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Abstract 

Graph neural networks (GNNs) have received intense interest as a rapidly expanding class of 

machine learning models remarkably well-suited for materials applications. To date, a number of 

successful GNNs have been proposed and demonstrated for systems ranging from crystal stability 

to electronic property prediction and to surface chemistry and heterogeneous catalysis. However, 

a consistent benchmark of these models remains lacking, hindering the development and consistent 

evaluation of new models in the materials field. Here, we present a workflow and testing platform, 

MatDeepLearn, for quickly and reproducibly assessing and comparing GNNs and other machine 

learning models. We use this platform to optimize and evaluate a selection of top performing 

GNNs on several representative datasets in computational materials chemistry. From our 

investigations we note the importance of hyperparameter selection and find roughly similar 

performances for the top models once optimized. We identify several strengths in GNNs over 

conventional models in cases with compositionally diverse datasets and in its overall flexibility 

with respect to inputs, due to learned rather than defined representations. Meanwhile several 

weaknesses of GNNs are also observed including high data requirements, and suggestions for 

further improvement for applications in materials chemistry are proposed.   

 

 

 

 

 

 

 

mailto:fungv@ornl.gov


1. Introduction 

In the search for materials for various functional applications ranging from catalysis to 

energy storage to electronics, machine learning (ML) has quickly gained traction as a powerful 

and flexible approach, especially where a broad exploration of the materials space is needed.1-6 

The adoption of ML for materials discovery is expected to expand even further with the ongoing 

growth in the availability of high-throughput density functional theory (DFT) datasets and 

continued advancements in ML algorithms.7-14 Conventionally, ML models in materials 

chemistry are descriptor-based, where the key descriptors representing the system must first be 

defined prior to fitting a suitable ML model for prediction. General examples of these descriptors 

include stoichiometry, the elemental properties such as group, period, electronegativity and 

radius, and electronic properties such as partial charges and s, p, d-band positions. A number of 

structural descriptors have also been proposed satisfying translation and rotational invariance, 

including but not limited to the Coulomb matrix15, atom-centered symmetry functions 

(ACSFs),16 and smooth overlap of atomic positions (SOAP).17 In most cases, the descriptors are 

carefully selected for a particular problem, and require a significant amount of domain expertise 

and investment of human effort to identify and compile. This can also prove challenging for 

problems with a large amount of compositionally and structurally diverse materials for which a 

single set of applicable descriptors is difficult to find. 

In recent years, graph neural networks (GNNs)18-20 have received increasing attention as 

a method which could potentially overcome the limitations of fixed descriptors by learning the 

representations on flexible, graph-based inputs. Within this overarching class of ML method, a 

number of GNN models have been proposed for chemistry related problems, with the earliest 

adopters focusing on molecular systems.21-24 Subsequently, GNNs have also been used in 

materials prediction, with a number of studies tackling systems such as periodic crystals25-30 and 

surfaces.11,31-33 These systems are generally described by their atomic structures, where the atoms 

can be represented by nodes and the neighbors encoded by the edges. Information regarding the 

atoms and bonds such as element type and bond distances, respectively, can be further encoded 

in the node and edge attributes. GNNs operate on these atom-based graphs to create node-level 

embeddings through convolutions with neighboring nodes and edges. This learnable process is 

then trained for the prediction of a given property of the material under study. 

Given the rapid advances in GNNs for computational materials chemistry currently, a 

critical evaluation of the current state-of-the-art (SOTA) is warranted. To accomplish this, 

several criteria should be met: (1) the same datasets should be used across the evaluated models, 

(2) the datasets used should represent diverse problems in materials chemistry, (3) the same input 

information and representation should be used, (4) the hyperparameters of the models should be 

optimized to the same extent, and (5) these should be performed in a reproducible manner. In this 

work we attempt to address these criteria and provide an open-source framework, 

MatDeepLearn, which can be used for further studies in this area (Figure 1).34 Provided with 

atomic structures and target properties from any dataset of choice, MatDeepLearn handles the 

processing of structures to graphs, offers a library of GNN models, and provides hyperparameter 

optimization for the models. Within this framework, improvements and additions to the input 



representations and model architectures can be easily made, which can greatly reduce 

development time needed for new ML models. GNNs can also be critically evaluated and 

actionable information can be quickly obtained when applied to specific problems in chemistry 

and materials sciences. We then use this framework to benchmark several SOTA models and 

provide a timely snapshot of current progress and suggestions for future progress. 

