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ABSTRACT 

Multi-Parameter Optimization (MPO) is a major challenge in New Chemical Entity (NCE) drug discovery 
projects, and the inability to identify molecules meeting all the criteria of lead optimization (LO) is an 
important cause of NCE project failure. Several ligand- and structure-based de novo design methods 
have been published over the past decades, some of which have proved useful multiobjective 
optimization. However, there is still need for improvement to better address the chemical feasibility 
of generated compounds as well as increasing the explored chemical space while tackling the MPO 
challenge. Recently, promising results have been reported for deep learning generative models applied 
to de novo molecular design, but until now, to our knowledge, no report has been made of the value 
of this new technology for addressing MPO in an actual drug discovery project. Our objective in this 
study was to evaluate the potential of a ligand-based de novo design technology using deep learning 
generative models to accelerate the discovery of an optimized lead compound meeting all in vitro late 
stage LO criteria. 
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1. INTRODUCTION 

Drug design is a challenging task. From hit identification to hit-to-lead and lead optimization, 
the quest to discover a new chemical entity (NCE) with desired properties is burdensome. Exploration 
of a nearly infinite chemical space (1060 drug-like molecules is a low range figure)1,2 is required in order 
to solve a multi-parametric optimization (MPO) challenge: identifying the rare compounds which 
satisfy a blueprint encompassing criteria such as biological activity, selectivity, (lack of) toxicity, 
pharmacokinetics (i.e. DMPK), synthetic accessibility and finally novelty.3,4 The average cost to develop 
a preclinically validated drug candidate is estimated around $50 million, and drug design, more 
specifically lead optimization, represents the lion’s share (~70%) of the cost of preclinical research.5  

Structure- and ligand-based computer aided drug design (CADD) technologies (e.g. docking, 
QSAR, etc.), which have been developed to improve the productivity of the drug design process, have 
brought notable progress over the last decades.6,7 Still, most classical CADD approaches have focused 
on the prediction of molecular properties rather than on the exploration of the chemical space to 
identify novel compounds with optimal properties. Such in silico exploration of the chemical space has 
mostly been performed through the virtual screening of pre-existing or virtual compound libraries, 
with the exploration being intrinsically restricted to the initial compound library.8,9 Graph-based 
genetic algorithms, sometimes used for in silico chemical optimization, have had limited success and 
are mostly limited by transformation rules.10 More recently, the development of artificial intelligence 
(AI) approaches in CADD, and more specifically de novo drug design through the use of deep generative 
models, has triggered a lot of interest in the CADD community.11 Indeed, in contrast to traditional 
virtual screening methods, deep generative models allow to effectively explore the chemical space by 
designing new molecules and optimizing the desired parameters during the generative process. 

Generative models for molecular design can be characterized by three main features: which 
molecular representation they use, how they generate molecules, and how they perform property 
optimization. Many methods have been reported, each with different approaches regarding those 
features: i) The molecular representation can be either text (SMILES,12,13 SELFIES,14,15 DeepSMILES16), 
or a graph or a set of fragments.17-19 ii) The molecule generation strategy can use a simple policy, for 
instance: add or remove atoms or bonds.17 It can also rely on deep generative models such as recurrent 
neural networks (RNNs), auto-encoders (AEs) or generative adversarial networks (GANs).20,21 iii) The 
property optimization strategy can be based on reinforcement learning,17,22-23 continuous 
optimization,20 Bayesian optimization,24 genetic algorithms15 or particle swarm optimization.25 

Despite the amount of research in generative modeling and its potential to allow an efficient 
exploration of the chemical spaces to identify new molecules with the desired in silico properties, 
evidence of the benefit of such AI-based approaches to solve MPO issues in complex real-life cases is 
still elusive, and AI-based drug design is perceived as overhyped by a significant part of the chemists’ 
and chemo-informaticians’ community.26 

As previously stated, MPO is a major challenge in NCE drug discovery projects, and the inability 
to identify molecules meeting the Target Product Profile (TPP) in LO is an important cause of NCE 
project failure or delay. Herein, we describe the application of a ligand-based de novo design AI 
technology based on deep generative models in a real-life LO stage drug discovery project and its 
impact on fostering the discovery of optimized lead compounds meeting the project’s TPP criteria.  
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2. MATERIALS AND METHODS 

