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Abstract  

Combination of free energy simulations in the alchemical and configurational spaces provides a feasible 

route to access the thermodynamic profiles under a computationally demanding target Hamiltonian. 

Normally, due to the significant differences between the computational cost of ab initio quantum mechanics 

(QM) calculations and those of semi-empirical quantum mechanics (SQM) and molecular mechanics (MM), 

this indirect method could be used to obtain the QM thermodynamics by combining the SQM or MM results 

and the SQM-to-QM or MM-to-QM corrections. In our previous works, a multi-dimensional nonequilibrium 

pulling framework for Hamiltonian variations has been introduced based on bidirectional pulling and 

bidirectional reweighting. The method performs nonequilibrium free energy simulations in the 

configurational space to obtain the thermodynamic profile along the conformational change pathway under a 

selected computationally efficient Hamiltonian, and uses the nonequilibrium alchemical method to correct or 

perturb the thermodynamic profile to that under the target Hamiltonian. The BAR-based method is designed 

to achieve the best generality and transferability and thus leads to modest (~20 folds) speedup. In this work, 

we explore the possibility of further accelerating the nonequilibrium free energy simulation by employing 

unidirectional pulling and using the selection criterion to obtain the initial configurations used to initiate 

nonequilibrium trajectories following the idea of adaptive steered molecular dynamics (ASMD). A single 

initial condition is used to seed the whole multi-dimensional nonequilibrium free energy simulation and the 

sampling is performed fully in the nonequilibrium ensemble. The ASMD scheme estimates the free energy 
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difference with the unidirectional exponential average (EXP), but it does not follow exactly the requirements 

of the EXP estimator. Another deficiency of the seeding simulation is the inherently sequential or serial 

pulling due to the inter-segment dependency, which triggers some problems in the parallelizability of the 

simulation. Numerical tests are performed to grasp some insights and guidelines for using this 

selection-criterion-based ASMD scheme. The ASMD method is tested thoroughly on a dihedral flipping 

model system and encouraging numerical results are obtained. The presented selection-criterion-based 

multi-dimensional ASMD scheme follows the same perturbation framework of the BAR-based method, and 

thus could be used in various Hamiltonian-variation cases.  
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I. Introduction 

All-atom molecular dynamics (MD) simulation is now a feasible tool to access the atomistic motions in 

complex systems. The statistically meaningful estimates of observables require extensive sampling of the 

phase space, and the sampling time depends on the intrinsic properties of the system, the description or 

Hamiltonian, and the sampling strategy. Probability distributions are often satisfactorily transformed to the 

free energy profiles or landscapes. The differences between the free energies of different states depict their 

relative stabilities.  

Enhanced sampling simulations provide a computationally feasible route to obtain converged 

thermodynamics in complex systems.1-4 They sample the system on modified energy landscapes to enhance 

the sampling efficiency and explore the phase space effectively.3, 5-11 There are various types of enhanced 

sampling techniques. For instance, the traditional umbrella sampling3, 12-14 adds a series of harmonic biasing 

potentials along the configurational collective variable (CV) to enhance the sampling efficiency in specific 

regions of phase space. The replica exchange method15-20 designs a series of systems similar to the interested 

one but with higher flexibility in some degrees of freedom and attempts to exchange configurations in 

different equilibrium ensembles to enhance the barrier crossing and conformational search. The 

nonequilibrium steered MD (SMD) method shares similar features of the equilibrium umbrella sampling but 

adds time-independent biasing potential to drive the system from one state to another. The SMD approach is 

less frequently used, but is observed to be promising in various case studies.8, 21-32 As the energy landscape is 

modified, proper post-processing methods are required to recover the statistics in the original unperturbed 

ensemble. Theoretically rigorous reweighting estimators in free energy simulations could be obtained based 

on free energy perturbation (FEP).33 The estimator itself has many problems. For instance, the sample-size 

hysteresis problem5-7 introduces significant biases into the finite-sample estimates, and the statistical error is 

heavily underestimated.34, 35 These statistical problems could be avoided to some extent by combining the 

perturbations from multiple directions. In the two-state case, the statistically optimal estimator named 

Bennett Acceptance Ratio (BAR)36, 37 uses the Fermi weighting function to process the data points, while in 

the multi-state situation the generalization of BAR named MBAR38, 39 is of the highest statistical efficiency. 

The results obtained from perturbation-based reweighting estimators rely on the magnitude of phase space 

overlap between different states, and those of the neighboring states are often higher than the 

non-neighboring cases. As a result, the BAR estimates are often identical to the MBAR ones. The 

nonequilibrium generalization of the FEP derivatives replaces the energy difference with the nonequilibrium 

work (NEW) accumulated during nonequilibrium SMD simulations, and shares the same statistical problems 
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as the equilibrium perturbation schemes. The Jarzynski’s Identity (JI)40 corresponds to the exponential 

average (EXP) or FEP estimator, and the Crooks’ Equation (CE)41 is the nonequilibrium scenario of BAR. 

The equilibrium and nonequilibrium perturbation-based schemes are observed to achieve similar efficiency 

and accuracy in the construction of the potential of mean force (PMF) in various cases.5-9, 21, 35, 42-48  

Complex processes often involve the rearrangements of multiple regions of the system, and it is 

difficult to find one or several proper CVs to describe these motions. Defining an optimal set of CVs 

requires a deep understanding of the dynamics of the system under investigation, which is very hard even for 

experienced researchers. For instance, the binding/unbinding event of protein-ligand complexes may involve 

significant conformational changes of the protein, which is hard to be captured with several CVs. The 

binding pathway may involve multiple ligand-residue interactions, some of which may be necessary to be 

included in the definition of the CV set. Considering the complexity of these problems, some alternative 

ways to obtain the variation of thermodynamics of the process could be preferred. The alchemical method 

only considers the differences between thermodynamics at physical end states. It avoids the direct simulation 

along the physical transformation pathway by defining an artificial alchemical order parameter.47, 49-56 The 

free energy profile along this non-physical pathway is constructed and the overall free energy difference is 

obtained.48, 57-61 As the alchemical method relies on the construction of a thermodynamic cycle to determine 

the relative free energy of different states,48, 52, 55, 62-66 it could be viewed as an indirect regime to obtain the 

free energy difference. The alchemical method could also be used to perturb the description of the 

system.67-77 For instance, the ab initio quantum mechanics (QM) results could be obtained by employing the 

alchemical method to perturb the semi-empirical QM (SQM) results.34 The SQM results could also be 

obtained in a similar way by perturbing the thermodynamics obtained under some molecular mechanics 

(MM) force fields.78 Due to the significant differences between the computational costs of different 

Hamiltonians, performing such perturbation could render some speedups compared with direct simulations 

under the computationally demanding Hamiltonians. In the case that the energetics under different 

Hamiltonians show significant differences, the staging technique should be used to improve the convergence 

behavior. However, equilibrium sampling in the intermediate states is computationally demanding, which 

actually degrades the efficiency of the indirect method. The situation is further aggravated when the 

configurational sampling in the intermediate state is difficult to converge.48, 63, 79, 80 In this case, the 

nonequilibrium approach could be useful, as the intermediate-state sampling is avoided to some extent.  

