryl chlo-
ride (1o), a free alcohol (1f), and an unprotected phenol (1m). Nota-
bly, α,β-disubstituted acrylamides (1k, 1 l) could also undergo reversed 
hydroalkylation to afford the enantioenriched amides as a single dia-
stereoisomer with two stereocenters, although a marginal erosion in 

the ee was observed. The absolute configuration of 4 l  was unambigu-
ously determined by X-ray diffraction analysis, and supports our hy-
pothesis that syn-hydrometallation is the enantio-determining step. 
Moreover, α,β-unsaturated amides with aryl (1m–1p, 1v) or alkyl 
(1q, 1t) substituents on the nitrogen atom all were found to be com-
patible. α,β-Unsaturated amide bearing electron-donating (1m, 1n) or 
electron-withdrawing (1o, 1p) substituents on the N-aryl ring were 
well-tolerated. Finally, α,β-unsaturated amide with a stereocenter adja-
cent to the nitrogen atom proceeded with excellent catalyst control 
(1t). 
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Table  3 . Scope of  the α ,β -Unsaturated Amide a ,b  

 
aIsolated yields on 0.20 mmol scale (average of two runs). bEnantiomeric excess (ee) was determined by chiral-stationary-phase HPLC analysis. c10 mol% 
catalyst. dDMAc (0.25 M) was used. e2.0 equivalent alkyl iodide (2a) was used. fReaction was performed with 11 mol% Ni(NO3)2⋅6H2O, 17 mol% L1, 1.5 
equivalent 1 , 1.0 equivalent 2 , 0.40 equivalent NaI, DMAc/THF (0.20 M, 4:1). 

The model reaction proceeded smoothly on a 6 mmol scale without 
any decrease of yield or enantioselectivity demonstrating the scalability 
of this process (Scheme 1a). The synthetic utility of the method was 
shown by subsequent syntheses. As illustrated in Scheme 1b, the ob-
tained enantiopure β-substituted amides could be transformed into 
versatile enantioenriched motifs including an amine (5), primary am-
ide (6), ester (7), or ketone (8). Finally, an isotope labelling experi-
ment was conducted (Scheme 1c) in an effort to understand the hy-
drometallation process. With deuteropinacolborane as hydride source, 
the desired deuteroalkylation product (3a-D) was obtained as only 
one diastereoisomer together with the partial hydroalkylation product 
(3a), indicating the syn-hydroalkylation is the enantio-determining 
step. This conclusion was further supported by the observation of dia-
stereoisomerically pure products in case of 4k  or 4l  (see Table 3).  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
Scheme 1.  Gram-scale  Experiment,  Versat i le  Transformations,  
and Isotopic  Label l ing Experiment 

 
In conclusion, we have developed a NiH-catalyzed strategy for enan-

tioselective regio-reversed hydroalkylation of α,β-unsaturated amides 
to form enantiopure β-functionalized carbonyl compounds. This re-
versed hydrometallation of nickel hydride with α,β-unsaturated amides 
differs from the regioselectivity of hydrocupration of β-alkyl-α,β-
unsaturated carbonyls, and allows access to β-selective hydroalkylation 
products. A preliminary isotope labeling experiment indicated that the 
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syn-hydrometallation of NiH is the enantio-determining step. With an 
olefin as a nucleophile, broad substrate scope, and mild conditions of 
this protocol have been demonstrated. Studies directed toward the 
development of a migratory enantioselective version of this transfor-
mation are currently in progress. 
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