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Abstract— Recent studies have been demonstrated that the excessive inflammatory response is an important factor of death in
COVID-19 patients. In this study, we proposed a network representation learning-based methodology, termed AIdrug2cov, to discover
drug mechanism and anti-inflammatory response for patients with COVID-19. This work explores the multi-hub characteristic of a
heterogeneous drug network integrating 8 unique networks. Inspired by the multi-hub characteristic, we design three billion special meta
paths to train a deep representation model for learning low-dimensional vectors that integrate long-range structure dependency and
complex semantic relation among network nodes. Using the representation vectors, AIdrug2cov identifies 40 potential targets and 22
high-confidence drugs that bind to tumor necrosis factor(TNF)-α or interleukin(IL)-6 to prevent excessive inflammatory responses in
COVID-19 patients. Finally, we analyze mechanisms of action based on PubMed publications and ongoing clinical trials, and explore the
possible binding modes between the new predicted drugs and targets via docking program. In addition, the results in 5 pharmacological
application suggested that AIdrug2cov significantly outperforms 5 other state-of-the-art network representation approaches, future
demonstrating the availability of AIdrug2cov in drug development field. In summary, AIdrug2cov is practically useful for accelerating
COVID-19 therapeutic development. The source code and data can be downloaded from https://github.com/pengsl-lab/AIdrug2cov.git.

Index Terms—heterogeneous drug networks, deep representation learning, anti-inflammatory response, COVID-19
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1 INTRODUCTION

G LOBALLY as of 14 January, 2021, there have been over
90,759,370 confirmed cases of COVID-19, including

1,963,169 deaths, reported to World Health Organization
(WHO), implying that the novel coronavirus (SARS-CoV-2)
has posed a global health threat(https://covid19.who.int/).
In addition, it has been well proven that host immune
responses are important factors leading to life-threatening
acute respiratory distress syndrome (ARDS) in COVID-19
patients [1]. Although numerous of researchers are devoted
to elucidating the pathogenic mechanisms of SARS-CoV-2,
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and to developing effective medications for controlling and
preventing COVID-19,Considering that the new drug devel-
opment is a complex, lengthy and expensive process, one
effective method of drug discovery is to apply a drug repo-
sitioning [2] strategy to identify the potential drugs among
existing ones. Compared to developing a drug de novo,
discovering potential drugs from existing ones may signif-
icantly reduce the cost and period of drug development.
Therefore, drug repositioning has received increased atten-
tion from pharmaceutical companies, governments agencies
and academic researchers in recent year. Nevertheless, the
development of promising drug discovery approaches for
the effective treatment of COVID-19 is challenging, because
of insufficient knowledge regarding drug targets and the
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disease pathology. Therefore, it is important to understand
how SARS-CoV-2 give elicits host immune responses, and
to apply this knowledge towards the discovery of potential
targets and drugs, and elucidation of drug mechanisms of
action against COVID-19.

Identification of the proteins involved in COVID-19 is a
primary step towards revealing the underlying molecular
mechanisms of SARS-CoV-2 infection, and can potentially
improve clinical therapies for COVID-19. Unfortunately,
limited knowledge regarding the detailed pathogenic mech-
anism of SARS-CoV-2 has prevented comprehensive iden-
tification and evaluation of disease-causing proteins. How-
ever, a growing body of research suggests that the clinical
manifestations of severe acute respiratory syndrome (SARS)
and COVID-19 was highly similar, and they may have
similar pathogenesis [3]. In addition, phylogenetic analysis
has revealed that the genome of SARS-CoV-2 is similar to
that of SARS-CoV, with approximately 79% sequence iden-
tity [4]. Above all, they have the similar host-cell receptor
usage and cell entry mechanism [5]. Given these apparent
similarities between the two viruses and the corresponding
diseases, identification of COVID-19-related proteins based
on previous SARS studies is an important step towards
understanding the nature of COVID-19 and determining a
possible cure for the disease.