 

Figure 1. Scheme of GNN testing framework and workflow. A general outline of the 

approach is presented, starting with materials data (with several examples shown) in the form of 

structure files and target properties, followed by data processing, model construction and 

hyperparameter optimization as part of the MatDeepLearn framework. A general graph neural 

network architecture is constructed, taking in graphs containing nodes, edges, node attributes and 

edge attributes, inputted into an embedding layer, GC blocks, pooling and dense layers. This 

allows models to be similarly compared within a shared hyperparameter space. 



2. Methods 

2.1 Datasets 

The datasets we used were each chosen to reasonably represent a variety of different 

classes of materials ranging from 3D to 0D, each with different target properties, summarized in 

Table 1. All five datasets were generated through DFT calculations. Four of the datasets were 

obtained from curated, open computational databases.  

Table 1: Dataset information 

 
Datasets 

Bulk crystals Alloy surfaces MOFs 2D materials Pt clusters 

Target Property 

Formation 

energy 

(eV/atom) 

Adsorption 

energy (eV) 

Band gap 

(eV) 

Work function 

(eV) 

Total 

energy 

(eV) 

Number of Data Approx. 37000 Approx. 37000 
Approx. 

13000 
Approx. 4000 

Approx. 

20000 

Material size 

range (atoms) 
1 to 200 13 to 16 17 to 150 2 to 12 10 to 13 

Material 

composition 

range (elements) 

87 42 78 60 1 

Calculation 

method 
DFT: PBE+U 

DFT: BEEF-

vdw 

DFT: 

PBE 
DFT: PBE+U DFT: PBE 

Source 
Materials 

project (ref12) 
CatHub (ref35) 

QMOF 

(ref36) 
C2DB (ref37) 

Literature 

(ref38) 

 

2.1.1 Bulk dataset 

For bulk materials, we compiled approximately 37,000 structures from the Materials 

Project,12 which contains the widest elemental diversity of the datasets in this work, as well as 

the greatest diversity in structure size from the number of atoms. Bulk crystals have been used as 

a de facto benchmark system in the computational materials literature, with many successful 

examples of regression and classification using for both GNN models.25-30 The property selected 

for this dataset is formation energy in units of eV/atoms. We note this database is constantly 

expanding, and here we used a snapshot of a subset of the available data. 

2.1.2 Surface dataset  

For surfaces, we employed a dataset of another roughly 37,000 structures from the 

Catalysis-Hub database, containing eleven adsorbates on approximately 2,000 unique metal alloy 

surfaces.35 For this dataset, we used the relaxed surfaces containing the adsorbate as the input 

structures and adsorption energy in eV as the target property. Unrelaxed surfaces are not used in 

this study due to the ambiguities involved in the placement of the adsorbate which will not be 



explored in detail here. With this dataset we intend to evaluate the general ability of the model 

for predicting surface chemistry properties, which are relevant for catalysis. 

2.1.3 MOF dataset  

For porous materials, we used a metal-organic framework (MOF) dataset from the 

QMOF database containing roughly 13,000 processed structures from experimentally 

synthesized MOFs and containing band gaps in eV as the target property.36  

2.1.4 2D dataset 

For 2D materials, we used a dataset from C2DB, containing around 4,000 structures, with 

the target property being work function in eV, another important electronic property.37 This 

dataset is smaller than the other examples in this work while still being compositionally diverse 

with 60 elements included, and may prove challenging for GNNs with their generally high data 

requirements. 

2.1.5 Cluster dataset 

The last dataset is compositionally narrow with only one element, Pt, but is structurally 

diverse with around 2,0000 different nanoclusters ranging from 10 to 14 atoms, and with total 

energies in eV as the target. These clusters were obtained from basin-hopping global 

optimization in a previous study.38 This dataset was included to evaluate the ability of GNNs to 

capture structural sensitivity for potential use in machine-learned potentials, a task for which 

descriptor-based methods are currently most commonly used.  

2.2 Structure/Graph Representations 

The data are organized as a set of structures and a set of target properties associated with 

the structures. The structures are described by a set of atomic positions in Cartesian coordinates 

and an accompanying lattice vector describing the dimensions of the periodic cell. Non-periodic 

structures can also be represented by simply placing the molecule/cluster in a sufficiently large 

empty cell and ensuring the distance between images are larger than distance cutoffs for edges. 

