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Abstract

We calculated the most probable radius of an atom for elements  from  H to Cm. The

calculations  were  carried  out  by  using  non-relativistic,  spin  polarized,  HF,  MP2  and  DFT

methods with all electron Gaussian basis set. Periodicity of atomic radii was correlated with the

experimental first ionization energies. This non-relativistic atomic radii were also compared with

other theoretical atomic radii. With respect to the Dirac-Slater data, our values were in good

agreement with the elements up to Sn. Relationship with van der Waals radii of noble gases was

discussed.  Anomalous  properties  of  Gd  and  Pd  were  examined.  Linearity  of  lanthanide

contraction of elements with 4f electrons is illustrated. This linearity is found independent of the

extent of electron correlation.

Introduction

Atomic radius - principally,  a measure of the atomic size - is not a clearly defined quantity.

However in practice, the atomic radius can be classified using ionic, covalent, metallic, and van

der Waal’s radii and they can be related to many observable quantities such as ionization energy,

electron affinity, and strength of the chemical bond [1–3]. Lanthanide or actinide contraction is a

known fact that directly related to the atomic size [4]. The Fajans’ rule, which is related to the

size of atoms, is used to determine whether a chemical bond is expected to be predominantly

ionic  or  covalent.  In  computational  materials  science,  the  quality  of  pseudopotential  can  be

evaluated by comparing its cut-off radius with the most probable radius of a valence electron(s)

wavefunction [5].

Compared to experimental atomic radii, the theoretical atomic radii – the most probable radii or

the radius  corresponds to  the outermost  peak in the radial  distribution  of electrons -  is  well

defined  concept  in  quantum chemistry (here  the  symbol,  Rmax,  is  used  to  represent  it).  And

numerically, it can be calculated by solving the electronic Schrodinger equation of single, neutral

atom  by  using  Hartree–Fock  (HF),  post  Hartree–Fock,  or  density  functional  theory  (DFT)

methods. Figure 1 presents an example, where the radial distribution functions or RDFs of 1s, 2s,

3s, 3p, 3d, and 4s electrons of the Sc atom is shown (calculated with PBE1PBE functional and

UGBS basis set; see the computational methods section for more details). Here Rmax is defined as

the radius corresponding to maximum of the radial distribution function of 4s electron.
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The first Rmax data of neutral atoms was tabulated by Slater based on non-relativistic HF

calculations  [6]. However, Clementi and Raimondi  [7, 8] conducted the most cited study (ca.

2000 citations) on theoretical atomic radii. They used the HF method with a minimum STO type

basis set without any relativistic correction to obtain various data including Rmax; however, use of

nodeless Slater functions lead only approximate solutions of radial wavefunctions. Waber and

Cromer performed relativistic Dirac–Slater calculations and obtained Rmax values similar to those

of Clementi  [9]. The importance of the relativistic effects (such as the contraction of  s and  p

electrons)  was  reported,  and  this  calculation  was  based on the  local  density  approximation.

Desclaux  [10] used the Dirac–Fock equation to incorporate relativistic corrections for heavier

elements. This study showed the importance of relativistic corrections for core and valence inner

electrons  for  medium-sized  to  heavy  atoms.  Furthermore,  this  study  also  employed  a  non-

relativistic  HF calculations  to compute  Rmax.  Note that, all  the aforementioned methods used

integro-differential equations, to calculate total atomic  [11] energies and radial wavefunctions

instead of the matrix version of Schrodinger equation. Additionally, all these methods do not

account the Coulomb electron correlation.

Rahm et al.  [1] reported atomic radii (from  H to  Cm) by using relativistic DFT with

PBE1PBE functional [12] and a highly accurate basis set (ANO-RCC, See ref. [13]). The metric

adopted in their study was the average distance from the nucleus, where the electron density

decreases to 0.001 electrons per  bohr3. This metric was originally proposed by Boyd [1] who

showed that the relative radii of different atoms are nearly invariant with a further decrease in

the  cutoff  density  of  0.001  electrons  per  bohr3.  Since  this  radii  are  not  directly  related  to

wavefunctions,  its  values  were  considerably  different  from  those  of  most  probable radii;

however,  these  values  well  correlated  with  the  van  der  Waals  radii  derived  from  crystal

structures [3]. Note that at this van der Waals radius, an atom begins to interact with the valence

electrons of other atoms [14] .