The combination of the enhanced sampling simulations in the configurational and alchemical spaces 

provides the multi-dimensional picture of the thermodynamic landscapes.34, 76, 78, 81-92 The PMF along the 
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configurational CV at one alchemical state depicts the variations of thermodynamics in the process under 

that alchemical description/Hamiltonian, while the PMF along the alchemical CV at one configurational 

state shows the variations of some observables under different alchemical Hamiltonians or descriptions. Our 

previous works have provided a multi-dimensional nonequilibrium pulling framework for Hamiltonian 

variations, which features the stratification strategy, bidirectional pulling and bidirectional reweighting.34, 78, 

93 The BAR-based scheme obtains the thermodynamics along the configurational CV under some 

computationally efficient Hamiltonians such as SQM Hamiltonians, and perturbs the results to some ab 

initio levels with the alchemical method. Bidirectional pulling is used along both of these two perturbation 

pathways. However, as has been pointed out in the discussions of the previous works, the convergence of the 

simulation could be easily achieved in some cases,34, 78, 93 and unidirectional pulling could be sufficient. 

Therefore, we explore the possibility of unidirectional pulling in the current work. A computationally 

efficient unidirectional pulling scheme in the SMD regime is the adaptive steered MD (ASMD) method, 

which relies on the stratification strategy and uses some selection criteria to obtain the initial configuration 

for the next nonequilibrium pulling segment from the configurations of the previous pulling segment. In this 

way, the initial configurational sampling in the SMD simulations is avoided and the efficiency is 

consequently improved. As only one or several configurations are used to spawn the whole nonequilibrium 

pulling simulations, the method could be considered as a seeding MD method. In the following parts, we 

would construct the multi-dimensional pulling framework in the ASMD regime and provide extensive tests 

on the perturbation parameters, aiming at providing some guidelines for using the method.  

 

II. Methodology 

The theoretical framework in the current work focuses on the variation of Hamiltonians or descriptions 

of the system. Each Hamiltonian defines a unique microscopic state of the simulated system, and we use the 

Hamiltonian H  to describe the status of the system. The differences between the Hamiltonians could be, 

for instance, the details of the multi-scale treatment (e.g., the QM theory, the basis set, and the QM region). 

The microstate ( )1 2,k k  is described with the state-specified Hamiltonian 
1 2,k kH , the two dimensions of 

which describe the conformational change and the description/model change, respectively. Consider the case 

that the thermodynamics under a target Hamiltonian ( )2..., K  is pursued. We explore the configurational 

space with 2 1k = , and then perturb the results to another Hamiltonian 2 2k K= . An illustration of the 

thermodynamic cycle is depicted in Fig. 1a. Unidirectional pulling and unidirectional reweighting are 
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performed in all perturbation parts, and only transformations drawn with solid arrows are performed. The 

reason that the thermodynamics along the configurational CV under the target Hamiltonian 
2...,kH  could be 

efficiently obtained by the indirect method is that the conformational sampling could be much more 

time-consuming than the alchemical transformation. Rearrangements of many atoms or groups are involved 

in the process of interest.  

During each nonequilibrium transformation in the configurational space, the time-dependent harmonic 

potential V  given below is used to drive the system from one state to another,94 

( )( )
2

0( ) ( )
2

k
V t = −q q                                                       (1). 

Here, k  is the force constant, q  is the coordinate vector, ( )0 t  denotes the time-dependent protocol for 

CV variation defining the configurational transformation, and   refers to the current value of the CV. A 

large force constant could be used to suppress the fluctuations of the CV and keep the value of the CV very 

close to the predefined driving protocol, namely achieving the stiff spring limit.21, 47, 78, 95-99 A small time step 

should be used to avoid unstable dynamics and the resulting perturbations of the distributions.30-32, 34 The 

change of the alchemical order parameter follows exactly the predefined protocol.  

Although the whole process could be simulated in one long pulling simulation, the dissipation is large 

and the waiting time before useful feedback is long. Therefore, to achieve a better numerical behavior and 

obtain faster user feedback, the whole pulling excursion could be divided into a series of shorter segments. 

As each of them could be finished in a much shorter simulation time and could be simulated independently, 

the parallelizability is improved and the output could be accessed much faster. Such pleasingly parallel 

computation also avoids the slowdown triggered by communications overhead, thus maximizing the 

performance. As the sampling in the configurational space is harder than that in the alchemical space, we 

only stratify the configurational sampling into K  conformational states and 1K −  segments. Note that for 

periodic configurational CV, the number of the conformational states is the same as that of the segments. As 

the convergence of the nonequilibrium pulling simulations depends heavily on the phase space overlap 

between different states and the magnitude of the perturbations during the nonequilibrium pulling process, 

the pulling simulations are only performed between neighboring states.  

In our previous BAR-based pulling framework, we aim at achieving the best generality and 

transferability. Thus, the bidirectional statistically optimal estimator of BAR is employed. It achieves faster 

convergence compared with unidirectional EXP, and the upper bound of the statistical error is larger for 

BAR than EXP.34, 35 However, the BAR-based scheme involves the pulling process from the target 
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Hamiltonian 
2...,KH  to the selected Hamiltonian for configurational sampling ...,1H , which might slightly 

increase the computational costs. Acceleration could be achieved by only performing unidirectional pulling 

from ...,1H  to 
2...,KH , as depicted in Fig. 1a. In this case, the EXP or JI estimator estimates the free energy 

difference by exponentially averaging the microscopic nonequilibrium works accumulated during 

nonequilibrium pulling simulations initiated from the ith state to the jth state,40, 100 namely   

ln ijW

ij
i

A e
−

 = −                                                   (2). 

Here, A  denotes the dimensionless free energy difference, ijW  represents the dimensionless work 

accumulated during the nonequilibrium pulling initiated from state i  and ended in state j , and 
i
 

represents the canonical average over nonequilibrium realizations initiated from state i . As the 

nonequilibrium transformations are performed between neighboring states, we have 1j i= +  here. The 

estimator is valid for any pulling speeds, and such calculation is historically called the fast growth 

simulation. An alternative estimator applicable for extremely slow pulling speeds (i.e., reversible pulling) is 

the slow growth method.101-103 In this case, the ordinary average of the microscopic nonequilibrium works is 

used to estimate the free energy difference, namely 

ij a ij i
A W W = =                                                  (3). 

The slow growth method is a variant of the equilibrium integration method thermodynamic integration.101 

The equation is valid for reversible pulling. However, practical simulations are all of finite lengths. Thus, the 

estimates are intrinsically biased.  

 Although the fast growth method is theoretically rigorous, as it is based on exponential averaging, it 

suffers from the same numerical problems of EXP, e.g., the sample size hysteresis and the underestimation 

of the statistical error. Cumulant expansion provides a way to better the numerical estimates from 

finite-length simulations. The expanded components are on the exponent and the free energy difference 

could be expressed as a linear combination of the cumulants.104-106 The distribution of the nonequilibrium 

works in near-equilibrium pulling is close to Gaussian according to the central limit theory. For normally 

distributed data, only the first two terms in cumulant expansion survive, as higher-order cumulants are all 

zeros. Therefore, the Gaussian approximated EXP estimate GEXP could be expressed as  

2

2

ij

ij

W

ij WA


 = −                                                  (4). 

