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Abstract

Existing deep learning models applied to reaction prediction in organic chemistry

are able to reach extremely high levels of accuracy (> 90% for NLP- based ones1). With

no chemical knowledge embedded than the information learnt from reaction data, the

quality of the data sets plays a crucial role in the performance of the prediction models.

While human curation is prohibitively expensive, the need for unaided approaches to

remove chemically incorrect entries from existing data sets is essential to improve the

performance of artificial intelligence models in synthetic chemistry tasks. Here we

propose a machine learning-based, unassisted approach to remove chemically wrong

entries (noise) from chemical reaction collections. Results show that models trained

on cleaned and balanced data sets improve the quality of the predictions without a

decrease in performance. For the retrosynthetic models the round-trip accuracy is

enhanced by 13% and the value of the cumulative Jensen Shannon metric is lowered

down to 70% of its original value, while maintaining high values of coverage (97%) and

constant class-diversity (1.6) at inference.
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1 Introduction

The last decade witnessed a flourishing development and application of several data-driven

approaches to synthetic organic chemistry, mainly thanks to the availability of chemical re-

actions data sets.2,3 The publicly available United States Patent Office (USPTO)3 data set,

along with proprietary Pistachio4 and Reaxys5 fueled the development of several deep learn-

ing models and architectures to assist organic chemists in chemical synthesis planning.1,6–10

Despite efforts in building models that effectively learn chemistry from data, the quality of

the data sets remains the primary limitation on performance improvements. The impact

of data sets sizes and variability on the performance of computer-assisted synthesis plan-

ning tools has been recently investigated by Thakkar et al. 11 . Nevertheless, the influence

of having chemically wrong examples in training data sets remains a topic of little research

regardless of its relevance and impact in all data-driven chemical applications.

Some deep learning architectures may represent data more effectively than others, but

the presence of chemically wrong entries in training data sets has a detrimental effect on

all of them. Trying to learn from a large portion of chemically wrong examples affects the

way models represent latent chemical rules, biasing the predictions towards unreasonable

connections and disconnections. Unfortunately, while we observed a large variety of inno-

vation at the level of mathematical architectures, the development of strategies to remove

noise in data sets received little attention. The use of specific rule-based systems, such as

the identification of ”wrong chemistry” based on the unsuccessful matching of predefined

reaction templates provides a simple approach to remove incorrect chemistry. Still, the fail-

ure to map chemical reactions with existing reaction templates may lead to a loss of crucial

chemical knowledge for unmatched and potentially relevant examples. On the other hand,

the prohibitively expensive effort of humanly curating large data sets composed of millions of

entries to create ground truth sets is hindering the development of supervised approaches to

identify chemically wrong examples. The need for unaided, automatic and reliable protocols

2



to minimize the loss of meaningful chemical knowledge, while removing errors and noise is

of critical importance to bring data-driven chemical synthesis models from an experimental

to an industrial readiness level.

Here, we present an efficient technique to reduce noise in chemical reactions data sets with

the goal to improve the performance of existing predictive models. In particular, inspired

by an approach applied to classification tasks,12 we designed a new data noise-reduction

and balancing strategy which is machine learning(ML)-based and unassisted. The main idea

behind the proposed protocol relies on the catastrophic forgetting, the tendency of AI models

to forget previously learnt events when trained on new tasks. In the context of AI-driven

chemical synthesis, the cause of this behaviour can be traced back to a limited overlap

between distributions of the chemical reaction features of different training batches. Similar

to language models where data points more difficult to learn are likely example of a wrong

grammar, the most difficult examples to learn during training of reaction prediction models

are likely examples of wrong chemistry when compared to the chemical grammar described

by the majority of the data set. Starting from this hypothesis, we inspect each entry of the

data set for the number of times it is forgotten during training. The most forgotten examples

are then removed in a certain percentage and a new model is trained with the ”cleaned” data

sets, carrying a better representation of the latent chemical grammar. We show that this

strategy leads to an effective statistically-based noise reduction in chemical data sets. The

disclosed protocol can be used to remove chemically wrong examples from large collections

of public and proprietary data sets, to improve from simple analytics to the performance

and reliability of existing forward and retrosynthesis architectures.1,9
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2 Results and discussion

2.1 The forgotten events strategy

Learning algorithms achieved state-of-the-art performances in many application domains,

including chemical reaction prediction and synthesis design. When training a neural net-

work on new data, there is a tendency to forget the information previously learnt. This

usually means new data will likely override the weights that have been learnt in the past,

and thus degrade the model performance for the past tasks. This behaviour is known as

catastrophic forgetting or catastrophic interference13 and is one of the main impediment to

transfer learning.