2.1. Project dataset 

The selected project was a live internal drug discovery project at LO stage that had been 
running for several years. The project dataset consisted in a library of 881 molecules with associated 
bioactivity measurements from 11 biological assays: one primary activity assay (undisclosed 
phenotypic assay: % of activation at 30nM), 6 off-target activity assays (selectivity criteria on 5-HT2A, 
5-HT2B, alpha1, D1, Nav1.2, hERG: % of inhibition) and 4 ADME assays (microsomal stability on human 
(HLM) and rat (RLM): % of stability; permeability and efflux Caco2 assays: % of absorption and efflux 
ratio). For each objective, a threshold value was defined according to the target product profile (TPP) 
designed by the project team. A summary of the thresholds, percentage of compounds measured and 
percentage of compounds meeting the required threshold for each assay is reported in table 1.  

 

 
Table 1: Statistical outlook of the initial dataset (Each column represents an assay and the concentration at which 
compounds were tested. ” Filled %” describes the % of molecules in the dataset which have data in the assay. “Blueprint 
Threshold” is the value set as the objective to achieve in each assay. “In blueprint rate” is the percentage of molecules 
meeting each objective individually.) 

 

The dataset was sparse, with 10-70% missing data rates depending on the objectives. Because 
of the specificity of the primary assay, a complex ex vivo phenotypic assay, the ADME assays were very 
well documented, whereas only 251 compounds had been measured in the primary activity and 
selectivity assays. The dataset was well balanced, with >50% compounds meeting individually most 
objectives, with lower rates (~30-35%) observed for 5-HT2A, 5-HT2B, alpha 1 and HLM.  

 

 

 

Figure 1: % of molecules in the initial project dataset meeting the different objectives along the chronology of the 
project (light grey: molecule 1 to 780; medium grey: molecule 781 to 830; dark grey: molecule 831 to 881). 
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The evolution of the percentage of compounds meeting each objective during the chronology 
of the project is displayed in figure 1. It shows that the project team has been able to substantially 
increase the performance across iterations for Nav1.2, hERG, RLM, HLM, with 80-90% of designed 
molecules meeting the required goal at the end of the program. Conversely, performance had 
strikingly dropped on 5-HT2A, alpha 1, D1, and permeability assays. As an example, only 6% of the last 
fifty molecules synthesized met the 5-HT2A selectivity objective.  

In the subset of 48 molecules out of 881 which had been measured against all 11 objectives, 
the average number of objectives met was 6.4 out of 11. Among these, 6 molecules appeared to have 
a promising profile, meeting 9 objectives out of 11 (table 2). Molecule 732 (mol 732) depicted in Figure 
2 was the best compound in the whole dataset, meeting all objectives except absorption, which was 
nearly met, and efflux.  

 

Figure 2: Structure of the best molecule, mol 732, of the initial dataset. 

 

It is worth noting that the 1,2-benzisoxazole in mol 732 was also found in 61% of the project’s 
compounds, and in 78% of the last 50 compounds made by the project team, indicating the importance 
that had been given by the medicinal chemistry team to that substructure, as a seemingly promising 
avenue for achieving a good balance between all desired properties. Only a couple of piperidine and 
piperazine linkers were used throughout the project, while more variability had been introduced in the 
East part heterocycles. 

 

Table 2: Biological profiles of the most promising lead molecules in the initial project dataset. 

Also worthy of note, as shown in Table 2, a compound with a promising profile, mol 435, 
meeting 9 out of 11 objectives but missing absorption and efflux, quite close to mol 732 in terms of 
biological profile, had been obtained much earlier in the project. 297 additional molecules were 
needed to partially improve the overall compound profile. During the design process from mol 435 to 
mol 732, permeability objectives were met in three molecules (mol 555, mol 559 and mol 663), but 
only to the detriment of 5-HT2A/B selectivity or metabolic stability.  

mol 732 

mol 732 
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2.2. QSAR models development 

Bioactivity data were binned according to TPP thresholds (i.e., 1 if meeting the TPP specification, 
else 0). Eleven independent QSAR models were developed using ridge logistic regression based on 
Morgan fingerprint molecular representations.27 The Morgan fingerprint was built without including 
chirality (two stereoisomers have an identical fingerprint) as most of the molecules in the dataset were 
achiral and the stereochemistry was known. No specific processing of tautomers was performed (two 
different tautomers of the same molecule have different fingerprints and likely different scores).  