Here, the mean of the works is  , and   is the standard deviation of the nonequilibrium works. The 1st 
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term is exactly the same as the slow growth estimate, and the 2nd term is an estimate of the dissipation of the 

pulling process, which corrects the bias of the slow growth result.   

The statistical errors of the above three estimators could be obtained with the normal error propagation 

procedure. Note that for the EXP estimator, there is an upper bound for the analytical statistical error, which 

is found to be the thermal energy Bk T  in our previous work.35 The other two estimators of aW  and 

GEXP do not have this behavior.  

The inputs of the above estimators and the corresponding statistical errors should be statistically 

independent. Thus, to initiate nonequilibrium pulling trajectories, equilibrium sampling in the initial state is 

required. The fluctuation of some observables could be used to define uncorrelated configurations. For 

instance, the autocorrelation of the reaction coordinate used to describe the conformational change was used 

to define uncorrelated initial configurations in dihedral flipping in peptides and nucleotide systems.8, 9, 21, 47 

Another example is the derivative of the alchemical Hamiltonian, which has been widely used in many 

alchemical free energy calculations.60, 62, 65, 66, 107, 108 To obtain uncorrelated configurations, the 

autocorrelation time of the selected observable in each state i  is calculated and the whole dataset is 

subsampled by the statistical inefficiency 1 2i i = + . The statistical inefficiency eq,i  is an estimate of the 

computational cost of each independent sample from equilibrium simulations, and the length of pulling 

simulations NEW,i  should be added to define the sampling time required for an independent sample in 

nonequilibrium pulling simulations, namely  

NEW, eq,i i i  = +                                                              (5).

 

The pulling time NEW,i  for unidirectional pulling is the same as the pulling time in each segment, while 

that for bidirectional pulling should be multiplied by a factor of 2.  

By using the above estimators to determine the free energy difference between all neighboring states, the 

variation of the free energy in the whole process could be obtained, namely  

1

1 , 1

1

k

k i i

i

A A
−

+

=

 =                                                                (6).

 

A reference state is often selected in the representation of the relative free energies. Here, the 1st state is 

selected and its free energy is set to zero. Then, the relative free energy of each state could be written as, 

1

1 , 1

1

k

k k i i

i

A A A
−

+

=

=  =                                                            (7).
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The procedure could be applied to both the alchemical and the configurational CVs. Combining the free 

energy profiles along these two CVs, the two-dimensional free energy surface depicting the variation of the 

thermodynamic profile in the configurational and alchemical spaces is obtained. The subscripts are altered in 

the multi-dimensional case. There are 1K  states and the state is numbered by 1k  for the configurational 

CV, while there are 2K  states and the state is numbered by 2k  for the alchemical CV. The reference state 

11A  has a free energy of zero, and the relative free energy of the state ( )1 2,k k  is expressed as, 

1 2

1 2 1 1 2 1 1 1

1 1

1,11 , 1 ,1, 1,1 , , , 1

1 1

k k

k k k k k k i i k j k j

i j

A A A A A
− −

+ +

= =

=  + =  +                                   (8).

 

Here, 
11,11kA  is the free energy difference between the reference configurational state 1 and the 

configurational state 1k  at the 1st alchemical state, and 
1 2 1, 1k k kA  represents the perturbation term to change 

the alchemical state from 1 to 2k  at the 1k th configurational state. The statistical fluctuation of the free 

energy estimates often makes the PMF noisy. Thus, the free energy profiles are smoothed with some curve 

fitting methods. Here, we use the Savitzky-Golay filter to increase the signal-to-noise ratio.  

 The above unidirectional perturbation framework presented above is a simple alternative to our previous 

BAR-based scheme. The free energy estimates could be obtained by performing initial configurational 

sampling in each Hamiltonian state, pulling the system between neighboring states, and using the EXP, 

GEXP or aW  estimator to get the free energy difference. However, we expect to further accelerate the 

simulations by introducing the selection criterion for initial configurations. The idea of the selection 

criterion arises from the fact that the ensemble of nonequilibrium configurations should include equilibrium 

snapshots.109-111 Therefore, the last configurations of the i-to-(i+1) pulling simulations could possibly include 

the equilibrium structure(s) in the (i+1)th state. For small perturbations (i.e., slow pulling speeds), the 

existence of such equilibrium configuration(s) is expected to be extremely possible. Therefore, the initial 

configuration for the next stage (i.e., the (i+1)-to-(i+2) segment) could be obtained by selecting some 

configurations from the last configurations of the i-to-(i+1) segment. Here, we employ the naïve Jarzynski’s 

scheme, where the configuration with the work nearest to the EXP estimate is selected.47, 109-113 The ASMD 

simulation with the JI criterion is used to construct the free energy profile along the configurational CV, and 

the obtained initial configuration in each stage is also used to initiate the alchemical transformation. In this 

way, the need for equilibrium sampling in each intermediate is totally eliminated, thus accelerating the 

staged SMD simulations.  
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Although the selection criterion is useful to speed up the simulation, it has some drawbacks. First, the 

whole nonequilibrium pulling simulations are initiated from a single configuration, which leads to some 

correlations of the trajectories. As a result, the nonequilibrium works do not follow the requirement of the 

free energy estimators. There could be some biases in the free energy estimates, and the estimate of the 

corresponding statistical uncertainty is not theoretically rigorous. Whether this initial-configuration-induced 

bias would be significant requires some numerical tests. Second, although the whole pulling process is 

divided into a series of shorter segments, as the simulation starts from one segment (e.g., the reference state), 

all later segments need to wait for the output of the previous segments. Such inter-segment dependency leads 

to the poor parallelizability of ASMD simulations. Parallelization is possible only for the trajectories in the 

current segment and the computation of intra- and inter-molecular interactions in each simulation. The 

former leads to trajN  independent jobs for each segment, which could be run in parallel delightfully. 

However, the later parallelization suffers from parallel slowdown, and its efficiency depends on the size of 

the system, the way of the distributed computation and so on. Although the two parallelization schemes 

could be used simultaneously, the efficiency of the parallel computing is not as good as the previous 

BAR-based scheme, where all segments are independent and there are segments traj*N N  pulling simulations 

that could be run in parallel pleasingly. The limited parallelizability of ASMD simulations slows down the 

results output, which is further aggravated by the poor statistical behavior of the EXP estimator. The 

unidirectional EXP estimator often requires longer pulling times and larger sample sizes than the 

bidirectional BAR. Thus, a much longer waiting time is needed before user feedback, which is not a 

satisfactory behavior for protocol tests. However, the situation could be bettered to some extent if there are a 

series of similar systems (e.g., mutants of the same protein-ligand complex) under investigation. These 

similar systems could be simulated with the same protocol independently.   