The application of the principles of catastrophic forgetting within different epochs of the

same training session leads to the definition of ”forgotten” data points learnt in previous

epochs.12 This behaviour may be a symptom of under-representation of the forgotten entries

in the data set, outliers of the underlying feature distribution. The outliers may be carriers

of some important feature rarely seen relative to its importance, but quite often they are only

semantically wrong data points. Assuming the underlying feature distribution of the entire

data set is a statistically correct representation of the carried knowledge, one can improve

its significance by removing a certain fraction of the more frequently forgotten events. The

use of domain specific statistical metrics helps in determining the maximum threshold to

remove.

2.2 Forward prediction model noise-reduction

We applied this strategy to the transformer-based14 forward model by Schwaller et al. 1

trained on the Pistachio data set. The molecular transformer is a sequence-based approach,

which casts the reaction prediction as a translation problem. We used the commercial

Pistachio data set, compiled using text mining on Patents,3 properly pre-filtered (see section

4.2 for pre-filtering strategies). During training and at each epoch, we considered only the

4



top-1 prediction out of five beams. Similar to previous transformer studies, we trained long

enough to reach convergence (approx. 48 hours). During this time frame we analyzed the

forgetting events across 34 epochs. Figure 1 shows the results for the forgetting experiment.
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Figure 1: Results for the forgetting forward experiment: (a) Percentage of forgotten examples as a
function of forgotten frequency. Notice that here the percentage refers to the number of examples
that have been learnt at least once. The label ”0” denotes examples once learnt, are never forgotten
at later epochs. In the inside plot percentage of events learnt at least once (yes) or never learnt
(no). (b) Percentage of forgotten examples as a function of the forgotten frequency, for superclasses:
Unrecognized, Protections, Functional Group Addition, Resolutions. In the inside plot the percentage
of events learnt and never learnt, divided by macro reaction classes.

Approximately 80% of the entire data set is learnt at least once during training. Out of

80%, 70% of the examples are never forgotten by the transformer across epochs, once they

are learnt. As expected, the distribution of forgotten events is quite unequal across different

superclasses: in superclass 10 (Functional Group Addition) and 5 (Protections) the number

of never forgotten examples is higher in percentage to the class of Unrecognized (class 0) and

Resolutions (class 11) reactions (see Figure 1.b). For few classes, such as the Unrecognized

(class 0) and the Resolutions (class 11), the distribution of the number of forgotten events

shows a less pronounced peak around zero and a significant population of entries that are

learnt and forgotten with larger frequencies. These two last superclasses contain most of the
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wrong chemistry in the Pistachio data set, which is where the model struggles to learn. The

large population of chemically wrong examples in these classes originates from the difficulties

to consistently text-mine stereochemical information (for Resolutions) or from the difficulties

to match a text-mined reaction with existing chemical templates (for Unrecognized).

The cohort of never learnt examples likely includes chemically wrong data as well as

chemically correct reactions with features (i.e. reaction templates) rarely seen across the

entire data set. The removal of a large section of such elements would cause the loss of

important information and, as a consequence, a reduced performance of the model. While

there is no possibility to tag each forgotten event as either rare or wrong chemistry, we

need to apply precise strategies to minimize loss of rare but important information while

removing noise. For this purpose, the set of training samples was first ordered based on

the registered number of forgetting events. Starting from those entries which were never

learnt and proceeding from the high-end tail of the distribution of forgotten events towards

the never forgotten ones, we removed increasingly bigger portions of the data set up to a

maximum of 40%. Each reduced set was used to train a new forward model. In Table 1 we

report the new models top-1 and top-2 results on a common test set, in comparison with the

baseline model (see section 4.6 for baseline and test set details ).

Table 1: The top-1 and top-2 accuracies of the models trained with increasing percentages of data
set entries removed by the forward forgetting experiment. For the model ”forget01perc”, 0.1% of the
data set was removed, for ”forget1perc” the removed percentage was 1%, and so on. All models are
compared to the results of the baseline model (full data set) on the same test set.

model # of samples top-1 top-2
forget01perc 2 376 480 68.8 74.6
forget1perc 2 355 070 68.9 74.8
forget5perc 2 259 916 68.9 74.5
forget10perc 2 140 973 69.0 74.5
forget15perc 2 022 030 69.0 74.0
forget20perc 1 903 087 69.1 74.1
forget25perc 1 784 144 69.2 74.0
forget30perc 1 665 201 68.1 73.0
forget40perc 1 427 315 66.3 71.0
allmixed (baseline) 2 378 859 68.5 74.2

We notice that the top-1 accuracy is weakly affected by the removal of portions of the
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data set, until approximately 25% of the data set is removed: for 30% and 40% reductions,

the performances start to decrease as a consequence of the loss of meaningful chemical

knowledge.

