
  

 

 

  

 

 

 

 

 

 

 

A graph-convolutional neural network for addressing small-scale 
reaction prediction 

Yejian Wu,‡a Chengyun Zhang,‡a Ling Wanga and Hongliang Duan*a 

We describe a graph-convolutional neural network (GCN) model 

whose reaction prediction capable as potent as the transformer 

model on sufficient data, and adopt the Baeyer-Villiger oxidation to 

explore their performance differences on limited data. The top-1 

accuracy of GCN model (90.4%) is higher than that of transformer 

model (58.4%). 

The process of predicting a suitable product given reactants is 

one of the central pillars in the chemical synthetic route. Chem-

ists generally predict reaction outcomes with experience, heu-

ristics, and rules of thumb, which is expensive and time-con-

suming. Recently, the rapid advances made in deep learning en-

courage the application of computer-aided methods in chemical 

research and the use of those algorithms has become a new 

trend in the field of molecular synthesis.1-6 

 In the past few years, there are many methods have been 

proposed to address the problem of reaction prediction.7-9 A 

neural machine translation (NMT) model was introduced by 

Nam and Kim in 2016.10 In their work, a molecule was repre-

sented as the simplified molecular-input line-entry system 

(SMILES),11 a presentation of text sequences containing the in-

formation about atoms and chemical bonds in a compound, and 

reaction prediction was treated as a translation problem. In the 

same year, Wei et al. utilized fingerprints to describe chemical 

compounds, and further linked reactants and products as reac-

tion fingerprints.12 Trained on training samples with limited 

types (only include alkyl halide reactions and olefin reactions), 

the neural model could identify the suitable reaction types for 

input reactants. In addition, Coley et al. combined rigid reaction 

templates with a neural network to predict the majority of pos-

sible products from a given set of reactants.13 In their study, the 

reaction templates were used to generate a series of possible 

candidate products that complied with chemical regulations, 

and then the neural network model selected the most possible 

product from the candidate products. 

 However, most of the previous studies have not revealed 

the chemical information of the reaction. In contrast to those 

algorithms, work by Coley et al. innovatively proposed a graph-

convolutional neural network (GCN) model to describe the de-

tailed features of compounds and regarded the problem of pre-

dicting chemical reactions as a graph-based task rather than a 

language translation task.14,15 In point of fact, graph theory has 

been widely applied in many aspects of chemistry.16-22 In this 

context, a molecule can be regarded as a graph comprising fea-

tures of atoms and bonds, and chemical information such as ar-

omaticity can be taken into consideration. More significantly, 

the application of the attention mechanism23(further infor-

mation about attention mechanism in Section S2.2 of the ESI†) 

enables the model to capture the features of the atom itself and 

other atoms and bonds in a reaction, and the prediction power 

on the basis of ample reaction data has been confirmed by 

Coley et al.15 

 The research of Philippe et al. further verified the ability of 

GCN model.24 They investigated that the GCN model can lead to 

commensurable performance compared to transformer model 

on sufficient training data. It's noting that the transformer 

model, a fully attention-based NMT model, is a powerful tool in 

chemical reaction prediction. What's more, Wang et al.25 indi-

cated that the predictive performance of transformer model is 

greatly affected by the amount of available data and the same 

flaw was also pointed out by Zhang et al.26 In other words, the 

transformer needs to be trained on ample training data before 

it is put into reaction prediction. Hence, we adopt the GCN 

model to make predictions with limited training data and the 

Baeyer-Villiger oxidation (further information about Baeyer-Vil-

liger oxidation in Section S1 of the ESI†) is applied to explore the 

performance of GCN model trained on the limited samples. 

 In this study, we focus on the small-scale reaction prediction 

and show the performance comparison between the GCN 

model and transformer model in the case of scant data. In con-

trast to the transformer model which is text-based, the GCN  
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Fig. 1 Schematic diagram of the method for predicting reaction products. We represent the reactant molecules (A) as an attributed graph (B). A graph convolutional neural network 

learns to calculate both local features and context vectors (C) to predict the likelihood of bond changes for each pair of atoms (D). Generate a series of candidates (F)  by arranging 

and combining the bonds that are most likely to change, and rank these candidates through another graph convolutional  network. We extract top-3 products and compare them 

with the true product. 

model treats a chemical molecule as a graph where the bonds 

are equal to edges and atoms correspond to nodes. We clearly 

mention that our work aims to show the predictive power of the 

GCN model in the face of the lack of training data rather than 

pursue state-of-the-art performance. 

 The prediction task in our work is divided into two steps and 

the overall schematic diagram is summarized in Fig. 1. Firstly, 

the model equipped with the Weisfeiler-Lehman Network (WLN) 

(further information about WLN in Section S2.1 of the ESI†) 

learns to analyze the likely reaction centers of an overall reac-

tion - finding out where bonds break and where bonds form. 