 Convergence check is indispensable in free energy simulations. It ensures the reproducibility and the 

reliability of the simulation outputs, and thus should be tested in the first place. In the normal cases, we often 

monitor the sample-size and pulling-speed dependence of various ensemble averages.34, 47, 52, 55, 78, 108 As the 

free energy is the generating function for other thermodynamic properties, we often focus on the free energy 

difference and the corresponding statistical uncertainty.35, 52, 55, 108 Convergence is achieved when the free 

energy profile does not change with larger sample sizes or slower pulling speeds. The convergence 

diagnostics in the current ASMD case is a bit different. As the ASMD simulations along the configurational 

CV uses a predefined number of trajectories trajN , we need to rerun the simulations with different trajN  
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and check whether the results are invariant of this value. As the alchemical transformation is initiated from 

the configurations obtained during the ASMD simulations along the configurational CV and is finished in a 

single stage, we only need to test whether the number of trajectories is sufficient to converge the alchemical 

perturbation. The test of the pulling speed in ASMD simulations follows the same procedure as the normal 

staged SMD simulations. The same simulation procedure is repeated with different pulling speeds, and the 

convergence is reached when the free energy profile does not change with slower pulling speeds.   

 

III. Computational Details  

The Hamiltonian perturbation framework could be used to change various details of the system. In the 

current numerical test, we focus on the change of the QM theory. We still use the dihedral flipping system 

formed by caps of biomolecules ACE-NME in vacuo as an example. The reaction coordinate used to 

describe the dihedral flipping is the backbone C-C-N-C dihedral. We explore the configurational space with 

some SQM Hamiltonians, and then perform alchemical transformations to obtain the results under another 

Hamiltonian, e.g., ab initio QM or still some SQM Hamiltonians. An illustration of the thermodynamic cycle 

for the indirect free energy simulation is presented in Fig. 1b. In our previous works, we have considered 

SQM Hamiltonians of Austin Model 1 (AM1),114 the Parametrized Model number 6 (PM6)115 and the 

Modified Neglect of Diatomic Overlap (MNDO)116, and ab initio QM ones such as the Hartree-Fock method 

(HF),117-119 the second-order perturbation theory (MP2),120-123 the Becke 3-parameter Lee–Yang–Parr 

(B3LYP) functional,124-126 and the ωB97X-D functional127. This time we consider another SQM Hamiltonian 

with good accuracy but is less frequently used. Recife Model 1 (RM1)128 is an improved version of AM1. It 

provides better descriptions of various observables and thus is considered as a target SQM Hamiltonian in 

the current work. The HF method is still used as an ab initio target in this work. Therefore, in this work, we 

aim at obtaining the RM1 and HF results indirectly with the selection-criterion-based multi-dimensional 

nonequilibrium pulling simulations.  

The nonequilibrium trajectories are simulated independently and a single core is distributed to each 

trajectory. This avoids the parallel slowdown that degrades the performance of the simulation. In Table S1, 

we present the single-core timing data. The costs of the SQM simulations are extremely similar, and the HF 

simulation is much more costly than the SQM ones.   

As a single structure is used to spawn the whole ASMD pulling process, we test the influence of using 

different configurations as the initial seed. The ASMD pulling starts at the 0° state, which is used as the 

reference state with a free energy of zero. The system is constructed in vacuo and equilibrated for 50 ps 
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under the AMBER14SB129 force field. Then, we shift to the SQM Hamiltonian and equilibrate the system 

for 50 ps. Finally, we perform the production run to extract independent configurations to investigate the 

influence of the initial seed, and extract 8 configurations every 90 ps to avoid any possible correlations 

between the initial seeds.   

The whole dihedral flipping process from 0° to 360 ° is divided into 120 segments with 3 ° increments. 

The force constant of 2000 kcal/mol·rad2 is used to achieve the stiff spring limit. As for the pulling speed 

and the sample size for each segment, some related statistics of ASMD simulations could be obtained from 

our previous works.47 Our previous experience on the dihedral flipping case indicates that 20-sample and 

40-sample estimates are identical in the configurational pulling. Thus, the sample size in each segment along 

the configurational CV is 20. The simulation outcome shows a higher sensitivity on the pulling speed. The 

pulling speed of 8 ps per 5º was used in our previous work, which corresponds to a pulling time of 

approximately 5 ps for the 3º segment used in this work. The previous work is performed under the MM 

Hamiltonian while in the current work we use some SQM Hamiltonians. As the fluctuations under different 

Hamiltonians are different, some tests should be performed on the pulling speed to ensure that our results are 

converged on this degree of freedom. 5 ps, 10 ps, and 15 ps are tested for the current 3º segment in the 

configurational space. The alchemical transformation uses the initial configurations obtained with the 

selection criterion in the ASMD simulations along the configurational CV. In the previous BAR-based case, 

bidirectional alchemical transformations finished in several time steps are sufficient to converge the 

results.34 In the current EXP-based case, the statistical efficiency is a bit worse and thus we employ longer 

pulling times for the alchemical transformation. The relaxation time between successive perturbations is set 

to 1 time step and the transformation is finished in 10 or 100 time steps, corresponding to a change of 0.1 or 

0.01 per time step for the alchemical order parameter.   

In all MD simulations, the time step is set to 0.5 fs, and Langevin dynamics130 with the collision 

frequency of 5 ps-1 are implemented for temperature regulation at 300 K. As the simulation is performed in 

vacuo, there is no cutoff applied in our simulations. Although the current simulation is performed in vacuo, 

the Hamiltonian variation framework could be straightforwardly applied in condensed-phase simulations, 

which has been performed in our previous works.34, 78 We use the AMBER131 suite for MD simulations and 

Gaussian 09132 for ab initio QM calculations. All statistical analyses are obtained with homemade codes.  

 

IV. Result and discussion 

The pulling-speed and sample-size dependence of the estimates.  
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 As discussed in the last part of the methodology section, the convergence diagnostics should be 

performed in the first place before analyzing detailed results. We choose the target RM1 Hamiltonian as an 

example. The pulling-speed dependence of the free energy profile in direct free energy simulations at the 

RM1 level is presented in Fig. 2a. The 10 ps/segment (i.e., 20000 steps) PMF is virtually identical to the 15 

ps/segment results, and minor differences are observed for the 5 ps/segment result. Therefore, in the 

nonequilibrium pulling along the configurational CV, we use the pulling speed of 10 ps/segment. We then 

check the sample-size dependence of the indirect estimates obtained with the pulling time of 10 steps in the 

alchemical space. In Fig. 2b, the comparison between the indirect estimates obtained from the AM1 

simulations with different sample sizes and different estimators for the AM1-to-RM1 perturbation from one 

initial seed and the direct RM1 PMF is presented. We can see that the 5-sample, 10-sample and 50-sample 

estimates obtained from the EXP, GEXP and aW  estimators are all identical, which indicates that the 

sample size is not a bottleneck for the convergence of the nonequilibrium free energy simulation. Namely, 

the estimates are numerically stable and could be converged easily. The difference between the indirect and 

direct estimates are small, but we expect to further minimize this deviation.  