Model selection was performed using k-fold (k=4) cross-validation. It concerned two parameters: 
the penalty parameter and the operating threshold probability. The penalty parameter was selected 
to maximize the ROC AUC.28 Once the penalty parameter selected, the operating threshold probability 
to predict conformity to TPP (noted as 1 in figure S1) was selected on the former k-folds to maximize 
precision to the detriment of recall, in order to reduce the risk of false positives. The best model, 
trained on 80% of the data (i.e., training set) was subsequently tested on the remaining 20% of the 
initial dataset (i.e., test set).  

 On average, the QSAR predictive models performed well with high precision in the test sets, 
except for 5-HT2B (precision 67%). Interpretability of the results was difficult for activity, alpha 1 and 
5-HT2A due to the small number of positive compounds in the test set (confusion matrices are 
provided in figure S1, ROC AUC plots are provided in figure S2). The selected models were then trained 
on the whole dataset before switching to the generative phase of our work. 

 

2.3. Generative model 

As explained above, many architectures of molecular deep generative models have been 
reported to date. At the time this study was conducted (it was initiated in 2017), fewer architectures 
had been published. Molecule generation and property optimization strategies were inspired by Segler 
et al. which uses a deep recurrent neural network (RNN) generator.13 
 

2.3.1. Molecule generation strategy 

A deep recurrent neuronal network (RNN), and more precisely a deep Long Short-Term 
Memory (LSTM), was used to generate molecules represented as SMILES.12,29 The LSTM was first 
trained on the ChEMBL database, using teacher forcing,30 to build a character-based language model 
for generating SMILES strings.13  

It is reminded that the role of a language model 𝑝 is to model the next character probability 
distribution given the sequence of previous characters: 

𝑝(𝑥!"#|𝑥#𝑥$…𝑥!) = 𝐿𝑆𝑇𝑀(𝑥!"#|𝑥#𝑥$…𝑥!) 

SMILES are generated by iteratively sampling the next character from its inferred past 
conditioned distribution 𝑝(𝑥!"#|𝑥#𝑥$…𝑥!). Generating a SMILES starts and ends respectively with the 
special tokens of the vocabulary ‘START’ and ‘END’. 

The SMILES in the ChEMBL database were transformed into their canonical achiral RDKIT 
version. No data augmentation by enumerating the different ways of writing a SMILES, nor by 
enumerating the tautomeric forms of the same compound was performed. Thus trained, the LSTM 
language model generates achiral SMILES. Identical compounds can be generated with different 
writings of their SMILES. Tautomers of the same compound are generated as distinct molecules. 
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After being trained on ChEMBL, the LSTM language model had a 94% SMILES chemical validity 
rate.  

 
Scheme 1: Generative model architecture 

 

2.3.2. Project dataset distribution learning 

The LSTM trained on ChEMBL database has learnt to generate molecules belonging to ChEMBL 
chemical space. 

 In order to be scored, generated molecules should stay near the applicability domain of the 
QSAR models. This applicability domain can be approximated by the structural similarity to the project 
dataset. 

Thus, the previous LSTM model was re-trained in teacher forcing on the project dataset. This 
second training allows to zoom in the chemical space studied so that QSAR models can be applied.  

 
2.3.4. Molecule optimization strategy 

The molecule optimization strategy that was used is named “Hillclimb-MLE”.13,23 It is an 
iterative process where the LSTM generative model is fine tuned in teacher forcing on an optimal set 
of SMILES that evolves over time as follow: step after step, this set of SMILES is updated by retaining 
only the top 10% of compounds generated since the first step. The optimality ranking was established 
using a scalar reward function that combines thirteen targets: 

 + Eleven probabilities of activity (𝑝%)#&%&## returned by the classifiers described above 
(QSAR models built on the training data set):  

 + Similarity to the project dataset 𝐷, computed as: 

𝑆(𝑚𝑜𝑙) = max3𝑇𝑎𝑛𝑖𝑚𝑜𝑡𝑜_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦;𝑚𝑜𝑙,𝑚𝑜𝑙'=	;𝑚𝑜𝑙' ∈ 𝐷A 