We recently introduced the square root of the cumulative Jensen Shannon divergence

(CJSD) to quantify bias in retrosynthetic disconnection strategies.9 Here we revise its defi-

nition using a non-parametric approach, free of any kernel density estimation (see sections

4.4 and 4.5). The revised CJSD improves with the removal of portions of the data set (see

SI, Figure 1), as a consequence of an increased similarity between the prediction confidence

distributions (lower
√

CJSD). This is due to the fact that populations across classes in

the training set become more balanced as many unrecognized reactions are removed, thus

leading the trained models towards a similar confidence performance across all classes (see

4.2 for class population changes for few noise-reduced data sets). Moreover, removing noisy

entries improves the confidence of the model in establishing the correctness of a prediction,

resulting in all distributions peaking more towards a confidence of 1.0. Some examples of

how the cumulative distributions change by removing portions of the data set can be found

in section 4.5.

When increasing the number of removed entries, the CJSD monotonically decreases ex-

hibiting a convergence towards unbiased confidence distributions across the different classes.

Nonetheless, the model with the best CJSD (40% of the data set removed) was also the one

with the lowest top-1 accuracy. The removal of 25% of the data set allowed the model to

retain the high value of the top-n accuracy while improving the CJSD. Consistency checks

were implemented for the entire removal strategy using different training random seeds to

guarantee that the number of forgetting events experienced by each sample was not the

result of a random evaluation (see section 4.7 for details).

While the removal of the forgotten events is increasing the significance of the underlying

statistical distribution of the chemical reaction features, we still need to demonstrate that

the entire process is effectively removing chemically wrong data. In order to asses this, we
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designed two different experiments where after introducing artificial noise into the data, we

analyzed the forgetting frequency of those entries. In the first experiment, all the products

of the reactions present in the validation set were shuffled and assigned randomly to a new

group of precursors, similarly to Segler et al. 6 . This was considered the ”easy to identify”

type of noise. As expected, the noise removal protocol led to the identification of 99% of

the chemically wrong examples. This is shown bottom row of Figure 2.a, where the noisy

set (7%) falls inside the 10% of the whole training data set never learnt. For the second

experiment, the introduced noise was slightly more subtle. All original target products of

the validation set, computed with the ”forget-25perc” model, were substituted by the third

entry of the top-3 predictions, which is usually wrong. While being more challenging, the

forgotten event strategy correctly identified 60% of the chemically wrong entries as never-

learnt reactions, and 90% of the introduced noisy data experienced at least 1 forgotten event

(Figure 2.a, bottom row). An example of the type of noisy reaction used is given in Figure

2.b.
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Figure 2: (a) Comparison of the two noisy strategies. In blue the percentage of noise introduced in
the data set, in purple the percentage of events which were never learnt, then the percentage of noise
found in the never learnt events, in those with down to 5 and down to 1 forgetting events respectively.
”random product” is the noise that is easy to detect: the examples were generated by shuffling the
products of the reactions in the validation set.6 ”top-3 product” was the experiment where the noise
identification was more subtle: the target product in the validation set was substituted with the top-3
prediction on the same set. (b) example of the noise introduced in the same reaction SMILE for the
two experiments. On top the correct reaction, in the middle the random product assigned and at the
bottom the top-3 prediction (which shows a specific stereocenter that the reaction cannot generate).
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A final comparison with the baseline of the newly trained forward model on the 25%

cleaned data set was performed with the addition of some regularizing strategies. The

complete plots are reported in Figure 2 of the Supporting Information.

The similarity metric (CJSD) for cumulative density functions is better for the group

of models trained with the clean data set whereas the top-1 accuracy remains high in both

baseline and new forward model. Top-1 is reported both for the original test set (where the

predictions where hashed to identify tautomers and redox pairs) as well as for the test set

removed of all one-precursors reactions (with one reagent/reactant only). These are mostly

wrongly text-mined reactions and consequently should be considered not relevant for the

current evaluation. All reported metrics show that the cleaned forward model introduces a

consistent improvement compared to the baseline.

2.3 Retrosynthetic model noise-reduction

Recently,9 we introduced a novel statistical retrosynthetic strategy with new ranking metrics

based on the use of the forward prediction model, where the corresponding forward reaction

prediction confidence plays a crucial role in determining which disconnections are the most

effective among the entire set of single-step retrosynthetic predictions.