The agreement between the EXP, GEXP and aW  estimates does not necessarily indicate the 

convergence of the nonequilibrium pulling simulations. The configurational sampling in the equilibrium 

perturbation scheme is performed in the equilibrium ensemble, while that in the nonequilibrium pulling case 

required by JI or CE is performed in both the equilibrium ensemble and the nonequilibrium pulling. The 

ASMD scheme uses a single structure to seed a series of nonequilibrium simulations, from which the 

microscopic nonequilibrium works are extracted. As a result, these microscopic nonequilibrium works are 

not independent and thus do not fully satisfy the assumption of the JI estimator. The inter-trajectory 

correlation is significant when the nonequilibrium pulling simulation is very short. For instance, when the 

nonequilibrium pulling is finished in just one step, the nonequilibrium work reduces to the energy difference 

in the equilibrium perturbation scheme, and the nonequilibrium works from different pulling simulations are 

exactly the same. Significant systematic bias is introduced in this case. Further, the EXP, GEXP and aW  

estimates are exactly the same, which provides no hints on the dissipation of the nonequilibrium trajectories. 

Therefore, to achieve a sufficient level of configurational sampling, the nonequilibrium trajectories should 

not be too short. The calculation of the statistical error also has this problem. As the analytical formula of the 

statistical uncertainty requires independent works as input, the statistical error could be underestimated in 

ASMD simulations. The initial-configuration-induced systematic bias is significant for the alchemical 
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transformation due to the short length of such pulling simulation, but is very small for the configurational 

part, as the long pulling time in the latter simulations enables sufficient sampling in the nonequilibrium 

ensemble.  

 Although the EXP, GEXP and aW  estimates are virtually identical, obvious differences could be 

observed for their statistical errors. We focus on the alchemical perturbation to the RM1 level and the results 

obtained with the pulling speed of 10 ps/segment in the configurational space and a pulling time of 10 steps 

in the alchemical space are presented in Fig. 3a. We can see that the statistical uncertainty of the EXP 

estimator is much smaller than the others for all of the three alchemical transformations to the RM1 level 

considered in the current work. The GEXP and aW  estimators have extremely similar statistical 

uncertainties, which is expected considering the agreement between the free energy estimates obtained from 

these two estimators. The first term of GEXP is the ordinary average of the microscopic works aW , and the 

second term relates to the variance of the work distribution. When the GEXP and aW  estimates are 

virtually identical, the width of the work distribution is negligible, and the resulting statistical errors of these 

two estimators are extremely similar. Fig. 3b shows the dependence of the statistical uncertainty on the 

pulling speed in the configurational space for the AM1-to-RM1 transformation. Still, the EXP uncertainty is 

much smaller than the others. The statistical uncertainties obtained with the pulling speeds of 10 ps/segment 

and 15 ps/segment are extremely similar, which indicates that the pulling time in the configurational space is 

sufficiently long and the simulation outcome does not depend on this pulling speed.  

Indirect vs direct. 

 After testing the pulling speed and the sample size in nonequilibrium free energy simulations, we then 

test the probably most influencing parameter, the initial seed. As discussed in the previous part, the initial 

configuration has a larger impact on the alchemical part due to the short transformation length of the 

nonequilibrium pulling, while in the configurational space the lack of sampling in the equilibrium ensemble 

(i.e., the initial configuration) is compensated with the sampling in the nonequilibrium ensemble during the 

long pulling time. To provide a clearer presentation of the initial-configuration-induced bias, we compare 

the indirect estimates obtained from different initial seeds with the direct RM1 result. The indirect estimates 

obtained from PM6, AM1 and MNDO are presented in Fig. S1 and S2. If not explicitly mentioned, the 

alchemical perturbation is finished in 10 steps in these cases. 

For the PM6 Hamiltonian, longer pulling time in the configurational space does not necessarily result in 

better indirect estimates, as shown in Fig. S1a-b. The indirect estimates with the pulling speed of 10 
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ps/segment in the configurational space fluctuate around the direct RM1 result, as shown in Fig. S1a, c, d 

and e. This is expected as the sampling in the nonequilibrium ensemble is insufficient for the alchemical 

transformation. The situation could be bettered by performing longer pulling simulations in the alchemical 

space. The indirect result becomes closer to the direct RM1 estimate when the alchemical perturbation is 

finished in 100 steps.  

Systematic investigations at the AM1 and MNDO levels could be more informative. The indirect 

estimates obtained from ASMD simulations initiated from one initial configuration with the pulling speed of 

10 ps/segment in the configurational space and a pulling time of 10 steps in the alchemical space is 

presented in Fig. 4a, and the indirect estimates obtained from 8 initial seeds with the same pulling scheme 

are presented in Fig. S2a-h. We can see that the indirect estimates seem to fluctuate around the RM1 result. 

For some initial seeds, the accord between the indirect and direct estimates could be good, while for the 

others the agreement is not so satisfactory. The results obtained with slower pulling speeds in the 

configurational space are presented in Fig. S2i-k, from which we observe that longer pulling time in the 

configurational space does not help to improve the indirect estimates.  

As has been discussed above, to better the indirect estimate, we need to perform more sampling either in 

the equilibrium ensemble or in the nonequilibrium one. If we want to distribute the sampling in the 

equilibrium ensemble, we need more uncorrelated configurations to initiate the nonequilibrium alchemical 

transformation and average over these simulations to obtain a more accurate and stable estimate, which 

could be achieved by either equilibrating the initial configurations obtained with the selection criterion from 

one ASMD trail or performing multiple ASMD simulations initiated from different seeds. The former 

scheme could be easily performed and the results are expected to be good, while the performance of the 

latter regime is not straightforward and thus our numerical test focuses on this scheme. The results averaged 

over 5 initial seeds are presented in Fig. 4b, from which we can see that the agreement between the indirect 

and direct estimates is improved. The mean absolute error (MAE) is calculated to provide some numerical 

metrics to assess the deviation of the indirect estimate from the direct result, which is presented in Table 1. 

We can see that the MAE for the initial-configuration-averaged estimate is much smaller than the individual 

estimates. Another way to improve the result is distributing the sampling in the nonequilibrium ensemble, 

namely lengthening the pulling time in the alchemical space. We employ a longer pulling time of 100 steps 

in the alchemical transformation with a change of 0.01 per time step for 5 of the initial seeds, and the results 

are presented in Fig. 4c and Fig. S3a-d. We can see that the indirect estimates are effectively improved by 

using a slower pulling speed along the alchemical CV. Again, we use a longer pulling time in the 
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configurational space in Fig. S3e-f, where we observe that the pulling speed in the configurational space has 

little impact on the simulation outcome. The indirect estimate could be improved by using both the 

slower-pulling-speed and initial-seed-averaging schemes, the result of which is shown in Fig. 4d. The MAEs 

of the 0.01 indirect estimates shown in Table 1 are smaller than the corresponding 0.1 components, and the 

seed-averaged result achieves an MAE of about 0.09 kcal/mol, which is technically speaking negligible in 

free energy calculations.   