Since the COVID-19 outbreak, many studies have fo-
cused on identifying proteins or drugs related to the entry,
fusion, and replication of SARS-CoV-2. For example, scien-
tists have demonstrated that SARS-CoV-2 uses angiotensin-
converting enzyme 2 (ACE2) [6], [7] and transmembrane
protease serine 2 (TMPRSS2) for entry into host cells [8].
In addition, several antiviral drugs with inhibitory effects
against SARS-CoV-2 have been selectively tested in clini-
cal trials [9], [10]. However, recent reports show that the
development of severe disease does not seem to be solely
related to viral load [11], and that the hyperinflammatory
response induced by SARS-CoV-2 is a main cause of severe
disease and death in infected patients [12]. Unfortunately,
the efficacy of existing antiviral agents, such as favipiravir,
arbidol, and darunavir, which are being tested in ongoing
clinical studies on COVID-19, might be unsatisfactory or
insufficient for patients suffering from immune imbalance,
and the mechanisms of action of these drugs in this disease
are uncertain [13]. Therefore, aside from the development of
an antiviral treatment strategy, proteins that cause excessive
inflammation, should be identified, and targeted to discover
anti-inflammatory agents, particularly for the patients with
severe disease.

Drug repositioning and discovery poses formidable chal-
lenges because the pharmacological action mechanisms and
biological process are complex and elusive. Fortunately,
with the rapid development of the systems biology and
network pharmacology fields, the drug research paradigm
has changed from the linear mode of ”one drug, one target,
one disease” to the network mode of ”multi-drugs, multi-
targets, multi diseases” [14]. Cheng et al. have suggested that
the integration of multiple perspectives network contributes
to understanding and analysis of molecular action mecha-
nisms [14]. Among the advances, network-based methods
have already offered promising insights to improve the
accuracy of in silico drug discovery, and to elucidate action

mechanisms for the effective treatment of COVID-19 [15].
In this study, we proposed a network representa-

tion learning-based drug mechanism discovery and anti-
inflammatory response, termed AIdrug2cov, to identify po-
tential drugs for COVID-19. We construct a heterogeneous
drug network by integrating 8 biomedical networks, and
explore the multi-hub characteristic of this drug network.
Specifically, the multi-hub characteristic inspires us to de-
sign a meta path-driven deep representation model for
automatically learning low-dimensional vectors that can
integrate long-range structure dependency and complex
semantic relation among network nodes. In this study, based
on the representations and transcriptome data, AIdrug2cov
identified 40 potential targets related to COVID-19, and
22 high-confidence drugs binding to TNF-α or IL-6 for
preventing excessive inflammatory response in patients
with COVID-19. Finally, we analyze mechanisms of action
(MOA) based on PubMed publications and ongoing clinical
trials, and explore the possible binding modes between the
new predicted drugs and TNF-α/IL-6 via docking program
DOCK6.8 [16]. To evaluate and interpret the representation
performance of AIdrug2cov, we integrated 3 type of phar-
macological tasks: drug-drug interaction network (DDI) re-
construction, Anatomical Therapeutic Chemical (ATC) clas-
sification, and bio-link prediction. The results demonstrate
that AIdrug2cov significantly outperforms 5 other state-
of-the-art network representation approaches. In summary,
AIdrug2cov is a practically useful tool for accelerating
COVID-19 therapeutic development.

2 RESULT

2.1 Overview of AIdrug2cov
An overview of the proposed AIdrug2cov, which is a net-
work representation learning-based methodology to dis-
cover drug mechanism and anti-inflammatory response for
patients with COVID-19, is shown in Fig.1. First, we con-
structed a comprehensive heterogeneous network to inte-
grate drugs, diseases, proteins, and side-effects. A network
representation approach based on semantic paths and deep
bidirectional Transformer encoder model was developed
to automatically learn a low-dimensional embedding vec-
tor by systematically integrating the semantic relation and
topological structure of a heterogeneous network. Then, the
low-dimensional vector of nodes was fed into an inductive
matrix completion (IMC) model [17] to identify the top
45 potential targets related to SARS or COVID-19. Enrichr
[18] was used to perform functional enrichment analysis,
and we conducted a mechanism of action (MOA) analysis
based on the literature search. Note that target identifica-
tion of COVID-19 is conducted with SARS data, since the
clinical manifestation and pathogeneses of these diseases
are highly similar [3]. Similarly, AIdrug2cov predicted 40
high-confidence drugs based on the predicted targets TNF-
α and IL-6. Next, we performed Connectivity Map (CMap)
[19] analysis and literature search to identify 22 agents
that bind to TNF-α or IL-6 to prevent cytokine storms and
excessive inflammatory responses in patients with COVID-
19. Finally, we analyzed multiple mechanisms of action base
on literature reports, and explored the possible binding
modes between the new predicted drugs and TNF-α and
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Fig. 1. Overview of AIdrug2cov to identify drug mechanism of action and anti-inflammatory response against COVID-19.