Each atom is represented by a node in the graph, and the edges are usually determined by 

interatomic distances within a certain radius cutoff. The node attributes in this work contain 

elemental properties of the atoms which are one-hot encoded as described by Xie et al.27 Edge 

attributes encode the interatomic distances, described later in the section. Global graph-wide 

attributes are not used in this work and left empty. 

2.3 Machine learning 

The general architecture of overall GNN models used so far in materials chemistry 

contains several shared characteristics, which we unify into a general architecture here, 

illustrated in Figure 1. First, an embedding or preprocessing layer is present which transforms the 

node attributes from the input to a specified dimension. This is followed by N number of graph 

convolutional (GC) blocks, which perform the convolution and aggregation of the nodes. We 

used the same graph convolutional operators used in the original GNN models. This is followed 

by a graph-wide readout/pooling layer which provides an overall graph representation by 



aggregating the node attributes; in this work we choose from max, average, sum and set2set 

pooling. This is followed by M dense layers and the scalar output. The dimensions of the 

embedding, GC, and dense blocks, the type of pooling layer used, layer counts N and M, batch 

size and learning rate are hyperparameters which are selected through optimization for each 

model and each dataset. For each model and dataset, hyperparameter optimization was 

performed for 160 trials using the HyperOpt optimizer and the model with the lowest test error 

was selected.39 We use the Ray library which provides distributed hyperparameter optimization 

on multiple nodes.40 The reported performance is then obtained from a five-fold cross validation 

on the selected model. The code was written in Python 3.7, and uses PyTorch v1.6 and PyTorch-

Geometric41 v1.6 libraries for the ML models.34
  

We tested five different GC operators here: 

1. SchNet:22 

x𝑖
′ = ∑ x𝑗 ⊙ hΘ(exp(−γ(d𝑖,𝑗 − μ)2))

j∈N(i)

 

Here, d𝑖,𝑗 is defined as the interatomic distance between atoms i and j, and hΘ is a neural 

network containing dense layers which generates filters from interatomic distances. Before being 

fed to the neural network, the distances are expanded by a Gaussian basis function, which 

provides a continuous, non-sparse representation. This was also later successfully applied for use 

in other GNNs such as CGCNN and MEGNet. In the rest of this work we define this term as 

e𝑖,𝑗 = exp (−γ(d𝑖,𝑗 − μ)
2

) and use these as the edge attributes. 

Additionally, update functions are applied to the node attributes in the form of dense layers. 

In the original SchNet model, atom features are transformed to scalar atom-wise values before 

being summed over the whole graph. This is common practice for machine-learned potentials 

which first calculate the atom-wise energies before sum pooling to obtain the total energy.42,43 

Instead, in this work we pool first to obtain the graph-level features before predicting the scalar 

property using dense layers; this is consistent with other approaches for materials property 

predictions such as MEGNet and CGCNN. 

2. MPNN:21 

x𝑖
′ = Θx𝑖 + ∑ x𝑗 ⊙ hΘ(e𝑖,𝑗)

j∈N(i)

 

hΘ is a neural network containing dense layers, and update functions are also applied to the 

nodes, this time in the form of a gated recurrent unit. 

3. CGCNN:27 

x𝑖
′ = x𝑖 + ∑ σ(z𝑖,𝑗W𝑓 + b𝑓) ⊙ g(z𝑖,𝑗W𝑠 + b𝑠)

j∈N(i)

   

Here, z𝑖,𝑗 = x𝑖 ⊕ x𝑗 ⊕ e𝑖,𝑗, and σ and g are sigmoid and softplus functions respectively. 



4. MEGNet:26  

e𝑖,𝑗
′ = hΘe(x𝑖 ⊕ x𝑗 ⊕ e𝑖,𝑗) 

x𝑖
′ = hΘv ((

1

𝑁(𝑖)
∑ e𝑖,𝑗

j∈N(i)

) ⊕ x𝑖) 

Two dense layers are added in the beginning of each MEGNet GC block to preprocess the 

inputs. Here hΘe and hΘv are edge and node update functions, which are also dense layers. The 

updates follow the order of edges, nodes and global attributes. A skip connection adds the 

unprocessed input attributes of each block with the output attributes. In the original work the 

global attributes were left blank for the inorganic crystals dataset and are similarly unused here. 