Guerra et al. published the Dirac–Fock calculations [15] of the effective nuclear charge

and radii for elements (Z≤118) and compared the values with those of Clementi.  They have

found that disparities were small for 3d elements and increased for 4d and 5d elements. Gosh et

al.  [2] quantitatively related the radii of elements with the experimental ionization energy of

elements and screening constants (which were obtained either from spectroscopic parameters or
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HF level  theory).  With  an  effective  nuclear  charge  (Zeff)  and ionization  energy (I)  the most

probable radius of a single and neutral atom can be expressed  (with fitted constants, a, b, c) as

follows:

Rmax =
a
I

+
b
Zeff

+c                                    (1).

Because |a|>2|b| in this equation, the atomic radius depends more on ionization energy than the

effective nuclear charge does. Hence, the radius can be predominantly, but inversely, correlated

to ionization energy.

Moreover, Szarek [16] introduced another quantitative expression of Rmax  – in which the 

most probable radius can be expressed as the square root of polarizability () and hardness () as

follows:

Rmax ~√αη,

where, chemical hardness can be defined in terms of ionization energy (IE) and electron

affinity, (EA), as:

η = 
1
2

(IE-EA )=
1
2

(ELUMO - EHOMO).

In this context, Rmax corresponds to the most probable distance between the HOMO electron

and nucleus. This radius exhibits an excellent correlation with the results of Cordero [17].

In this study, we calculated the most probable radii of atoms up to 96 elements (H-Cm) of the

periodic table. We derived the radii by using non-relativistic and spin unrestricted HF, post-HF

(MP2), and DFT calculations. To the best of our knowledge, this study is the first theoretical

atomic radii calculation, which uses (all-electron-) Gaussian basis [18].
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Computational Details

We used Gaussian electronic structure program (G16) for all of our calculations [19]. For non-

relativistic calculation we used spin-unrestricted HF, MP2 and DFT methods in conjunction with

the UGBS basis set. It should be noted that at present only few all-electron basis set are available

to span a sizable range of elements.

It  is  well  known  that  the  MP2 technique  is  a  size-consistent  method  and  gives  the

correlation  energy  correction  to  the  second  order  [20].  Although  the  DFT  and  MP2  are

conceptually  different  methods,  usually  ground  state  level  DFT  calculation  gives  similar

accuracy of MP2 [21]. The functional used in our DFT calculation is PBE1PBE - a generalized

gradient approximated hybrid  functional of PBE functional and in contrast to other well-known

GGA functional (e.g.PW91) this functional is constructed using only fundamental constants and

the few parameters of local density approximation

Note that all  the previous studies to obtain  Rmax values, non-Gaussian basis sets were

used. And most of our atomic SCF calculations were converged to the experimental ground state

configuration; but for few elements (irrespective of methods) the calculations didn’t produce the

exact  ground  state  configuration.  In  order  to  rectify  this  issue  we  either  used  the  initial

wavefunction which exactly matches the experimental electron configuration (by transposing the

appropriate  orbitals)  or  by  applying  non-default  initial  guesses  (such  as  Huckel,  INDO)  as

starting wavefunction.

We obtained Rmax from RDF (i.e. from the converged total wavefunctions, which include

spherical harmonics). And by using normalized spherical harmonics function, one can write,

RDF= [Rnl (r ) ]
2
r2∫

θ=0

π

∫
∅=0

2π

Ylm (θ,∅ ) Ylm (θ,∅ )sin (θ ) dθd   ∅ = [Rnl (r ) ]
2
r2

(2)

Note  that  RDF(r)dr represents  the  probability  of  finding  an  electron  in  the  volume

between two concentric spheres of radius r and r + dr. 
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From the definition of RDF, one can write that:

∫
0

∞

RDFnl dr  =  1. 

In  other  words,  Rnl(r)  is  calculated  from  the  converged  atomic  orbital  coefficients

followed by a spherical averaging (a numerical integration overθ and ∅variables; See equation 2)

to obtain angular independent radial wavefunction. After obtaining the radial wavefunction (for

different  n  and  l) RDF can be calculated.  Note that the last  equation can be used to test the

quality  of  the numerical  integration  scheme.  Because  of  numerical  integration,  RDF usually

contains some amount of numerical noise. This noise data is found to be diminished if one uses

smaller values of integration steps for θand∅variables. We used a fitting procedure, polynomial

regression, to eliminate the effect of noises in the RDF data.

Compared to atomic codes  [11], the SCF converged wavefunction data from Gaussian

does not explicitly tells the ground state configuration of the atom (in terms of principal, angular

and magnetic quantum numbers). So that, in our calculations, the ground state configuration of

atoms were matched with that of experimental state by applying, (1) aufbau principle, and (2), by

analyzing radial nodes and symmetry of spherical harmonics part of the total wavefunction.