 + QED. 31 
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Denoting (𝑥%)#&%&#( and (𝑇%)#&%&#( respectively the vector of our thirteen targets of interest 
and their thresholds for being in the blueprint, the reward function used in this project was the 
following: 

𝑅𝑒𝑤𝑎𝑟𝑑((𝑥%)#&%&#() = 	−Glog	 K
𝑥%
𝑇%
L

#(

%)#

 

Thresholds of QSAR scores (i.e., (𝑇%)#&%&##) are their corresponding probability operating 
thresholds. The selected thresholds for similarity to the project dataset (i.e., 𝑇#$) and QED (i.e., 𝑇#() 
are 0.5 and 0.4, respectively.  

Results are seed dependent and thus, many runs were conducted, each one leading to new 
propositions to solve the problem. 

 

2.4. Assessment and ranking of generated compounds  

The generative algorithm designed 150 virtual compounds predicted to be optimal with 
regards to the project’s TPP (i.e. predicted to meet the required threshold for all targets) , and with 
reasonable complexity as assessed by a chemist (at the time of the study, no satisfying synthetic 
accessibility scoring tool was available to help prioritize compounds). Virtual candidates were ranked 
on their overall probability of being in the TPP, their drug likeness (QED),31 and their similarity to the 
initial dataset (i.e., Tanimoto distance). Indeed, the applicability domain of the QSAR models is a critical 
point and must be carefully monitored to avoid false positives.  

To help chemists assess the novelty and risk associated with the proposed molecules, a specific 
visualization was developed, by adapting the similarity map visualization.32 This visualization, which 
we have named “applicability map” (figure 3), enables to highlight, for each proposed molecule, the 
atoms which are either present or absent in the initial dataset, as follows: a) in green, the atoms which 
are very well known because they appear very often in the same chemical environment in the initial 
dataset (i.e., the lead scaffold for instance); b) in red, the new atoms or atoms already known but 
appearing in a new position; and c) not highlighted: the atoms which have been seen before in the 
same position, but only a few times.  

 
Figure 3: Applicability map of mol 887. The central core of the molecule is present in most of the compounds of the 
initial dataset and therefore very well known, the transparent parts indicate that atoms in those positions are existing 
in the initial dataset but only in few cases and 3 atoms are glowing in red (i.e., the fluoropyridine moiety) indicating 
that this function has never been tried before.  

 
The applicability map visualization helps to better detect potential false positives, since a 

molecule predicted to be active but with functional groups appearing as predominantly red in this 
representation indicates a higher level of risk associated with the prediction. The best compounds are 
molecules with green and transparent atoms, indicating that at the same time the structure is within 
the knowledge of the initial dataset (green part) and in a domain of the chemical space which is worth 
to be explored (transparent part). This representation facilitates the selection of compounds for 
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synthesis and test among the proposed AI-designed structures, which is a trade-off between risk and 
novelty, exploitation of the current dataset and exploration of new ideas suggested by the AI 
algorithm. 

 

2.5. Compound selection & synthesis  

From the newly generated library, 20 AI-designed molecules out of the 150 were selected for 
synthesis and test based on their algorithmic ranking, structural novelty, synthetic accessibility, and 
consistency of the ADME predictions with those provided by global predictive models available at 
Servier. In the 3-week timeframe allowed for compound synthesis: 11 compounds were successfully 
synthesized and tested on all the project’s assays (see figure 4, figure 5 and figure 6) whereas 9 
molecules failed to be synthesized. 