IL-6 with the docking program DOCK6.8 [16]. In addition,
this study integrated DDI network reconstruction, ATC clas-
sification, and bio-link (i.e., disease→protein→drug→side-
effect association) prediction to future evaluate and validate
the applicability, and scalability of AIdrug2cov in the drug
development process.

2.2 COVID-19 target identification

In this study, the top 40 proteins, which corresponded to
roughly 3% of the total number of the protein entity in
heterogeneous network, were regarded as potential targets
for COVID-19. In this study, Evidence from the literature
was used to determine the action mechanism between each
target and COVID-19. As shown in Table 1, most of the
proteins have been demonstrated to have interaction mech-
anism or therapeutic associations with SARS or COVID-19.
Apparently, the most popular targets seem to be mediators
of inflammation, such as TNF [1], [20], IL1B [21], IL-6 [22],
[23], CCL2 [21], [24], IFNG [23], [25], [26], and CXCL10
[1], [21]. The targets MAPK3 [27], TP53 [28], and RB1
[29], [30] affect the replication processes of SARS-CoV and
SRAS-CoV-2. CASP3 [31], [32] and CYCS [33], [34] induce
apoptosis of cells infected with SARS-CoV. AKT1 signaling
pathways also play key roles in persistent SARS-CoV infec-
tion [35]. Inhibiting EGFR and TGFB1 [36], [37] signaling
may prevent an excessive fibrotic response to SARS-CoV
and other respiratory viral infections [38]. A GSTM1 null
genotype may increase the risk of pulmonary fibrosis of
COVID-19 patients [39], and it is worth noting that there
has also been one report of a newly emerged fibrosis in a
COVID-19 patient [40]. COVID-19 was found to aggravate
already compromised NO production in a cohort with NOS3
polymorphism, and management of NOS3/iNOS ratios and

NO levels can prevent the development of severe ARDS. In
addition, certain crucial proteins are associated with SARS-
CoV or SARS-CoV-2, such as, VEGFA [41], RAC1 [37], INS
[42], ICAM1 [43], [44], and CDK2 [45], [46].

2.2.1 Inflammatory response-related targets for COVID-19

Twelve targets appear to be critical mediators of the inflam-
matory response in moribund COVID-19 patients, and this
response is closely related to the severity of the disease.
Similar to the situation in SARS-CoV, the levels of TNF [1],
[20], IL1B [21], IL-6 [22], [23], CCL2 [21], [24], IFNG [23], [25],
[26] and CXCL10 [1], [21] are significantly elevated and are
associated with adverse clinical outcomes in patients with
COVID-19. NFKB1 is a key factor in the hyperactivation of
monocyte-derived macrophages in COVID-19 [21], which
directly affects the inflammatory response. The most im-
portant signal transduction pathways activated by viruses
leading to the expression of proinflammatory cytokines are
mediated by the factors IRF-3 and IRF-7 and JUN [47].
PARP plays a critical role in cytokine release in response
to any lung injury causing viral infection, and the course
of COVID-19 may be altered by inhibiting this protein
[48]. HMOX1 has been shown to display anti-inflammatory
properties in models of acute pulmonary inflammation, and
is expressed in most cell types in organisms [49], [50]. A
large body of evidence from preclinical studies indicates
that MAPK14 paly a crucial role in inflammatory cytokine
production [32], [51], [52]. MMP2 is a marker that aggra-
vates pulmonary damage in SARS patients, and doxycy-
cline markedly suppresses the levels of proinflammatory
cytokines by inhibiting this protein [53], [54], [55]. PPAR is a
key regulators of inflammation, and its activation results in
reductions in inflammatory cytokine levels.
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TABLE 1
Candidate targets and their interaction mechanisms with COVID-19.