We restrict our study with non-relativistic DFT methods since our relativistic DFT study based

on ANO-RCC basis set using DKH2 Hamiltonian (with G16 program suite) were not converged

into the experimental ground state configuration for elements from Y-Cm. 

Results and Discussions

As expected, we have found general characteristics of the periodicity in the Rmax values (eg. alkali

metal elements show largest radii along a period, and conversely, the noble gas elements show

smallest radii across a period. Similarly,  the size of atom is decreased as one moves along a

period).  In all  our non-relativistic  calculations  the smallest  and largest atom are found to be

helium  and  francium,  respectively  (See  Table  S1).  This  can  be  readily  correlated  with  its

experimental  first  ionization  energies  (IE).  However  the  density  based  metric  [1] found the

smallest and largest atoms as Ba and Ac, respectively. By comparing Rmax with experimental IE,

it is found that on an average, Rmax (obtained from HF and MP2) is inversely proportional (IE-1.23)
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to  the  first  ionization  of  energy  (See  Fig.S1-3).  This  qualitatively  justifies  Ghosh’s  ansatz

(eqn.1).

We have noted a significant similarity between the radii obtained from HF and MP2 methods

(for s and p block elements). See Fig.2 and FigS4. This similarity of is due to the fact that, the

radial probability density or, simply, the electron density of the HF method is correct to second

order  [22, 23] and thus one can consider the HF theory as a good approximation to the exact

density [24].

And it is clear from the Fig.S4 that Rmax values from PBE and MP2 (or HF) match well with s

and p block elements but not with d and f block atoms (as it shows over binding of electrons and

hence the smaller Rmax values). It is known that, in general, DFT performs good enough for main

group elements with respect to transition metal elements  [25], and PBE1PBE functional give

least  accurate  ionization potential  (B3LYP_RMSE = 2 kcal mol  PBE1PBE_RMSE = 5.5 kcal

mol1, RMSE is root mean square errors, See [26] for additional discussions).

The deviation of our result with that of Clementi is increased if one move from d-block to  4f

elements. But from elements,  Z <20, the deviation is negligibly small. This account a fact that

the Clementi’s double-zeta basis set is good enough to describe smaller systems but for 3d and

higher elements, one has to use more accurate basis set. However, the Clementi’s basis set is, in

essence, a Slater type basis set (unlike a Gaussian basis) so only less number of functions is

needed to get good converged values. 

Descalux’s data was compared with our data. Note that Descalux also used a Slater type basis

function.  Here,  Dirac-Slater  equations  were  used  for  relativistic  calculations  whereas  HF

equations were applied for non-relativistic calculations and both of these methods does not treat

the Coulomb correlation. The non-relativistic result (i.e. HF data of  Rmax) of ours and that of

Desclaux is matched very well for Z<90 (See Fig.S5 and Fig.2). But for relativistic calculation

[15], the numbers were matched from Z<50, approximately. It should be stressed that the value

of Descalux and Guerra is very similar - since they used similar method (Dirac-Fock) and basis

set (Slater).
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Although there is no experimental method exists, as far as we know, to measure the size of a

single or isolated neutral gaseous atom, the electron diffraction experiments [27] can be used to

estimate a most-probable location of valence shell electrons especially for lighter elements. From

hydrogen to argon, it gives a good correlation with the total HF electron density. But beyond

argon, the theoretical  as well as experimental electron density distribution doesn't give rise to

new local maxima (which corresponds to the N shell) or a corresponding  Rmax value  [28, 29].

This  is  mainly  attributed  to  the  wider  broadening  of  the  radial  wave  function  of  the  outer

electrons in the valence shells.

For noble gas atoms, the experimental van der Waals radii (See [30, 3, 17] ) values are

found to be correlated with the theoretical values and a good linear correlation was obtained.

Note that the values reported by Alvarez are always higher than that of Zhang’s, and it is because

of the different coordination number (12 and 6 for Alvarez’s and Zhang’s data set, respectively,

and as expected, atomic radii increases with the coordination number). Interestingly the Zhang’s

interpolated  values  were found to be well  correlated  with our  MP2 values  (in  this  case the

coefficient of determination or, R2, is 0.98, see Fig. 3). It is primarily because of an assumption

in the measurement – the radii of a noble gas atom greatly depend only on the interaction of its

nucleus and electrons and not on the interaction between the nucleus and its nearest neighbor

nucleus. Since the Rmax is well matched with this experimentally fitted curve one can validate that

the radius of noble gas element is primarily depending on the electrostatic interaction of nucleus

and its outermost electrons. Experimentally deduced radii of Alvarez also show good correlation

with our MP2 values (R2=0.81).