5. GCN:44 

xi
′ = Θ ∑

1

√𝑑𝑖̂𝑑𝑗̂𝑗

𝑥𝑗 

We include this as a baseline GC with a much simpler construction and not specifically 

developed for materials chemistry applications. In contrast to the earlier models, a purely linear 

update function Θ is used here for the node attributes, and edge attributes are not included. 

Instead, the edge weights are used, containing the inverse normalized atomic distances.    

In addition, we tested two non-GNN models, using the Sine matrix45 (SM) and the 

Smooth Overlap of Atomic Positions17 (SOAP) descriptors, for comparison. For the SM 

descriptor, the size of the matrix is padded with zeros to the maximum atomic size of the dataset, 

and only the eigenvalues are used, sorted in descending order of their absolute values. For the 

SOAP descriptor, Gaussian type orbital basis functions are used and an “inner” average is 

obtained for each element present in the dataset, whereby the average is taken over the sites 

before summing up the magnetic quantum numbers. The SOAP parameters, the distance cutoff, 

the number of radial basis functions, the degree of spherical harmonics and the standard 

deviation of the Gaussians in the basis functions are all considered as hyperparameters to be 

optimized. For both models the descriptors are fed into dense layers with variable layer count 

and size as determined from hyperparameter optimization. The DScribe library was used to 

obtain SM and SOAP descriptors.46 Finally, an overall baseline is provided for comparison in the 

form of a dummy regressor which only returns the mean of the training dataset. 

 

 

 

 

 



3. Results 

Table 2: Benchmarking results - models 

 

MAE error 

Datasets 

ML models Bulk crystals 

(eV/Atom) 

Alloy 

surfaces (eV) 

MOFs 

(eV) 

2D materials 

(eV) 

Pt clusters 

(eV) 

SchNet 0.050 0.063 0.228 0.214 0.151 

MPNN 0.046 0.058 0.245 0.204 0.182 

CGCNN 0.049 0.060 0.233 0.208 0.205 

MEGNet 0.048 0.069 0.253 0.224 0.180 

GCN 0.067 0.175 0.355 0.304 0.577 

SOAP 0.047 0.118 0.318 0.203 0.143 

SM 0.394 0.621 0.608 0.607 0.460 

Baseline 0.978 1.480 0.984 0.773 4.984 

 

We evaluated a total of seven ML models for regression tasks on the five datasets, 

summarized in Table 2, with the specific hyperparameters for each top model listed in Table S1, 

with GNN entries shaded in grey. We find all four SOTA models (SchNet, MPNN, CGCNN, 

MEGNet) performed very well for all tested datasets, once again demonstrating the capability of 

GNNs for accurate predictions when ample training data is available. Unexpectedly, we find the 

SOTA models all performed equally well in most cases, which shows hyperparameter 

optimization can be just as important as the choice of graph convolutional operator and overall 

machine learning architecture. The SOTA models also offer advantages over simpler GNNs 

which were not designed for materials chemistry, such as the GCN model, which performed 

markedly worse for nearly all datasets except the bulk crystals. The poor GCN performance, 

especially for Pt clusters, suggests convolutions involving edge attributes containing interatomic 

distances in the Gaussian basis, which the SOTA models share, are much more effective for 

capturing the spatial information of atomic structures.  

Meanwhile, for non-GNN models, SM performed poorly across the datasets, but SOAP 

performed surprisingly well for bulk crystals and 2D materials and had a performance similar to 

or better than the SOTA models for Pt clusters. On one hand, this suggests the SOAP descriptors, 

like other similar descriptors such as ACSFs, remain excellent choices for capturing spatial 

information in atomic structures, particularly for use in machine-learned potentials. On the other 

hand, this nevertheless highlights another strength in GNN-based models in that a similar level 

of performance can still be achieved without any pre-defined descriptors.  

Relative to the Baseline, the SOTA GNNs had the highest relative errors in predicting 

work functions for the 2D dataset, and this is likely due to the much smaller size of the dataset 

compared to the other datasets. This is followed by the MOFs dataset, which performed second 

worst. Next, the GNNs performed similarly well for bulk and surfaces, with both containing 

ample amounts of training data for training. Finally, the GNNs performed best for the clusters 



relative to the Baseline; however, these errors, at approximately 0.015 eV/atom, remain 

relatively high for use as machine learned potentials. A more thorough evaluation would be 

needed in the future for GNN performance in ML potentials, which may require more significant 

changes in the model architecture and training data and the inclusion of forces.  