NO. UniProt ID:name Confidence Interaction mechanism to COVID-19 References
1 P01375:TNF-α∗ 0.5962 Cytokine in moribund COVID-19 patients [1], [20]
2 P35354:PTGS2∗ 0.5900 A key mediator of inflammation in SARS [56], [57], [58]
3 P42574:CASP3 0.5811 Critical medium inducing apoptosis of cells infected with SARS-CoV [31], [32]
4 P10415:BCL2 0.5667 Necessary for survival of persistently SARS-CoV-infected cells [59]
5 P01584:IL1B∗ 0.5635 Cytokine in moribund COVID-19 patients [21]
6 P27361:MAPK3 0.5628 Participant in SARS-CoV replication [27]
7 P04637:TP53 0.5626 Antagonist of coronavirus replication [28]
8 P05412:JUN∗ 0.5368 Induction of proinflammatory cytokines of coronavirus [47]
9 P28482:MAPK1 0.5367 NA NA

10 P99999:CYCS 0.5337 Medium inducing apoptosis related to SARS-CoV membrane protein [33], [34]
11 P37231:PPARG∗ 0.5288 Key regulators of inflammation [60]
12 P19838:NFKB1∗ 0.5282 Hyperactivation of monocytederived macrophages in COVID-19 [21], [61]
13 P09210:GSTA2 0.5204 A factor of pulmonary fibrosis in COVID-19 patients [39]
14 P05231:IL-6∗ 0.5170 Cytokine storm in moribund COVID-19 patients [22], [23]
15 Q03181:PPARD 0.5073 NA NA
16 P15692:VEGFA 0.5051 A key factor in both ICU and non-ICU COVID-19 patients [41]
17 P09874:PARP1∗ 0.5003 An pivotal role on cytokine release in COVID-19 [48]
18 P35228:NOS2 0.4991 Inhibits viral protein and RNA synthesis [62], [63]
19 P05164:MPO 0.4945 Higher levels of MPO in adult patients with COVID-19 [64]
20 P09601:HMOX1∗ 0.4920 Anti-inflammatory effects on LPS-induced pulmonary inflammation. [49], [50]
21 P17302:GJA1 0.4827 NA NA
22 P01308:INS 0.4824 Obesity-related comorbidities and mechanisms of a severe course of COVID-19 [42]
23 P01137:TGFB1 0.4800 Relation to the fibrosis and fluid homeostasis in the lungs for the severe COVID-19 [36], [37]
24 P00533:EGFR 0.4771 High rate of pulmonary fibrosis [40], [65]
25 Q16539:MAPK14∗ 0.4750 Key signaling molecules as therapeutic targets for inflammatory diseases in SARS [32], [51], [52]
26 P05067:APP 0.4746 NA NA
27 P45983:MAPK8 0.4742 NA NA
28 P13500:CCL2∗ 0.4698 Inflammatory chemokine storms in severe COVID-19 patients [21], [24]
29 P05362:ICAM1 0.4689 Key hub genes involved in COVID-19 [43], [44]
30 P63000:RAC1 0.4648 A role in SARS-PLpro-induced STAT6 nuclear translocation [37]
31 P31749:AKT1 0.4608 A key role in persistent SARS-CoV infection [35]
32 P06400:RB1 0.4607 Initiation of gene expression and viral replication [29], [30]
33 P08253:MMP2∗ 0.4601 A marker of inflammation aggravating pulmonary damage in SARS patients [53], [54], [55]
34 P08684:CYP3A4 0.4579 NA NA
35 P07101:TH 0.4565 NA NA
36 O75469:NR1I2 0.4562 NA NA
37 P09488:GSTM1 0.4560 Aggrandizement the risk of pulmonary fibrosis in COVID-19 patients [39]
38 P02778:CXCL10∗ 0.4558 Inflammatory chemokines in COVID-19 patients [1], [21]
39 P01579:IFNG∗ 0.4539 A key mediator of inflammation in COVID-19 patients [23], [25], [26]
40 P24941:CDK2 0.4538 N-protein of SARS-CoV inhibition of CDK2 activity [45], [46]

Proteins marked with ∗ may be key mediators of inflammation in COVID-19.

2.2.2 KEGG and GO enrichment analyses of targets

We use Enrichr [18] tool to perform Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology (GO)
enrichment analyses to comprehensively evaluate the bi-
ological relevance and functional pathways of COVID-19
targets predicted by AIdrug2cov. KEGG pathway enrich-
ment analysis revealed the top 10 significant biological path-
ways (ranked with p-values according to the guidelines in
[18]), which included TNF signaling pathway, epstein-Barr
virus infection, the IL-17 signaling pathway, and the human
cytomegalovirus infection pathway, as shown in Fig.2(A).
Similarly, GO biological process enrichment analysis further
confirmed that the targets were associated with multiple
processes related to host cell lifecycle and viral replication,
including cytokine activity, MAP kinase activity, transcrip-
tion regulatory region DNA binding, protein kinase activ-

ity, RNA polymerase II (RNAPII) regulatory region DNA
binding, RNAPII transcription factor activity, and sequence-
specific transcription regulatory region DNA binding as
shown in Fig.2(B).