 

3. RESULTS 

After synthesis and test, the AI-generated candidates were found to outperform the initial 
library, including the last 50 compounds made within the project. The average number of objectives 
met by the AI-designed compounds was 9.5 (i.e., 86% success rate) versus 6.4 (i.e., 58% success rate) 
previously. Moreover, the AI-generated molecules reversed the decreasing trend in TPP conformity 
observed in the last molecules of the library (figure 4a). Analysis shown in figure 4b illustrates that, 
compared to the initial dataset, novel molecules were better on activity (i.e., in the blueprint 65% of 
the time) and excellent for all selectivity and permeability criteria (i.e., over 90% of the time in the 
blueprint). Metabolic stability, however, was lower, with a 55% conformity rate. More importantly, 
from the 11 new compounds, one met simultaneously all 11 objectives of the TPP (figure 5) and two 
compounds met 10/11 objectives (figure 5 and 6), while being just below the required threshold, 
within the error margin of the assay, for the missed objective.  
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Figure 4: a) Number of objectives satisfied according to project’s chronology (vertical axis: number of objectives 
satisfied / horizontal axis: chronologic numbering of compound / please note initial data was sparse with only 48 
compounds tested on all criteria. b) Hit rate comparison between AI-designed candidates and initial molecules for each 
TPP objective. 

 

The best AI-designed compound (mol 885), meeting all objectives, is represented in Figure 5. 
Notably, this compound contains a [1,2,3]triazolo[1,5-a]piperidine moiety which was very rare in the 
initial data set, appearing in only six molecules, and always correlated to poor permeability and efflux, 
which had led the project team to stop investigating this motif. It is remarkable that the AI algorithm 
retained that substructure, combining it with a 3-fluoropyridine in the East part, which had never been 
tried before. Surprisingly, the association of this discarded substructure with an unexplored 
heterocycle turned out to be a winning combination for solving the MPO objective of the project. 

As a matter fact, the 11 AI-designed compounds that were synthesized and tested displayed 
functional groups that were either rare in the initial dataset or never tried earlier in the project (see 
figure 6). It suggests that this method can propose significant innovations, by its ability to identify 
favourable modifications, even with few data to learn from. 

 

 

 

Figure 5: MPO profile of the best AI-designed molecule, mol 885.  
 
One striking example is mol 886, where an aliphatic group was introduced in replacement of 

an aryl moiety, where only aromatic moieties had been used before at this specific position. 

 

mol 885 
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Figure 6: Structures and biological features of original compounds sampled by the DL algorithm. Borderline compounds 
have been measured below the desired activity threshold but within the error margin of the assay while active and 
inactive molecules were measured respectively above and below the threshold. 

 

The AI algorithm was also able to optimize ADME properties in sub-series with specific ADME 
issues. For example, it was able to design permeable compounds within the 6,7-dihydro-4H-
triazolo[5,1-c][1,4]oxazine sub-series while maintaining safety and stability, when all compounds in 
that sub-series had permeability issues. Likewise, within the pyrido-isoxazole series, compounds with 
reduced efflux were identified while maintaining safety and stability (figure 7). 
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Figure 7: Permeability (left) and Efflux (right) properties of AI-designed vs original dataset compounds in the a) 6,7-
dihydro-4H-triazolo[5,1-c][1,4]oxazine series (left) and b) pyrido-isoxazole series (right). 

 

An analysis of the drug-likeness profile of the compounds based on their property forecast 
index (PFI),33 molecular weight (MW) and sp3 fraction was performed (figure 8). Ten out of eleven AI-
designed compounds were found to have a very favourable profile with low PFI, low MW, and high sp3 
fraction, compared to the molecules from the initial data set. 

 

Figure 8: Plot of MW in function of PFI for initial molecules and AI-designed compounds 

To provide insights about structural diversity and chemical space features of both the initial 
dataset and AI designed compounds, a principal component analysis (PCA) was computed on the 
Morgan fingerprints (i.e., extended connectivity fingerprints (ECFP) of 1024 bits, radius 2) of the 
molecules in the dataset.34 First, a representation of the 251 compounds from the initial library that 
were measured in the primary activity assay is provided (figure 9). This plot reveals the absence of a 
probability gradient or narrow area of activity since active molecules can be found in all areas of the 
explored chemical space. Conversely, a display of the number of objectives met by these 251 molecules 
allows to delineate an area where the MPO score is the highest (i.e. the upper left corner of the plot 
in figure 9). 
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Figure 9: Bottom left) PCA of the 251 active compounds from the initial dataset. Top left) PCA of the same 251 active 
compounds with correlation to the TPP criteria hit rates. Right) Plot of the AI-designed molecules. 

 

Strikingly (Figure 9), the AI algorithm did not design any molecule in that seemingly promising 
chemical space. All AI-designed structures are indeed located in a distinct yet specific area, 
demonstrating the capacity of this algorithm to come up with non-trivial solutions. 