We compared our values with the radii of Rahm et. al. which is based on relativistic-DFT (the

metric adopted here is related to the density of a free and neutral atom and not directly related to

the radial wavefunction). A fairly good correlation was found (R2=0.75, with respect to our PBE

data) and in all cases our values are found to be smaller. Interestingly, by omitting alkali atoms

the  R2 value was raised up to 0.88. From Fig. 1 it is clear that  s radial functions are generally

very broad if  n>3.  Furthermore,  this  broadening is decreased if  we move along a period.  In

Rahm’s  measure  a  density  constraint  is  used  (0.001 electrons  per  bohr3)  and to  satisfy  this

constraint, especially for these ns electrons, a larger radius should be considered. This will lead a

larger discrepancy for alkali metals. From the comparison of experimental values (of Alvarez) it
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is found that Rahm’s value is very closely related to the van der Waal’s radii and it is not directly

related to the single-atom radii generated from radial wavefunctions.

A striking deviation is observed for Pd in which  Rmax has a value of 0.586 Angstrom. In our

calculation we have found that,  it  is the  4d electron which gives  Rmax i.e.  4d electron is  the

outermost valence electron – as it is seen from the experimental electronic state: [Kr] 4d10. This

deviation of radii is also reflected in the experimental ionization potential (See Fig.S6). 

A  gadolinium-break,  that  is,  a discontinuity  around the Gd atom as it  is  observed in

several theoretical and experimental properties (such as ionic radii, constant of formation of Gd-

complexes  [31], static dipole polarizability  [32])  has also been clearly seen in our data.  This

‘break’ in the atomic radius is also observed in the relativistic calculations [33]. This contraction

of radius can be attributed to the weaker screening of 5d electrons [14].

Seitz et.al, [34] investigated the lanthanoides-O bonds in a set of complex molecules and found

that the bond lengths are decreased in a quadratic manner. They represented this quadratic decay

with an equation,

19.872 – 0.146n + 0.0034n2,

where, n is the total number of f electrons.

This decrement was modeled by Slater’s model for ionic radii. Nevertheless, it should be noted

that the small value of the quadratic component (0.0034) with respect to the linear component

leaving a chance for linearity for the lanthanide contraction. A similar study by Quadrelli  [35]

also indicated a parabolic behavior of the contraction (in lanthanoids-O distance)  in a set  of

lanthanide complexes. This apparent quadratic dependence is, however, interpreted differently

[36].

In our study, a  linear decrement of radii (of  6s electrons) has been observed for lanthanides

having  [Xe]4fn6s2 configuration -  irrespective  of the computational  methods (which accounts

various levels of electron correlation). And this linearity can be expressed in terms of n as:

RHF/MP2 = -0.025n + 2.34
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RPBE= -0.025n + 2.28

A similar linear trend is also visible in the relativistic calculations [10, 15, 33] and interestingly

in the experimental first ionization energies (Fig.S6). The correlated data of Ln+3 ionic radii (i.e.

metal ions with a [Xe]4fn configuration) and Rmax also shows a comparable linearity (Fig.S7). In

other words, the presence of 5d electrons considerably alters this linearity. 

Conclusion

In this study, we presented the non-relativistic, most probable radius of the outermost

electron  of  an  atom  (H-Cm)  by  using  the  radial  wavefunctions  obtained  from  all-electron

Gaussian basis set. We used spin unrestricted non-relativistic Hartree–Fock, post Hartree–Fock

(MP2),  and  density  functional  theory  methods  to  calculate  the  radial  wavefunctions.

Experimental van der Waals radii of inert gases were related with our data, and found a good

agreement  between  these  values.  Correlation  studies,  with  other  theoretical  data  and

experimental first ionization energy, were carried out. Linearity in atomic lanthanide contraction

with a  discontinuity  at  gadolinium was observed.  This  linearity  is  found independent  of the

extent of electron correlation. 
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Figure Captions

Fig.1 Radial distribution function (PBE) of Sc atom. Inset figure shows a 4s RDF function and 
its Rmax, located around 1.6Å

Fig. 2 Different set of theoretical atomic radii (H-Cm)

Fig.3 Correlation of experimental radii of inert gas with the Rmax(MP2) values

Fig.4 Linearity of Rmax of Lanthanide atoms with [Xe]4fn6s2 configuration