Based on the above results, we concluded that most
of the candidate proteins predicted by AIdrug2cov were
targeted by SARS-CoV-2 and targetable for COVID-19 treat-
ment. This motivated us to develop a drug repurposing
strategy by specifically targeting host proteins for potential
treatment of COVID-19.

2.3 Hyperinflammation in patients with COVID-19

Indeed, several recent COVID-19 clinical studies have
shown that SARS-CoV-2 induces excessive and aberrant
host immune responses that are associated with severe lung
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(A) KEGG human pathway analyses

(B) GO enrichment analyses

Fig. 2. KEGG human pathway and GO enrichment analyses for the
potential COVID-19 target proteins

pathology, leading to death [1]. Based on previous literature-
reported knowledge, we find that the production of cy-
tokines, such as IL-6, and TNF-α, is increased in patients
with severe COVID-19. This is similar to the case in patients
with SARS-CoV, indicating that SARS-CoV-2 infection is
associated with a cytokine storm and severe pulmonary
inflammation in moribund patients.

Fig. 3. Possible pathway contributing to excessive inflammatory re-
sponses in patientS with COVID-19.

A possible pathway contributing to excessive host in-
flammatory responses in COVID-19 is shown in Fig.3. First,
SARS-CoV-2 is taken up into a host-cell by binding ACE2.
Then, T lymphocytes are excessively activated and generate
large amounts cytokines such as TNF-α, IL-6, and GM-
CSF. The cytokine-rich environment induces inflammatory
monocytes with high express of cytokine, and further accel-
erates the inflammatory response. The aberrantly activated
T cells and inflammatory monocytes may enter the pul-
monary circulation leading to a cytokine storm, thus causing
ARDS or multiple organ dysfunction syndrome.

In addition, recent studies have suggested that drugs
targeting IL-6 and TNF-α are effective in blocking inflam-
matory storms, and are promising treatment agents for
severe COVID-19 patients [20], [22]. Therefore, this work
focused on drug discovery based on IL-6 and TNF-α to
identify potential anti-inflammatory agents with efficacy
against COVID-19.

2.4 Anti-inflammatory drug discovery and mechanism
of action analysis

In the drug discovery step for the COVID-19, 3% the
all drugs in the heterogeneous network were selected as
candidate agents binding to TNF-α or IL-6, respectively.
Then, seven drugs were filtered via CMap analysis model.
Finally, we use subject matter expertise based on literature-
reported knowledge to filter out 7 drugs, including arsenic
trioxide, hydrochlorothiazide, acetaminophen, isoflurane,
halothane, imiquimod and latanoprost, since these drugs
tend to increase release of IL-6 or TNF-α. For example,
acetaminophen significantly increase the hepatic levels of
IL-6, TNF-α, IL-10 and monocyte chemoattractant protein
[66], [67]. Isoflurane induced marked upregulation of the
proinflammatory cytokines TNF-α, IL1B, IL-6 and IL-8 in
hippocampus tissue [68]. The expression levels of IL-6, and
TNF-α tend to increase in the birds chronically treated
with arsenic trioxide [69]. Halothane potentiates alcohol
adduct-induced TNF-α release in heart endothelial cells
[70]. Latanoprost stimulated the release of IL-6 from human
tendon capsule fibroblasts in a concentration-dependent and
time-dependent manner [71]. Hydrochlorothiazide has not
had in in vitro anti-inflammatory effects at clinical studies.
Meanwhile, there was a trend to increase the production
of IL1B at the lower concentrations of hydrochlorothiazide
[72]. Note that chloroquine (CQ) and hydroxychloroquine
(HCQ) have high-confidence scores in this study. However,
we still exclude CQ and HCQ from the candidate drugs list,
because there is great controversies whether CQ and HCQ
is an effective treatment against COVID-19.

Based on the above procedure, we identified 22 high-
confidence drugs (10 drugs binding to TNF-α, 13 drugs
binding to IL-6) with efficacy against COVID-19 as shown in
Table 2; acarbose is treat as agent that binds to both TNF-α
and IL-6. We found that 19 drugs that have been previously
reported in the literature could reduce the expression and
release of TNF-α or IL-6 to exert anti-inflammatory effects in
silico. Although, most of these drugs are treated as potential
therapeutic agents for cytokine storm inhibition, this study
suggests their role in inflammatory response prevention in
patients with COVID-19 for the first time.