 

5. DISCUSSION 

A typical hurdle of MPO is that optimization of some objectives leads to drop of performance 
in others, but the present method allowed to design compounds that were simultaneously optimized 
on eleven parameters. Yet, several features of the initial dataset were key to enable achieving such 
performance.  

Overall, the performances of the models built to predict bioactivity on each assay were good, 
thereby validating the approach of project data-guided optimization. This requires enough data to 
build a decent model (in our case, the least documented assay had ~250 data points) and a reasonably 
well-balanced data set with enough compounds meeting each objective individually. Also, the 
generative model was able to find theoretical solutions to the MPO challenge within the chemical 
space of the project, meaning that based on the available data, there was indeed ways to solve the 
apparent anti-correlations between the objectives.  

This favourable configuration may not be present in all cases, and the potential of the method 
to solve MPO challenges in more complex cases remains to be demonstrated. Several approaches 
could be envisaged to circumvent the lack of balanced data on some objectives, such as using generic 
models trained on large and diverse legacy data, e.g., for ADMET properties prediction, or using 
structure-based modelling to guide optimization on target or anti-targets if such structural information 
is available. To address the tricky issue of the inability to identify structures solving the MPO challenge 
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within the project’s chemical space, adding an active learning component to the SAR models to guide 
or optimization and/or using more generic molecular representations (2D or 3D pharmacophore-
based) to build the QSAR predictive models could be considered. 

All in all, it is still uncertain to which extent AI-guided optimization can bring benefit to Lead 
Optimization in terms of reduction of number of compounds and number of iterations needed to 
identify a new molecular entity, and it would be of high interest to test such approach along several 
design-make-test cycles, starting early in the Lead Optimization phase, to assess the magnitude of the 
benefit brought by AI. Ideally, this should be conducted as a comparative “blind” study comparing the 
AI approach to a traditional approach to enable to draw strong conclusions. 

Also, worthwhile mentioning, the selection process of the AI-designed molecules was not only 
based on pure data-driven ranking. Molecules were selected based on their scores on the predictive 
models, but also based on their synthetic accessibility and the expert input of medicinal chemists and 
computational chemists using their expertise as well as specific data visualization tools to remove poor 
quality compounds or potential false positives. This selection process associating human expertise and 
data visualization to rank and select AI-driven ideas was probably an important success factor in this 
project. Indeed, although not addressed in this paper, issues with synthetic accessibility, complexity, 
structural alerts issues, or sheer meaningless of certain AI propositions did occur in this project, 
although they remained minor in this context. These issues currently prevent a fully automated 
compound selection and rather advocate for a collaboration between chemists and AI, enabling to get 
the best of both worlds. Recently, notable progress has been made in the development of efficient 
methods for high throughput synthetic accessibility scoring 35, 36, 37,38 which opens the perspective of 
an increased automation of the process. 

 

6. CONCLUSION 

Exploiting a sparse dataset of 881 molecules measured on 11 bioactivity assays, a DL-based AI 
de novo design algorithm was able to generate 150 virtual compounds with optimal in silico profiles 
against all desired characteristics of the project’s TPP. Amongst those, 11 compounds were synthesized 
and measured on all 11 criteria of the TPP. The AI-designed molecules outperformed the ones designed 
by traditional medicinal chemistry approaches, achieving superior MPO scores. More importantly, 
three of those were found to meet the project’s TPP, one of them strictly meeting all MPO objectives, 
the other two matching 10 objectives and being in the error margin of the assay for the last one. The 
AI algorithm came up with functional groups, which, although being rare or absent in the initial dataset, 
turned out to be highly beneficial for the MPO.  

To our knowledge, this is the first report of a successful application of deep learning to de novo 
design for solving an MPO issue in an actual drug discovery project, moreover on a large number of 
objectives. This brings unequivocal evidence of the potential of this technology to bring substantial 
improvements to medicinal chemistry. The use of such approach in earlier stages of drug discovery (i.e. 
hit discovery, hit to lead and early LO) is under investigation. Improvement needs have been identified 
and are being addressed, notably regarding synthetic accessibility, compound complexity and domain 
of applicability of the predictive models. 
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