Hitherto, we have gained some insights into using the ASMD-based indirect nonequilibrium free energy 

simulation scheme. We then employ the scheme to obtain the HF result indirectly. We still use the same 

pulling speed in nonequilibrium pulling, i.e., 10 ps/segment in the configurational space and 10 or 100 steps 

in the alchemical transformation. The MAEs of 7 trails with a change of 0.1 per step in the alchemical 

transformation and that of one trail with a change of 0.01 per step are presented in Table S2. We can see that 

the HF result could be obtained with the ASMD-based indirect scheme with an MAE ~0.25 kcal/mol. The 

previous RM1-from-SQM simulations do not result in a speedup of the free energy simulation, but the 

current HF-from-SQM one does accelerate the simulation. Thus, we then calculate the speedup of the 

indirect scheme. When performing free energy simulations in the configurational space, it requires 24 ns to 

converge the free energy profile. The pulling time of 10 steps is used for the alchemical transformation. 5 

samples are sufficient to converge the alchemical term for each initial seed and 5 repeats/seeds are averaged 

to obtain the final indirect result with very good convergence behavior. The need for equilibrium 

configurational sampling to obtain the initial configurations is eliminated and thus eq  is set to zero. The 

simulation time at the HF level is scaled by the simulation speeds in Table S1 to obtain the effective 

sampling time at the SQM level. The resulting speedup of the indirect scheme is about 1000-fold, as shown 

in Table 2. If we use the pulling time of 100 steps for the alchemical transformation, the resulting indirect 

estimate would be extremely accurate and the speedup would be about 200 folds. The computational 

speedup could also be compared with the statistics of the BAR-based scheme in our previous work,34 which 

is presented in Table 3. As the BAR-based scheme achieves faster convergence than the ASMD regime in 

the configurational sampling,47 the speedup of the ASMD-based indirect scheme is relatively modest 

compared with the ~1000-fold speedup shown in the previous table. However, the speedup of the indirect 

scheme is still two orders of magnitude.  

In the BAR-based scheme, the computational cost of the direct SQM free energy simulation is 

negligible. The reasons for this phenomenon include the significant difference between the computational 

cost of the target ab initio QM Hamiltonian and that of the SQM Hamiltonian, the inclusion of the 
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computationally demanding equilibrium sampling at ab initio QM level to obtain initial configurations for 

nonequilibrium alchemical transformation, and the high statistical efficiency of the bidirectional estimator. 

As a result, the speedup of the indirect scheme could be approximated with the ratio of the sampling time in 

the direct QM free energy simulation to that in the SQM-to-QM perturbation, namely 

NEW,direct QM eqdirect QM direct QM

SQM-to-QM correction SQM-to-QM correction NEW,SQM-to-QM correction eq

speedup
n

n

 

  

+
 =

+
           (9). 

Here, the equal-sample-size rule is used for the direct and the alchemical perturbation terms. However, in 

the current ASMD case, the equilibrium sampling for initial configurations is avoided, and the 

computational cost of the direct SQM free energy simulation is non-negligible. A key feature that is 

unchanged is that the main contribution of the computational cost of the indirect free energy simulation still 

comes from the SQM-to-QM transformation.  

 

V. Conclusion  

The combination of the alchemical and configurational free energy simulations provides a 

computationally feasible alternative to obtain the thermodynamics at ab initio QM levels. The free energy 

landscape obtained from enhanced sampling simulations under a computationally feasible Hamiltonian 

could be perturbed to that under another Hamiltonian with the alchemical method. In our previous works, we 

constructed a multi-dimensional nonequilibrium pulling framework for Hamiltonian variation based on 

bidirectional pulling and bidirectional reweighting. The BAR-based method is generally applicable and the 

acceleration of the indirect method is about an order of magnitude compared with the direct free energy 

simulations under some ab initio QM Hamiltonians. As bidirectional pulling could be costly in some cases, 

in the current work, we alter the bidirectional perturbation framework to a unidirectional one and use the 

exponential average, its Gaussian approximated form, and the ordinary average to estimate the free energy 

difference. The staged SMD simulation is further accelerated with the selection criterion for the initial 

configuration used to initiate nonequilibrium trajectories. This ASMD-based Hamiltonian variation 

framework is more than 100-fold faster than the direct free energy simulations under some ab initio QM 

Hamiltonian.  

A worth noting behavior of the ASMD-based scheme is the distribution of the sampling. In the normal 

staged SMD pulling with JI or CE for free energy estimates, equilibrium sampling in each intermediate state 

is performed to obtain the initial configuration for kicking off the pulling simulations. The sampling is 

distributed in both the equilibrium ensemble and the nonequilibrium counterpart. However, as the 
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nonequilibrium trajectories are initiated from one initial configuration in ASMD simulations, some 

alternations of the simulation scheme are required. We can distribute some sampling times in the 

equilibrium ensemble by equilibrating the initial configuration obtained from the selection criterion, or 

performing ASMD simulations from different initial seeds to obtain more initial configurations. In this way, 

more independent initial configurations are obtained and nonequilibrium alchemical pulling simulations 

from these uncorrelated configurations could improve the convergence behavior of the indirect scheme. 

Alternatively, we can sample only in the nonequilibrium ensemble by pulling it slower in the alchemical 

space, which also improves the convergence behavior of the indirect scheme. The initial-seed-averaging and 

slower-pulling-speed schemes could be combined to achieve better numerical behaviors.  

Although the JI-based ASMD scheme could be efficient for multi-dimensional nonequilibrium pulling, 

there are still some weaknesses. As the whole pulling simulation is initiated from one or several 

configurations, the nonequilibrium pulling in the configurational space is performed in a serial way. 

Specifically in the current dihedral flipping case, the simulation is initiated from the 0º state and the pulling 

is performed from this reference state to the other in a serial manner. The 3º-to-6º pulling simulations need 

to wait for the outcome of the 0º-to-3º simulations, and the 6º-to-9º pulling simulations need to wait for the 

outcome of the 3º-to-6º simulations. This inter-segment dependence limits the efficiency of parallelism and 

we can only parallelize the nonequilibrium trajectories of the current segment. Although the calculation of 

the energetics of each simulation could also be parallelized, the efficiency of this parallel computation is 

degraded compared with the delightfully parallel BAR-based scheme even for parallel-optimized dynamic 

engines (i.e., the so-called parallel slowdown due to communications overhead). A factor that further 

aggravates this parallel issue is the need for slower pulling speeds when using the exponential average. 

Compared with bidirectional reweighting, the lower statistical efficiency of EXP requires a longer pulling 

time to obtain converged estimates and thus the waiting time for each segment is lengthened. The overall 

outcome of these factors is a longer waiting time before user feedback, which is not a satisfactory property 

for protocol diagnosing. However, if the user already has some experiences on the convergence behavior of 

the system (e.g., after the protocol testing procedure), or if there are a series of systems with similar 

properties (e.g., a series of mutants of some protein-ligand complexes), the EXP-based ASMD scheme could 

save the computational costs significantly. Note that the tests of a series of different protocols could also be 

performed independently, and the parallelization in this case could also be useful. However, the user still 

needs to wait for the output of the longer/longest protocol with the higher/highest reliability before he/she is 

able to confirm whether the faster protocols are reliable.  
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Table 1. Mean absolute error of the indirect RM1 estimates in kcal/mol. 8 different initial configurations are 

tested to initiate the multi-dimensional ASMD pulling. The pulling speed in the configurational space is 10 

ps per 3º segment. Two pulling speeds including a change of 0.1 per time step and 0.01 per time step are 

tested in the alchemical space. The errors for the averaged indirect estimates over the last 5 initial 

configurations are also shown. We can see that the systematic errors of the indirect estimates are reduced 

upon increased pulling time in the alchemical space. The averaged results are significantly improved over 

independent trails.  