In this context, the use of the retrosynthetic model9 in the noise reduction schema, does

not lead to any effective noise reduction of the considered data set, as the single-step retrosyn-

thetic model operates only as a prompter of possible disconnections, ranked subsequently by

the forward prediction model. Therefore, the noise reduction strategy is effective only when

used in combination with the forward prediction model. The corresponding noise-reduced

data set is subsequently used to train the single-step retrosynthetic model. Figure 3 shows

the performance of the new retro model compared to the baseline (trained with the non

cleaned data set) relative to coverage, class diversity, round-trip accuracy9 and square root

of the cumulative Jensen-Shannon divergence, CJSD (see section 4.4 and 4.5 for details).

The coverage is high in both experiments, ensuring the existence of at least one valid
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Figure 3: Results for the new retrosynthesis model, trained on the data set cleaned by the forgetting
forward. Four metrics are shown: coverage, round-trip(RT) accuracy,

√
CJSD and class diversity.√

CJSDR excludes the Resolution class.

disconnection. Class diversity does no show any degradation, indicating that the noise-

reduction strategy does not affect the diversity of the predictions. The round-trip accuracy

on the other hand improved by almost 15%: removing noisy entries allows both forward and

retrosynthetic model to learn better the difference between correct and wrong chemistry. In

Figure 3 we report also the CJSD, the measure of the bias towards few classes over others.

The CJSD decreases substantially, indicating a reduced bias in the confidence distributions

across superclasses compared to the baseline.

2.4 Noise-reduced models assessment

We assessed the quality of the improved forward and single-step retrosynthetic models using

the same set of chemical reactions used in Schwaller et al. 9 . In addition, we considered few

additional retrosynthetic examples particularly challenging for the baseline model.15

The evaluation of the new forward model was characterized by the same performance of

the original model1 (see SI, Figure 3). The first set of compounds used to evaluate the

performance of the noise-removed retro model, as well as the parameters used to run the

retrosynthetic problems are reported in the SI (see SI, Figure 4). For literature references
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and for retrosynthesis results using the old model we refer to Schwaller et al. 9 .

For compound 1 the new model assigns the highest confidence to a one-step retrosyn-

thesis, trading the formation of the tetrazole ring for a commercial precursor carrying the

same substructure. While this is an interesting strategy for operational reasons, it utilizes

complex and more expensive starting materials. Nonetheless, the subsequent recommended

path shows disconnection strategies similar to those of the literature and the old model.

Only the conditions for the first retrosynthesis step changes from literature: recommending

trimethylsilyl azide instead of sodium azide. Both approaches are chemically valid, with the

most effective being decided by costs, risks, environmental impact, yield. For compound

2, three different synthesis are reported in literature, where the shortest one exploits the

opening of the epoxide ring. The improved model recommends an alternative sequence with

respect to all those known, which differs from the first one by two aspects. First, two reaction

steps are swapped: the attachment of the Grignard compound on the carbonyl group ver-

sus the N-alkylation. Moreover, the final ketone (alpha chloride) is not synthesized because

found as commercial. Although this new route is using starting materials relatively more

complex, the simplicity of the procedure may balance the increased cost of the precursors.

Similar to the baseline model, among the other predicted pathways we find the optimal one

reported in literature. Moving to compound 3, unlike the old model the automatic retrosyn-

thesis using the new model did not succeed in providing any retrosynthetic path. A deeper

analysis shows that the first disconnection (Diels Alder cycloaddition) has a lower confidence

(0.174) compared to the old model (0.362). The removal of forgotten events may have led

to the a reduction of a particular class of functional groups, which affects the assessment

of the forward reaction confidence in examples containing those specific functional groups.

This may be compensated by repopulating chemical reactions data with examples containing

functional groups more severely affected by the noise-reduction strategy. For compound 4,

the new model suggests an alternative strategy that avoids the problem of the conjugate

reduction of the aldehyde faced by the baseline model. The new model improves the choice
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of chemoselective strategies while still showing few weakness on the stereoselectivity likely

depending on the examples present in the noise-removed data sets. In fact, the choice of

a less stabilized phosphonate for the Horner-Wadsworth-Emmons reaction could lead to re-

duced selectivity for the formation of the double bond ’E’. Similar to the radical bromination

in allylic position, that may lead to selectivity issues on the primary carbon. Compound 5

shows identical retrosynthetic pathways both with the baseline and new model. Unlike for

the old model, the retrosynthesis of compound 6 proposed by the new model completes with

a narrower hyper- graph exploration finding a disconnection choice (alkylation of the ketone

in the most substituted position) which, although not optimal in terms of regioselectivity,

provides a viable path to the target. In both models, the first step is an ozonolisys, fol-

lowed by the deprotection of the alcoholic group: these two steps should be inverted as the

highly oxidizing conditions of ozonolysis could lead to a partial oxidation of the free hydroxyl

group. The retrosynthesis proposed by the new model for compound 7 is made of a single