 

Figure 2. Visualization of graph-wide feature space. t-SNE plot of the graph-level embedding 

from the readout/pooling layer for (a) CGCNN, (b) MPNN, (c) SchNet, (d) MEGNet trained on 

the bulk dataset, with each point representing an individual crystal. Colors for each point are 

mapped to formation energies. Selected structures are marked by red shapes, with the same shape 

corresponding to the same crystal in each plot. 

 We then compare the ability of the different GNNs in learning the structure and 

composition representations by obtaining the graph-level embedding from the output of the 

readout/pooling layer and visualizing with t-distributed stochastic neighbor embedding (t-SNE) 

in Figure 2, using the Bulk dataset as an example. The plots in Figure 2 represent a combined 



structure-composition latent space for the trained materials where points within a grouping can 

be expected to share similarities in both their atomic structures and elemental compositions. Each 

of the four SOTA GNNs are able to generate viable representations leading to groupings of 

crystals delineated by similar formation energies. In some cases, each GNN obtained similar 

grouping in the latent space, such as for structures labeled with the star or square symbols. In 

other cases, the GNNs obtained dissimilar grouping, for example with the ones denoted by the 

diamond, and to a lesser extent the triangle and circle symbols. Ultimately, for purposes of 

regression each of the plotted latent spaces are equally valid and provide similar prediction 

errors; though additional investigation may be needed in the future to reveal additional 

differences for applications such as generative machine learning. 

Next, we investigated the training size dependence of the models, another avenue of 

comparison between models and datasets, and estimate the maximum performance with respect 

to data size in Figure 3. The model performance is obtained from five parallel runs for each 

training size using a different train/test split and averaging the errors. We find, in almost all 

situations, the training size dependence to be very similar between the GNN models for a 

particular dataset, approximately irrespective of the number of parameters in the model. 

Unsurprisingly, SOAP has a better training size scaling for the cluster dataset, likely thanks to 

the effectiveness of the pre-defined descriptors. However, when applied to compositionally 

diverse systems, SOAP loses this advantage over GNNs and has a similar training size scaling 

with the other models. We also estimate performance on data sizes by extrapolating training size 

dependence curves using a power law function, ε(m)= αmβ
 where ε is the error as a function of 

samples, m.47 We extrapolate to five times the current data set size for each case. For the bulk 

datasets, fitting the power law function gives exponents of ~-0.3 for the GNNs and extrapolating 

predicts MAEs of ~0.02-0.03 for 5x data at ~150,000 training data. For surfaces, power law 

fitting suggests a better scaling than bulk with exponents of ~-0.5 and provides an MAE estimate 

of ~0.03-0.04 eV. Meanwhile, a recent study reached an opposite conclusion, finding worse 

scaling for surface adsorption compared to the bulk.11 This is likely due to unrelaxed structures 

being used as inputs, which significantly increases the dimensionality and difficulty of the task.  

 



 

Figure 3. Training size dependence and extrapolation. The training size dependence for (a) 

bulk, (b) surface, (c) MOF, (d) 2D, (e) and cluster datasets are plotted. Each point represents the 

average of five separate runs using different train/test splits. Solid lines are obtained from fitting 

on the power law.  



So far, we have focused primarily on model performance and maintained a consistent 

representation for all models and datasets. We examine the soundness of this methodology by 

testing several different representations and observing their impact on the performance (Table 3). 

Here we use the optimal hyperparameters in Table S1, and test using the CGCNN model. 

Possible avenues for modifying the representations include changing the edge cutoffs and 

selection criteria for generating the graphs and changing the properties of the node and edge 

attributes. First, we find reducing the number of considered neighbors from 12 to 4 did not 

significantly change prediction accuracy for most cases besides the cluster dataset where the 

performance decreases significantly. Meanwhile, a fully connected graph did not improve 

prediction accuracy beyond the default, while greatly increasing the computational cost. Moving 

to node attributes, we found using node features based simply on element identity with one-hot 

encoding was also sufficient, and including additional elemental properties such as 

electronegativity and radius were generally unnecessary for sufficiently large data sets. We also 

tested using blank input node attributes (with all zeroes), thereby removing any information 

regarding the elemental composition; this significantly reduced the performance for all cases 

except the cluster dataset (which only has one element in the system). Finally, a test was 

performed where the length of edge attributes was reduced from 50 to 10, thereby greatly 

reducing the structural resolution encoded by the Gaussian basis. This had little to no impact on 

4 out of 5 datasets, but greatly reduced the prediction ability for clusters as the information 

needed to distinguish small changes in Pt-Pt bond distances is lost. Thus, we find the default 

representation used in this work to be satisfactory within the scope of including only structure 

and atomic information as inputs. Variations in the representation, up to an extent, did not 

appreciably affect performance likely due to the property of GNNs in producing learned 

representations via training.  