Next, according to changing bonds, the Weisfeiler-Lehman Dif-

ference Network (WLDN) (further information about WLN in 

Section S2.4 of the ESI†) enumerate and rank product candi-

dates with the constraints of the chemical valence rules. Within 

the perspective of the entire network, the process of the model 

predict reactions is parallel to the way where humans describe 

chemical reactions. To achieve high performance in predicting 

possible products with the scarcity of training examples, the 

model needs to not only accurately find the reaction center in a 

reaction but also compute the possibility of predicted products. 

And it should be noted that the reactants are input as SMILES in 

the process of predicting reaction although the GCN model ex-

tracts relevant properties of molecular in the formulation of 

graph. In other words, the model translates the reactants 

SMILES into the graph and incorporate the knowledge of chem-

istry to make reaction prediction. 

 We employ the Baeyer-Villiger oxidation reaction, a repre-

sentative small-scale name reaction, to show the ability of the 

GCN model faced with the low-data problem. The data originally 

derived from Reaxys is collected by Zhang et al. They extracted 

those reactions from the commercial databases and filtered ir-

relevant information (e.g., temperature, time, yields). Then, the 

reaction dataset is further preprocessed to eliminate the dupli-

cate and error reactions, and the simplified reaction dataset 

contains reactants and products only. What's more, those reac-

tions SMILES are canonicalized by RDKit27 and arbitrarily divided 

into training, validation and test datasets at a ratio of 8:1:1. In 

our work, we further apply the RXN Mapper28, an atom-map-

ping tool, to map the reaction data so that each atom across a 

reaction has a unique label. With the atom mapping infor-

mation, the correspondence between reactants and products in 

a reaction can be presented.  

 A conclusion that can be drawn from previous work is that 

the GCN model can compete against the transformer model on 

the large-scale data. In Philippe's work24, they compared the 

performance of GCN and transformer model in a dataset called 

USPTO_MIT. The USPTO_MIT data set was processed by Jin et 

al., which derived from USPTO granted patents. In order to 

show intuitive results and convenient comparison, top-n accu-

racy is adopted to evaluate model performance. It can repre-

sent the ratio of the target product that exists within the top-n 

candidates predicted by the model.29 As listed in Table S1, the 

accuracy difference between GCN and transformer model is 

slight, which indicates that both the GCN model and trans-

former model can learn enough reaction knowledge from the 

sufficient data set. 

 However, the transformer model fails to absorb plenty of 

chemical knowledge from training data of limited size owing to 

the data-driven nature7. Hence, we apply the GCN model to ex-

plore the challenging small-scale reaction prediction. To mani-

fest the performance of the GCN model on limited data, we  



  

  

Table 1 Comparison of the top-n accuracy of the transformer and GCN models on 
the Baeyer-Villiger oxidation reaction dataset 

aThe top-n accuracy of transformer on the Baeyer-Villiger oxidation reaction da-
taset is originally derived from Zhang et al.'s work. 

compare it with Zhang et al.'s work where the results of trans-

former model are revealed. Hence, there are two models involv-

ing in our experiment, one is the transformer which is a baseline 

model and the other is the GCN model. Those models both are 

trained and tested on the Baeyer-Villiger oxidation reaction da-

taset and the top-n results of them are shown in Table 1. It's 

worth noting that the results of transformer on the Baeyer-Vil-

liger oxidation are originally derived from Zhang et al.'s work.

 We observe that the GCN model performs well with a top-1 

accuracy of 90.4%, which is much higher than the 60.9% accu-

racy of the transformer model, even for such small-scale data 

reaction involving the regioselectivity. In the case of top-3 ac-

curacy, the GCN model is also significantly higher than the trans-

former model by 21.8%. The higher accuracy of the GCN model 

(>90%) shows that the GCN model has better applicability on 

limited data than the transformer model. 

 As depicted in Fig. 2, the transformer model, a data-driven 

model, can achieve similar performance to the GCN model on 

large-scale data sets. More importantly however, the gap of ac-

curacy between the GCN model and transformer model be-

comes hard to ignore as the available data volume decreases. In 

the following section, we chose top-1 results to demonstrate 

the great value of the GCN model on the small-scale reaction 

prediction and detailly analyze the performance of this model 

to further improve its ability in the task of predicting the out-

comes of reactions. 

 Fig. S3 represents some examples of group migration error 

that occur in the transformer model but not in the GCN model. 

Take Fig. S3(a) as an example, there are two chlorines are at-

tached to the right α-carbon of the carbonyl group in S-methyl 

6,6-dichloro-7-oxobicyclo[3.2.0]hept-2-ene-2-carbothioate.The 

electron-withdrawing effect of chlorine greatly reduces the 

electron cloud density of the carbon and hinders the migration 

of the substituent.30 Hence, the reaction tends to generate the 

product in which the oxygen atom is inserted at the left position 

Fig. 2 Performance comparison between GCN model and transformer on large-scale data 

and small-scale data respectively. 

of the carbonyl group. This is indeed what is logical and what 

the GCN model predicts. Besides, if an alkoxy group is attached 

to the adjacent carbon of the carbonyl group, the lone pair elec-

trons on the oxygen attached to the α-carbon may facilitate the 

migration of the group.31 There is a representative reaction ex-

ample shown in Fig. S3(c). The 6-methoxy-2,2,5,7-tetramethyl-

tetrahydrobenzo[d][1,3]dioxol-4(3aH)-one can be oxidized to 

form the 7-methoxy-2,2,6,8-tetramethyltetrahydro-[1,3]diox-

olo[4,5-b]oxepin-4(3aH)-one.The prediction made by the GCN 

model is in line with the reported ground truth. However, the 

transformer model does not capture similar chemical rules. 