2.4.1 Fourteen anti-inflammatory drugs initially proposed
for novel use in COVID-19 patients

To the best of our knowledge, 14 of the drugs predicted
by AIdrug2cov were initially proposed as potential thera-
peutic for COVID-19. The literature evidence suggests that
these drugs inhibit cytokine release and the inflammatory
response, as listed in column 4 in Table 2. For example,
dasatinib, a small molecule Src/Abl tyrosine kinase in-
hibitor approved for the treatment of chronic myelogenous
leukemia, reduces TNF-α and IL-6 secretion in response to
TLR stimulation of bone marrow-derived macrophages in
vitro to modulate the host immune response [78]. Minocy-
cline, a second generation tetracycline antibiotic, exerts
its anti-inflammatory effect on microglia by inhibiting the
expression and release of TNF-α, and IL1B [80]. IL-6 in
lung tissues in methazolamide-treated mice were markedly
decreased. Methazolamide treatment has been found to
markedly decrease IL-6 levels in mouse lung tissues, and
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TABLE 2
Candidate drugs and their interaction mechanisms with COVID-19.

Target ID: name Drugbank ID: name Confidence Mechanism of action to COVID-19 References

P01375:TNF

DB01041:Thalidomide∗ 0.8719 Decreasing stability of mRNA [73], [74], [75], [76]
DB01427:Amrinone 0.7627 Concentration dependent manner [77]
DB01254:Dasatinib 0.7034 Unclear [78]
DB00284:Acarbose 0.6698 Decreasing the expression of miRNAs [79]
DB01017:Minocycline 0.6458 Unclear [80]
DB00619:Imatinib∗ 0.6444 Reducing DNA binding of NF-κB [81]
DB00228:Enflurane 0.6282 Unclear NA
DB00975:Dipyridamole∗ 0.6255 Unclear [82], [83]
DB01115:Nifedipine 0.6162 Unclear [84], [85]
DB00724:Imiquimod 0.6145 Unclear [86]
DB00768:Olopatadine 0.6116 Unclear [87], [88]

P05231:IL-6

DB00198:Oseltamivir∗ 0.3241 Reducing the mRNA levels [89], [90]
DB00284:Acarbose 0.3030 Reducing the mRNA levels [79]
DB00302:Tranexamic acid∗ 0.3004 Concentration dependent manner [91]
DB01258:Aliskiren 0.2984 Reducing the mRNA levels [92], [93]
DB00819:Acetazolamide 0.2979 Reducing the mRNA levels [94]
DB00869:Dorzolamide 0.2976 Unclear NA
DB00851:Dacarbazine 0.2917 Unclear NA
DB00703:Methazolamide 0.2884 Unclear [95]
DB00207:Azithromycin∗ 0.2850 Unclear [96], [97], [98]
DB06228:Rivaroxaban∗ 0.2745 Reducing the mRNA levels [99], [100], [101]
DB00811:Ribavirin∗ 0.2741 Reducing the mRNA levels [102], [103], [104], [105]
DB00594:Amiloride 0.2676 Unclear [106]
DB01143:Amifostine 0.2633 Inducing activation of redox sensitive signaling [107]

a. Drugs marked with ∗ have been used in clinical trials. The others are here proposed for the first time as anti-inflammatory agents for
COVID-19 treatment.
b. NA represents that there have been no studies proving that the drug can inhibit the release of TNF or IL-6.

lung inflammatory parameters and pathological changes are
attenuated in methazolamide-treated mice compared with
control mice [95]. Amiloride inhibits IL-6 release, and is
treated as a therapeutic agent in respiratory syncytial virus
infections [106]. Thus, these results from literature suggest
that the proposed AIdrug2cov is able to predict drug candi-
dates that ameliorate the cytokine storm and inflammatory
response in patients with COVID-19.

2.4.2 Eight agents in current ongoing clinical trials to
COVID-19
In this work, eight predicted drugs have been determined
in clinical studies against COVID-19, as shown in Table 3.
Interestingly, that seven drugs (i.e., thalidomide, imatinib,
oseltamivir, dipyridamole, azithromycin, rivaroxaban, and
ribavirin) have been used as an immunomodulator to treat

TABLE 3
Eight drugs in Current Ongoing Clinical Trial on COVID-19.