 

Hamiltonians                             

Trail 

0.1 to RM1 0.01 to RM1 

AM1 MNDO AM1 MNDO 

1 0.44  0.28  0.23  0.07  

2 0.37  0.43  0.13  0.15  

3 0.43  0.41  0.13  0.13  

4 0.37  0.70  0.11  0.14  

5 0.27  0.22  0.23  0.12  

6 0.79  1.13  - - 

7 0.35  0.37  - - 

8 0.21  0.34  - - 

average over 5 trails 0.11  0.30  0.08  0.10  
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Table 2. Efficiency comparison of direct and indirect free energy simulations under the HF Hamiltonian. 

The calculation of the computational cost is similar to the case of our previous BAR-based method. There 

are segmentsN  segments in stratified pulling and the number of realizations in each segment is trajN . The 

total simulation time in the direct scheme is given by segments traj NEW eq* *( )N N  + , while the total simulation 

time in the indirect scheme is the sum of segments,SQM traj.SQM NEW,SQM eq,SQM* *( )N N  +  at SQM level and 

traj,SQM->QM NEW,SQM->QM eq,SQM*( )N  +  in the SQM-to-QM correction. As the selection criterion eliminates the 

equilibrium sampling for initial configurations, eq  becomes 0. The simulation time at QM level is scaled 

by the ratio of computational cost under QM Hamiltonian and that under SQM Hamiltonian in Table S1 to 

provide the effective simulation time at SQM level, enabling the direct comparison between computational 

costs of different levels of theory. Note that the sample size for the correction term is the sum of 5 repeats of 

the 10-step SQM-to-QM transformation, corresponding to the sample size of 25 for the SQM->HF 

perturbation. If the pulling time of 100 steps is used for the alchemical transformation, the speedup of the 

indirect method would be about 200 folds.  

 

Terms 

 

 

   

Simulation    

eq  for each 

initial 

configuration 

(ps) 

NEW  in 

each 

segment 

(ps) 

Number of 

segments 

Number of 

realizations per 

segment 

Total simulation time 

(ps) scaled to SQM 

Hamiltonian 

Relative 

efficiency 

direct SQM 0 10 120 20 24000.00  3343.64  

SQM->HF 0 0.005 120 25 50154.60  - 

HF->SQM - - - - 0.00  - 

indirect HF - - - - 74154.60  1082.16  

direct HF 0 10 120 20 80247357.45  1.00  
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Table 3. Efficiency comparison of direct and indirect nonequilibrium free energy simulations with the 

current JI-based ASMD method and the previously proposed BAR-based method. The total simulation time 

in direct scheme is given by segments traj NEW eq* *( )N N  + , while the total simulation time in the indirect 

scheme is the sum of segments,small traj,small NEW,small eq,small* *( )N N  +  under the SQM Hamiltonian and 

traj,small->large NEW,small->large eq,small traj,large->small NEW,large->small eq,large*( ) *( )N N   + + +  in the SQM-to-QM correction. 

segmentsN  is the number of segments and trajN  is the number of realizations per segment. The simulation 

time under the QM Hamiltonian is scaled by the ratio of computational cost QM/SQM in Table S1 to 

provide the effective simulation time at the SQM level, enabling the direct comparison between 

computational costs from methods. The statistics for the BAR-based method is borrowed from our previous 

work, Phys. Chem. Chem. Phys. 2019, 21, 21942-21959. As the BAR-based method is faster than ASMD in 

the construction of the free energy profiles in the configurational space, its computational cost of the direct 

free energy simulation (3.78 ns in the reference) is smaller than the ASMD one (24 ns). Therefore, the 

speedup of the multi-dimensional ASMD method is relatively modest compared with the ~1000-fold 

speedup shown in the previous table.  

 

Terms 

 

 

   

Simulation    

eq  for each 

initial 

configuration 

(ps) 

NEW  in 

each 

segment 

(ps) 

Number of 

segments 

Number of 

realizations per 

segment 

Total simulation time 

(ps) scaled to SQM 

Hamiltonian 

Relative 

efficiency 

direct SQM 0 10 120 20 24000.00  526.62  

SQM->HF 0 0.005 120 25 50154.60  - 

HF->SQM - - - - 0.00  - 

indirect HF - - - - 74154.60  170.44  

direct HF 0.05 0.5x2=1 180 20 12638958.80  1.00  
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Fig. 1. a) An illustration of the Hamiltonian perturbation framework via EXP-based multi-dimensional 

nonequilibrium free energy calculations. The Hamiltonian perturbation is performed between neighboring 

states with nonequilibrium transformations. The Hamiltonian of the system at the 1k th configurational state 

and 2k th alchemical state is represented as 
1 2,k kH . The target free energy landscape is at the Hamiltonian 

state 2 2K = . The indirect scheme performs direct free energy simulations at the Hamiltonian state 2 1k =  

to explore the configurational space, and adds the 
1 ,1kH -to-

1 ,2kH  correction term to perturb the 

thermodynamic profile to the result at the target Hamiltonian state. The unidirectional arrows represent 

unidirectional pulling and unidirectional reweighting of the EXP or JI estimator. Only the transformations 

described with solid arrows are performed due to efficiency considerations in nonequilibrium free energy 

simulations. b) The thermodynamic cycle describing the dihedral flipping process with different descriptions 

of the ACE-NME system. The reaction coordinate is the backbone C-C-N-C dihedral. The free energy 

simulation exploring the configurational space is performed at some computationally efficient SQM levels, 

and the SQM-to-QM perturbation term is used to obtain the thermodynamic profiles at ab initio QM levels.  
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Fig. 2. a) The free energy profiles in the direct free energy simulation under the RM1 Hamiltonian with 

different pulling speeds. The number in the legend represents the number of MD steps for each 

nonequilibrium trajectory in each segment. As we are using 0.5 fs time steps, the pulling times of 10000 

steps, 20000 steps and 30000 steps are equivalently 5 ps, 10 ps and 15 ps. We can see that the pulling speed 

of 10 ps per segment is sufficiently slow for converged estimates of the free energy profiles. b) The indirect 

estimates at the RM1 level with different sample sizes for the correction term in one seeding SMD trail. The 

alchemical order parameter is varied in 10 MD steps with a change of 0.1 per step. We can see that the 

5-sample, 10-sample and 50-sample estimates with different estimators are virtually identical.  
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Fig. 3. The statistical uncertainty for the correction terms. a) The multi-dimensional SMD simulation is 

initiated from the 1st configuration with the pulling speed of 10 ps/segment. The AM1, MNDO and PM6 