From Fig. S3, we can observe the GCN model can acquire more 

information about the rule of group migration compared to the 

transformer model. 

 Some examples of other error types predicted by the trans-

former model are listed in Fig. S4. We can find that a reactant 

contains two carbonyl groups that can be attacked by peroxide. 

An additional level of complexity for the model is to identify 

where is the real reactive site when the reactant is equipped 

with two carbonyl groups. As is depicted in Fig S4(a), 5-acetyl-3-

((tert-butyldimethylsilyl)oxy)-2-methylcyclohexan-1-one con-

tains two carbonyl groups and 4-acetyl-6-((tert-butyldimethylsi-

lyl)oxy)-7-methyloxepan-2-one is the ground truth. However, 

the transformer model blindly treats both carbonyl groups in 

the reactant and the prediction made by this model is 6-((tert-

butyldimethylsilyl)oxy)-7-methyl-2-oxooxepan-4-yl acetate. In 

contrast to the transformer model, the predictions of the GCN 

model are consistent with the reported ground truths, which in-

dicating powerful predictive ability of the GCN model on the in-

sufficient training samples. Furthermore, those examples reveal 

that the GCN model gains a deeper insight into the knowledge 

about the Baeyer-Villiger oxidation reaction than the trans-

former model after training on the same data set. 

 A side effect of phrasing reaction prediction as a translation 

problem is that the alteration of a single character in the SMILES 

may lead to the structure of a molecule to change or even ren-

der it invalid.32 Due to the text-based characteristic, it's inevita-

ble that the transformer model appears the error type of 

SMILES invalid in the prediction products. There are representa-

tive examples of SMILES error in Fig. S5. The common feature of 

those reactions is the complex ring structures, which may in-

duce the SMILES invalid in the prediction process. In turn, the 

GCN model performs better on these reactions. In the Fig S5(c), 

when input methyl 2-hydroxy-9-oxo-4-phenylbicyclo[3.3.1]non-

ane-2-carboxylate, the ground truth product of this reaction is 

methyl 4-hydroxy-10-oxo-2-phenyl-9-oxabicyclo[3.3.2]decane-

4-carboxylate. Due to the complexity of ring structure in this re-

action, the wrong SMILES given by the transformer model can-

not be converted to a molecular structure. However, the GCN 

gains the chemical information in a graph which can avoid 

SMILES error and performs better in terms of compounds with 

complex structures. 

 Despite the reliable predictive performance of the GCN 

model on the small-scale reaction, there still exists space for fu-

ture improvement. To further improve the accuracy, we make a 

deeper analysis of results of the GCN model. The mistakes in our 

experiment are divided into four classes and the distribution of 

Model 
Top-N accuracy (%) 

Top-1 Top-2 Top-3 

Transformera 60.9 68.0 72.1 

GCN 90.4 93.4 93.9 



  

  

prediction errors can be found in Table S2. The error type with 

the largest proportion is group migration error, accounting for 

45.5% in wrong predictions. Because both induction effect and 

conjugation effect affect the migration ability of group in a re-

action, it remains a challenge to judge the group which is more 

likely to migrate. And we further carried out a detailed analysis 

of the four categories errors of the GCN model. (detailed infor-

mation is available in Section S5 of the ESI†). 

 As stated earlier, the GCN and transformer models can 

achieve comparable performance on a large set of data. How-

ever, when scaling down to a small size of data, the transformer 

is hard to learn enough knowledge for making accurate reaction 

prediction.25,26 Hence, we describe the GCN model in our work 

and apply it to predict the most likely products given reactants. 

The key difference between GCN and transformer model is that 

the former relies on the graph theory but the latter is text-

based. 

 In contrast to the transformer model, our model views reac-

tion prediction as a transformation of graphs rather than a lan-

guage translation task. By dividing the reaction prediction into 

two steps, the interpretability of the model is aligned with the 

chemist's description of a chemical reaction. Here, we chose the 

Baeyer-Villiger oxidation reaction, a classic small-scale name re-

action, to verify the predictive performance of the GCN model. 

The top-1 accuracy of the GCN model is 90.4%, which is signifi-

cantly high than the transformer model. It elucidates that the 

GCN model not only distills specific chemical principles of the 

Baeyer-Villiger oxidation reaction but also has a profound 

chemical understanding from limited-data. In addition to com-

pare the results of the GCN and transformer model, we further 

list some error types of the GCN model to learn more about this 

model. Overall, the aim of our work is to show that the GCN 

model is a better-suitable method for small-scale reactions than 

the transformer model. 
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