Table 3: Benchmarking results - representations 

 
MAE error 

Datasets 

Input 

representation 

Bulk crystals 

(eV/Atom) 

Alloy 

surfaces (eV) 

MOFs 

(eV) 

2D materials 

(eV) 

Pt clusters 

(eV) 

Default 0.049 0.060 0.233 0.208 0.205 

Neighbors: 4 0.054 0.082 0.238 0.195 0.410 

Neighbors: full 0.047 0.060 0.261 0.198 0.203 

Node features: 

Element One-hot 0.067 0.058 0.232 0.217 0.184 

Node features: 

Blank 0.319 0.570 0.410 0.562 0.187 

Edge length: 10 0.050 0.059 0.257 0.218 1.328 

 

4. Discussion and conclusion 

With the rapid expansion of readily accessible high-throughput DFT datasets and new 

GNN models which can train on them, there is a strong demand for a general benchmarking tool 



to assess which ML models are best for a given target application in materials chemistry. We 

have developed such a framework, MatDeepLearn and used it to gauge the performance of 

several GNNs on different materials data sets. We use the Pytorch and Pytorch-Geometric 

libraries which allows for fast ML calculations which are optimized for GPU-based computing 

resources, and the Ray library which provides distributed hyperparameter optimization on 

multiple nodes. In this work, training time ranges from ~10 minutes to ~1-2 hours on an 

NVIDIA Tesla V100 GPU for the smallest and largest datasets, respectively. Hyperparameter 

training with 160 trials can be finished in roughly 2 days on a single GPU node containing 8 

V100 GPUs. In this work, five GNN models were tested, but this list can be rapidly expanded 

with the provided message passing network class in Pytorch-Geometric, and with approximately 

40 existing methods already implemented for use. Consequently, the development time needed 

for GNNs can be shortened significantly, along with the rapid testing and benchmarking of these 

developed methods. In general, we find MatDeepLearn can provide a highly competitive 

baseline performance with little to no human interaction or effort required; only a suitable dataset 

containing atomic structures are needed as the inputs. 

Our current study also provides some general observations regarding GNNs for materials 

applications. For the prediction tasks in this work, a GNN which contains nonlinear update 

functions for nodes (usually neural networks), and a sufficiently descriptive representation of 

bond distances generally perform quite well, and differences between the current tested GC 

operators become small through hyperparameter optimization. Within the scope of our study, 

including edge updates did not appear to improve the performance perceptibly. In moving 

forward, a more exhaustive screening of the GNN “design space” may be fruitful, such as those 

proposed in a recent study by You et al.48  

Training the GNNs can be data-intensive, and we find a minimum of 103-104 data points 

are needed to achieve an adequate accuracy in the models. This general sentiment is echoed in a 

similar study finding descriptor-based models performing better than GNNs with small data 

sizes, but with GNNs performing better when ample data is available.25 For applications with 

very small datasets, pre-defined descriptors still work best, but will quickly fail when moving 

outside of its domain of applicability. Methods which can improve the quality of the initial guess 

structures could help reduce the training costs significantly. 

 Approaches to effectively incorporate domain knowledge with GNN models which 

complements their existing flexibility and ability for learnable representations would also likely 

improve performance. For example, additional information about the system can be incorporated 

into the node or edge attributes, such as the bond types, aromaticity and chirality in the case of 

molecular systems, which is not inherently known from just the atomic structure. Along these 

lines, recent approaches incorporating some form of features relating to atomic orbitals and their 

interactions have also yielded promising results.30,49 Alternatively, the inclusion of physical 

constraints in the loss functions or through other means which have been used for ML in general 

could also be considered for GNNs.  

Additionally, effectively incorporating knowledge from pre-existing datasets through 

transfer learning is also another promising avenue for improvement by leveraging current high-



throughput computational databases. Besides the datasets used in this study, many other 

computational databases with 104 or more data entries are also available which would be well-

suited for training with GNNs.7-11 GNN methods which can train on multifidelity data have been 

demonstrated recently which would improve integration with multiple datasets.50 
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