Hamiltonians are used to explore the configurational space, and the correction term is used to perturb the 

results to the RM1 level. As the differences between different SQM Hamiltonians and the target RM1 are 

different, the statistical errors for different SQM-to-RM1 corrections obtained from the same estimator are 

different. The statistical error of the GEXP estimator is extremely similar to that of the ordinary average Wa, 

due to the negligible dissipation or the width of the work distribution. As a result, the GEXP and the Wa 

estimates are virtually identical. b) The AM1-to-RM1 correction averaged over 5 initial configurations. The 

pulling speed of 0.1/step is used along the alchemical CV, while two pulling speeds of 10 ps/segment and 15 

ps/segment are used along the configurational CV. We can see that the statistical error shows little 

dependence on the pulling speed in the configurational space.  
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Fig. 4. Comparison between the direct and indirect results at the RM1 level with the pulling speed of 10 ps 

per 3º segment for nonequilibrium pulling in the configurational space. a) and c) are obtained from the same 

initial configuration to initiate the multi-dimensional ASMD simulation, while b) and d) are the averaged 

results over 5 initial configurations. For a) and b), the alchemical order parameter is varied in 10 MD steps 

with a change of 0.1 per step, while for c) and d), the alchemical CV is changed in 100 MD steps with a 

perturbation of 0.01 per time step. More detailed results for different initial configurations and pulling 

speeds are given in Fig. S2 and S3.   
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Table S1. The timing information (in ns/day) of SQM and QM calculations on a computing node with 384 

GB memory and the CPU used is Intel(R) Xeon(R) Platinum 8160. A single core is used for this benchmark, 

which avoids the influence of parallelization-related issues. As the nonequilibrium trajectories are 

independent, the practical simulation speed is the same as these statistics. As the memory on each computing 

node is very large, no memory-related issue in QM calculations would influence the speed of calculation. 

The basis set of 6-31G* is employed in ab initio QM calculations. Different SQM simulations are of very 

similar computational costs, while the speed of ab initio QM calculations depends on the level of theory. 

Here, we only tested the HF Hamiltonian.  

 

     Hamiltonian                               

Terms 
SQM HF 

speed(ns/day) 46.5 0.013907 

speedup(SQM/QM) 1.00  3343.64  
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Table S2. Mean absolute error of the indirect estimates at ab initio QM levels in kcal/mol. 7 different initial 

configurations are tested to initiate the multi-dimensional ASMD pulling. The pulling speed in the 

configurational space is 10 ps per 3º segment. The alchemical perturbation is finished in 10 time steps with a 

change of 0.1 per step in the first 7 trails, while the last trail 0.01 uses 100 steps.  

 

Hamiltonians                             

Trail 

HF 

AM1 MNDO RM1 

1 0.31  0.35  0.60  

2 0.83  0.79  1.33  

3 0.88  0.54  0.93  

4 0.56  0.91  0.75  

5 0.50  0.44  0.67  

6 0.81  1.21  0.47  

7 0.52  1.23  0.67  

0.01 0.20  0.30  0.21  
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Fig. S1. Comparison between the direct and indirect estimates of the free energy profiles at the RM1 level 

initiated from different seeds (i.e., configurations) with different pulling speeds along the configurational 

CV or the alchemical CV. The configurational space is explored with the ASMD scheme with 20 samples in 

each stage at the PM6 level, and the RM1 result is obtained by the combination of the PM6 result and the 

PM6-to-RM1 unidirectional pulling. The pulling time ‘x ps’ denotes the pulling time for each segment along 

the configurational CV. The nonequilibrium transformation in the alchemical space is performed in 5 fs (i.e., 

10 time steps with a change of 0.1 per step) for the first 5 subplots, while a smaller perturbation (0.01 per 

time step) and thus a longer pulling time is used for the last subplot. The exponential average EXP, the 

Gaussian approximation GEXP, and the ordinary average Wa are extremely similar, leading to overlaps of 

these curves in the plot. We can see that different initial configurations could lead to different systematic 

errors with a faster pulling speed along the alchemical CV, which could be eliminated when a slower pulling 

speed is employed.  
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Fig. S2. Comparison between the direct and indirect estimates of the free energy profiles at the RM1 level 

initiated from different seeds (i.e., configurations) with different pulling speeds along the configurational 

CV or the alchemical CV. The configurational space is explored with the ASMD scheme with 20 samples in 

each stage under the AM1 or MNDO Hamiltonians, and the RM1 result is obtained by the combination of 

the AM1 or MNDO result and the AM1-to-RM1 or MNDO-to-RM1 unidirectional pulling. The pulling time 

‘x ps’ denotes the pulling time for each segment along the configurational CV. 8 different initial 

configurations are used for the seeding SMD simulations with the pulling speed of 10 ps per segment are 

used for the first 8 subplots a-h), while the first 3 configurations are used to initiate the seeding SMD 

simulations with a slower pulling speed of 15 ps per segment for the last 3 subplots i-k). The nonequilibrium 

transformation in the alchemical space is performed in 5 fs (i.e., 10 time steps with a change of 0.1 per step). 

The exponential average EXP, the Gaussian approximation GEXP, and the ordinary average Wa are 

extremely similar, leading to overlaps of these curves in the plot. Different initial configurations introduce 

different systematic errors, and averaging over these configurations could eliminate this systematic error, as 

shown in the main article. The pulling speeds of 10 ps/segment and 15 ps/segment along the configurational 

CV have little influence on the systematic error of the indirect results, as the latter is mainly introduced in 

the alchemical perturbation term. 
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Fig. S3. Comparison between the direct and indirect estimates of the free energy profiles at the RM1 level 

initiated from different seeds (i.e., initial configurations) with different pulling speeds along the 

configurational CV or the alchemical CV. The configurational space is explored with the ASMD scheme 

with 20 samples in each stage under the AM1 or MNDO Hamiltonians, and the RM1 result is obtained by 

combining the AM1 or MNDO result and the AM1-to-RM1 or MNDO-to-RM1 unidirectional pulling. The 

pulling time ‘x ps’ denotes the pulling time for each segment along the configurational CV. Different initial 

configurations are used for the seeding SMD simulations with the pulling speed of 10 ps per segment are 

used for the first 4 subplots a-d), while the first 2 configurations are used to initiate the seeding SMD 

simulations with a slower pulling speed of 15 ps per segment for the last 2 subplots e-f). The nonequilibrium 

transformation in the alchemical space is performed in 50 fs (i.e., 100 time steps with a change of 0.01 per 

step). The exponential average EXP, the Gaussian approximation GEXP, and the ordinary average Wa are 

extremely similar, leading to overlaps of these curves in the plot. Compared with the indirect estimates 

obtained with a faster pulling speed along the alchemical CV shown in the previous figure, the current 

results are much closer to the direct free energy estimates, which indicates that the sampling in the 

nonequilibrium ensemble successfully eliminates the systematic bias introduced in the alchemical 

perturbation term. The pulling speed in the configurational space have little impact on the outcome.  
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