step only. If we choose to exclude the most complex molecules within the ones proposed, we

can still identify a complete route. This route does not provide a central disconnection by

the opening of the ossiranic ring, as reported in literature, being characterized by peripheral

disconnections which lead to a sequential type of synthesis. The route is in any case valid

and makes a wise use of protections and deprotections steps to handle chemoselectivity. The

commercial compound found at the last step is still quite complex , but unlike the old model

the handling of the many chiral centers is satisfactory. For compound 8 the new model

proposes an additional retrosynthetic strategy, which shows the enhancement and flexibility

introduced by the noise reduced data. This strategy allows for a temporary increase of the

complexity of the molecule through the introduction of the carbamic ring. The retrosynthesis

for compound 9 performed with the new model terminates successfully and reveals itself to

be quick and simple with few obvious improvement points: at step 5 we find a saponification

of an ethyl ester to acid, which in the previous steps was transformed into a methyl ester,

resulting in a useless interchange of ester groups.
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retrosynthesis for the cleaned model. A tree structure is used to highlight the algorithm structure.
On the right, are reported the results for the old model on the same compounds. The precursors
highlighted in green are successfully found as commercial, while the red ones are not. Above each non-
commercial molecule is also reported the confidence that the model assigns to the set of precursors
predicted: if the confidence falls below a certain threshold the step is not carried on (this happens for
two of the molecules for the old model). More details on the retrosynthetic algorithm can be found in
Schwaller et al. 9

In Figure 4, we show few additional examples, together with the results for the baseline

and improved models. In RXN 1 is shown the impact of the improved confidence distri-

butions of the new model: the proposed Diels-Alder top-1 prediction has a much higher

confidence for the cleaned model (0.962) than for the old one (0.233). RXN 2 analyses a

reaction which involves the formation of an enolate. The cleaned model proposed a correct
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retrosynthetic strategy, where the old model failed, due to the low level of confidence in all

the proposed set of precursors. Another interesting case regards a multistep synthesis which

involves the preparation of reactive organometallic species, in particular non commercial

Grignard (RXN 3): the new model is clearly more confident about the predictions and this

allows to complete the retrosynthesis of the compound. The same does not happen in the

old model, which does not provide any suggestion after the synthesis of the metal-carbon

bond. For what concerns RXN 4, the new model successfully completes the retrosynthesis

for a Mannich reaction, proposing the correct set of reagents with a reasonable value of

confidence. The old model suggested instead a first addition step with a secondary ammine

(α,β-unsaturated ketone), which may not be the best choice even if chemically valid. In

addition, for the latter model the algorithm stopped at the second step (the preparation of

the α,β-unsaturated ketone) due to low confidence values of the proposed disconnections.

We also noted that the old model assigned quite low values of confidence (0.179) to reactions

like RXN 5, where a primary ammine and acetyl anhydride are used, whereas the cleaned

model synthesizes successfully the compound with high confidence.

3 Conclusions

In this work we present the first unassisted, machine-learning based technique to automati-

cally remove wrong and noisy chemical reactions from data sets. This methodology provides

a statistical alternative to the more tedious human or rule-based curation schemes. We ap-

plied the noise reduction strategy to USPTO-based data sets and we used the cleaned data

set to retrain both forward, retrosynthetic and classification models. Statistics on the test set

revealed an increase in the values of all the significant metrics (round-trip accuracy + 13%,

coverage + 1.4%, CJSD down to 60% of its original value for forward model and to 70% for

the retro model). We assessed the new model by reviewing several retrosynthetic problems

to highlight the improved performances. All the compounds used in our previous works1,9

were tested: overall the new model is able to either reproduce the results or propose valid
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alternatives. In most cases the confidence of the new model on the retrosynthetic steps is

increased, as highlighted in the last reactions comparison (Figure 4). The results show that

it is not the quantity but the quality of knowledge embedded in training data sets which

leads to more reliable models. We hope the development of noise-reduction protocol for

improving the quality of existing data sets will have an enormous impact on the application

of data-driven trained models.

4 Methods

4.1 Transformer model

As in previous works1,9 we used machine translation architectures to map the chemical syn-

theses onto the world of machine learning models. The reactants, reagents and products

were codified as Simplified molecular-input line-entry system (SMILES)16,17 strings, tok-

enized, and fed to the Molecular Transformer,1 the architecture based on the well known

sequence-2-sequence transformer by Vaswani et al. 14 . The hyperparameters of the model

were kept fixed throughout all simulations. The transformer is made of a set of encoder

layers and a set of decoder layers. The tokens of the input SMILES string are encoded into

(learnt) hidden vectors by the encoder. Those vectors are then fed to the decoder to predict

the output sequence, one token at a time. Based on the work of Schwaller et al. 9 , we decided

to set the number of layers in both encoder and decoder to 4 (size 384). The transformer

main characteristic is the presence of multi-head attention and the number of these heads

was set to 8. Dropout was also included in the model at a rate of 0.1. Adam optimizer

was used for loss minimization and the starting learning rate was set to 2. We used the

OpenNMT framework18 and PyTorch19 to build the models.
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4.2 Data

The reaction data set used to experiment on the forgetting cleaning strategy was the non-

public Pistachio (release of Nov. 18th 2019), derived from text-mining chemical reactions

in US patents. Molecules and reactions are represented as SMILES strings. A first coarse

filtering strategy was applied to the raw data set which counted approximately 9.3 million

reactions. First, all duplicate reactions were removed. Equal molecules in the same precursor

set were made unique and the set was then alphabetically sorted and any duplicate removed.

For consistency with the sequential design of retrosynthetic routes, multi product reactions

were eliminated and for single product reactions only the largest fragment (as defined by

RDKit20) was kept. Purification reactions were entirely removed.

The pre-filtered data set was then randomly splitted into training, test and validation

set. This brought the data set down to 2‘378‘860 entries for the training set, 132‘376 for

the validation set and 131‘547 for the test set (90%-5%-5% splitting). To enable a more

exhaustive model evaluation the splitting was performed on unique products selections, to

avoid similar examples being present in the training and test or validation. In Figure 5a the

percentage of examples present in the three different splits, divided into the 12 macro classes.

The same is reported for three different train data sets cleaned by the forward forgetting in

Figure 5b to show how the macroclasses get re-balanced. Note that the test and validation

sets were not subject to cleaning.

As in previous work,1 we choose not to make a distinction between reactants and reagents

because, even chemically, this splitting is not always well defined and can change with the

tool used to make the separation. Each char in the SMILES string was codified as a single

token and a new token was introduced, the ’∼’ in order to model fragment bonds.

4.3 Definition of forgotten events

In the context of chemical reaction and retrosynthesis, the definition of forgotten event

is of crucial importance. For forward prediction, given a data set of chemical examples

16



0 1 2 3 4 5 6 7 8 9 10 11
macro class ID

0

5

10

15

20

25

30

35
%

Test : 131548 samples Train : 2378860 samples Valid : 132377 samples

(a)

0 1 2 3 4 5 6 7 8 9 10 11
macro class ID

0

5

10

15

20

25

30

35

%

baseline
forget-10perc

forget-25perc
forget-40perc

(b)

Figure 5: (a) How the different superclasses are populated in the three splits: train, validation and test
set. (b) The balancing of the classes with the forgetting experiment: the baseline model is reported
together with 3 of the cleaned models.

A = (xi, yi), we denote as yi the predicted product given reactants/reagents xi. The accti

is a binary variable denoting if example i is correctly predicted at time step t. We identify

each time step with an epoch. A forward forgetting event occurs when a product molecule,

previously classified as correct at t − 1, is then wrongly predicted at time step t. On the

other side, a learning event occurs when at the next epoch the previously wrong prediction

becomes correct:

forgetting event accti < acct−1
i

learning event accti > acct−1
i

It can also happen that some events are never learnt and others are never forgotten. The

former are labeled as having an infinite number of forgetting events, the latter as having

none. While for the forward prediction, the definition of what is ”forgotten” is in line with

the one in the cited reference,12 some modifications need to be made for the retrosynthesis

definition.

In fact, for retrosynthetic predictions, the top-N accuracy of the single-step retrosyn-

thetic model is only a measure of how efficient the model is in memorising data rather than

extracting contextual knowledge. The goal is not to propose the most commonly reported
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sets of reactants and reagents that result in a certain target molecule, but to generate many

chemically correct sets, with ideally high diversity. A more appropriate metric would be

the round-trip accuracy, obtained by applying back a forward prediction to the predicted

precursors set and comparing the result with the original product molecule. In this sense,

a learnt retro-event occurs when we can recover the product molecule. Following the for-

malism used for the forward model, we define a data set of chemical examples D = (xi, yi)

where xi is a molecule to be synthesized, yi the target set of precursors. Again yi denotes

the model prediction (this time the precursors set). A retro forgetting event occurs when a

set of precursors, which led back to the product molecule at t− 1, fails in recovering this at

time step t:

forgetting event RTaccti < RTacct−1
i

learning event RTaccti > RTacct−1
i

RTaccti denotes the round-trip accuracy in binary form of example i at time step t.

4.4 The metrics for performance evaluation

In order to evaluate a single-step forward and retro synthetic prediction, appropriate metrics

need to be designed which do not rely on tedious, manual analysis by a human chemist.

Here, we use: top-n accuracy, round-trip accuracy, class diversity and coverage as reported

in a previous work.9 In Schwaller et al.,9 authors introduced the Jensen-Shannon divergence,

while here we turn to its cumulative version explained in detail in the next section.
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4.5 Cumulative Jensen-Shannon divergence

Jensen-Shannon divergence is a measure of how similar two or more discrete probability

distributions are.

JSD(P0, P1, ...PN) = H

(
N∑
i=0

1

N
Pi

)
− 1

12

N∑
i=0

H (Pi) (1)

Where Pi denotes a probability distribution and H(Pi) the Shannon Entropy for the dis-

tribution Pi. However, when we deal with continuous probability density functions the

generalization of this formula is not straightforward. The problem lies in the definition of

the entropy. The first expression proposed by Shannon21 to deal with the continuous case

was the one of differential entropy .

H (P ) = −
∫
p(x) log p(x)dx (2)

Where the capital letter P denotes the probability distribution and p the probability density.

This definition raises many concerns as higlighted in detail by Murali Rao et al. 22 , the most

important is the fact that it is ”inconsistent”, in the sense that a probability density function,

differently from a probability function, can take values which are greater than 1. As a

consequence, entropy for values less than 1 will contribute positively to the entropy, while

those greater than one with a negative sign and the points equal to 1 will not contribute

at all. This brings to an ambiguous definition of the information content carried by the

differential entropy expression. A way to overcome this issue is to define a new version of

entropy which defines both continuous and discrete distributions. This quantity is known as

Generalized Cumulative Residual Entropy22.23

GCRE(P ) = −
∫ ∞
−∞

F (X > x) logF (X > x)dx (3)

F (X > x) = 1− P (X < x) (4)
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The key idea is that now P (X < x) denotes the cumulative distribution and no more the

probability density function. The advantages in the use of this definition is duplex. First,

there is no more inconsistency: the principle that the logarithm over a distribution is a

measure of its information content is preserved. Second, we don’t have to rely on probability

density functions, which need to be estimated from the data with parametric methods like

kernel density. This way, we can easily calculate directly from the data the cumulative

distribution function, which is the ”real” one representing the data ( giving that we have

enough observations). If not enough observations are provided, the error in the calculation

of the entropy will only related to missing information and will not be dependent on the

parameter used to estimate a probability density function. As a consequence, a cumulative

Jensen- Shannon divergence23 can be defined to compare cumulative distributions:

CJSD(P0, P1, ...PN) = GCRE

(
N∑
i=0

1

N
Pi

)
− 1

12

N∑
i=0

GCRE (Pi) (5)

With this new metric we were able to compare information content of likelihood distributions

extracted from different reaction macro classes. As extensively explained in a previous work,9

having a model with dissimilar likelihood distributions is equivalent to bias towards specific

reaction macro classes over others. The model with the lowest CJSD value will be the

one which has the most uniform likelihoods distributions. In Figure 6 can be found the

cumulative distribution functions for the baseline and the cleaned forward model divided by

the 12 macro classes. These are the distributions of correctly predicted samples from the

test set used in the evaluation of the CJSD.

Note that the cumulative distributions for the retrosynthesis were constructed from the

forward likelihoods obtained by applying back the forward model to the top-10 set of pre-

cursors.
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Figure 6: Cumulative distribution functions divided by macro classes of the correctly predicted samples
from the test set (forward model). (a) cleaned model: the distributions are more peaked towards 1.0
because removing noisy samples allows the model to be more sure of the predictions. (b) baseline
model.
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4.6 The baseline model

For the baseline model of both forward and retro prediction, we trained the Molecular

Transformer1 directly on the 2.4 million reactions extracted from the coarse filtering of

Pistachio. The forward model used the tokenized smiles of the precursors (reactants and

reagents with no distinction), while having the SMILE string of the product molecule as a

target. For the retro model the two were swapped.

First of all, we tried to establish a metric of comparison with our ”old model”, which

is the one currently running on the IBM-RXN open source online platform for chemical

synthesis prediction.1,15 These old models (both forward and retro) were tested both on the

old and new test set. In Figure 2 the results can be compared to the performances of the

new baseline models.

Table 2: Top-n accuracy of old models tested on the old and new test sets. For the forward models
the top-1 and the

√
CJSD is reported.

√
CJSDR is the cumulative JSD without the Resolutions. For

retro models, top-10 is reported along with the four metrics presented in the previous section 4.4:
round-trip accuracy (RT), class diversity (CD), coverage (COV), and

√
CJSD. The latter is computed

on the forward likelihood distributions generated by the cleaned forward model on the precursors set.

models top-1 top-10 RT
√
CJSD

√
CJSDR CD COV

fwd-old: old ts 71.86 - - 0.066 0.048 - -
fwd-old: new ts 68.41 - - 0.123 0.047 - -
fwd-new: new ts 69.32 - - 0.095 0.052 - -
retro-old: old ts - 21.11 70.08 0.106 0.027 1.5 89.77
retro-old: new ts - 20.33 71.26 0.106 0.028 1.6 94.68
retro-new: new ts - 24.25 73.27 0.076 0.029 1.6 95.71

This check on the performances was done in order to make sure that no significant

difference arose from using the new release of Pistachio. We notice that indeed top-1 for

forward clusters around 70%. If the performance of the old model on the new test set was to

be clearly better than the one of the new baseline model, no conclusions on the comparison

of the two could have been drawn as the strategy used to extract the two sets was different:

an increased performance could have been a sign of a strong presence of examples from

the new test set in the training set of the old model. Note that, in order to have a more

appropriate comparison of the two models, the new baseline forward model was augmented
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with randomized reactions of the training set (in equal number to the training examples) as

well as reaction extracted from textbooks, the same technique reported in a previous work

of Schwaller et al.1 For the retro model, we reported top-10 accuracy, but more importantly

the round-trip accuracy, which is already slightly better for the new baseline model on the

new test set compared to retro-old on the same set. The coverage follows the same trend,

while the class diversity is not affected. It is important to point out that the forward model

used for the ”back-evaluation” of the retro, was the same for all three models (retro-old: old

ts, retro-old: new ts, retro-new: new ts) and is identified with the one called ”forget-25perc”,

the cleaned forward model presented in section 2.2.

4.7 Statistical analysis of forgotten examples

Concerning the forward forgetting experiment, some statistical evaluations were performed in

order to make sure that the computation of how many times an example was forgotten/learnt

was not completely random. First, two models were trained with a different seed (10, 20) to

the original one used (42) and again the number of forgotten events was computed. These

counts were then analyzed across seeds. The table in Figure 7 reports the Pearson coefficient

computed for couples of seeds. By being close to one it indicates a high correlation between

the numbers. Also the standard deviation though all three seeds behaves well (Figure 7a),

with most of the examples concentrating around 0 and some outliers between 20 and 25.

The position of the outliers depends on the number chosen (n = 50) to substitute the ”∞”

denoting the events never learnt (this substitution was necessary to compute the standard

deviation). Also the overlap of the removed sets, in all of their percentages shows its stability

in oscillating around 100% (Figure 7b).

4.8 Retrosynthetic forgetting strategy: a random failure

To prove the random behaviour when cleaning data set using the single-step retrosynthetic

model, we performed a simple statistical experiment. We used the forgetting forward strategy
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Figure 7: On the left the Pearson coefficient calculated for couples os seeds. (a) Standard deviation of
the number of forgotten events calculated for each sample across the three seeds. The concentration of
outliers around 20/25 is due to the fact that never learnt events, nominally ∞ forgotten, were defined
as forgotten 50 times in order to compute a stdv. Indeed, a minor percentage of examples in some of
the seeds is never learnt and in others is learnt with a high forgetting rate. (b) Overlap between the
removed data sets in different percentages across seeds. The overlap oscillates around 100%, indicating
the stability of the methods across seeds.

to label all the examples tagged for removal (20% for the ”forget-20perc”, 25% for the ”forget-

25perc”, etc.) without actually removing them from the original data set. Now that we have

a label for the removed examples, if we were to draw some of them (random retro forgetting)

from the data set with no replacement we could describe the probability of drawing a ”blue”

sample with an hypergeometric distribution (8a).

The probability of drawing all the labeled samples would be 0 for all cases and maximal

for the percentages which correspond to the red points in Figure 8b. In Figure 8b we have

the percentage of samples removed by the retro model which match those removed by the

forward model. We see that the behaviour is almost random and maps the red points.

Otherwise, we would have expected an overlap close to 100% for all the removed data sets.

One more proof of the random behaviour of the forgetting retro can be seen in Figure 8c. The

one-precursor reactions, wrong chemical reactions because of missing reagents, are detected

and removed by the forgetting forward , but not by the forgetting retro (their percentage

remains constant in the data set cleaned by the latter).
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Figure 8: (a) statistical experiment: detecting whether the selection of most forgotten examples by the
retro model is random. (b) Overlap between the data sets removed by forward and retro models. The
red line models how the overlap should be if the retro selection were entirely random. (c) Percentage
of one-precursor reactions in the data set cleaned by the forward forgetting and by the retro forgetting.
The former is able to identify them, while the latter is not.
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