Drug Name Clinic Trial registration ID

Anti-inflammatory Antiviral
Thalidomide NCT04273581 NA

Imatinib NCT04422678 NCT04394416
Oseltamivir NCT04457609 NCT04516915

Dipyridamole NCT04424901 NA
Tranexamic acid NA NCT04338126

Azithromycin NCT04341870 NCT04359316
Rivaroxaban NCT04662684 NA

Ribavirin NCT04664010 NCT04494399

patients with COVID-19 infection, is consistent with the
result of AIdrug2cov. Meanwhile, clinical studies indicated
that four agents (i.e., imatinib, Oseltamivir, azithromycin,
and ribavirin) also play important roles in antiviral process.
In addition, we also note that Tranexamic acid was only
used to reduce the infectivity and virulence of SARS-CoV-2.
However, Jimenez et.al suggest that tranexamic acid plays
a key role in the circulating levels of the proinflammatory
cytokines IL-6 [91]. Therefore, ongoing clinical studies on
COVID-19 should investigate the anti-inflammatory effects
of tranexamic acid.

2.4.3 Anti-inflammatory actions through multiple pathways
Among these, literature search revealed that 21 drugs are
able to inhibit TNF-α, and IL-6 release, and reduce inflam-
matory responses. Strikingly, 6 drugs, including thalido-
mide [75], [76], chloroquine [108], [109], aliskiren [92], [93],
acetazolamide [94], rivaroxaban [99], [100], [101], and rib-
avirin [102], exert their inhibitory action on TNF-α, and
IL-6 by decreasing mRNA stability or enhancing mRNA
degradation. In addition, we found that administration of
acarbose to diabetic rats significantly reduces the expression
of miRNAs to inhibit the release of TNF-α, and IL-6 in in-
flammatory pathways [79]. Furthermore, amrinone reduces
the release of TNF-α in a concentration dependent manner
[77]. Imatinib inhibits TNF-α release by reducing the DNA
binding of NFKB [81]. Amifostine is considered a thera-
peutic agent of lung inflammation that acts by suppressing
IL-6 induced activation of redox sensitive signaling [107].
Ribavirin inhibits the expression of TNF-α, IL-6, and IL-10
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in blood lymphocytes by reduced their mRNA levels [102],
[103]. Notably, a study by Wang et al. has suggested that
peaks in the levels of inflammatory cytokines (IL-6 and IL-
8) levels coincide with or occur after the peaks in SARS-CoV
loads, and indicated that viral replication leads to the activa-
tion of proinflammatory cytokines, contributing to disease
progression [104], [105]. These clinical findings imply that
ribavirin is able to reduce the release of IL-6 and IL-8 by
inhibiting viral replication to ameliorate lung lesions. The
above studies illustrated that these drugs can ameliorate the
TNF-α and IL-6 release to reduced inflammatory responses
via multiple pathways.

(A) Acarbose-TNF-α (B) Thalidomide-TNF-α

(C) Acarbose-IL-6 (D) Amiloride-IL-6

Fig. 4. Molecular docking results for drugs binding to TNF-α or IL-6. The
blue, green, and gray dotted line represent hydrogen bond, π-π stacking,
and hydrophobic interaction between drugs and targets, respectively.

2.4.4 Molecular docking analysis
In this section, we used the molecular docking program
DOCK6.8 [16] to explore the possible modes of binding of
new the predicted drugs with TNF-α or IL-6. The three-
dimensional (3D) structures of TNF-α and IL-6 used in
the docking studies were downloaded from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein
Data Bank (PDB IDs 2AZ5 and 4CNI, respectively). The
3D structures of the drugs were obtained from the ZINC
database. Here, four representative docking structures are
shown in Fig. 4

For the docking model of TNF-α, the molecular docking
result in Figure 4(A) shows that acarbose mainly binds
to Ser60, Lys98, Glu116, Tyr119, and Tyr151 through five
hydrogen bonds, and there is one hydrophobic interaction
between acarbose and Tyr59. Figure 4(B) shows that thalido-
mide binds to TNF-α via two hydrogen bonds with Leu120
and Tyr151, and two hydrophobic interactions. The results
indicate that there are the difference in the binding modes
of the different drugs, and that acarbose has a stronger
ability to bind TNF-α than thalidomide in terms of the
hydrogen bond formation. In the docking model for IL-
6, seven hydrogen bonds are predicted to form between
acarbose and Tyr32, Asn53, Arg100, Tyr103, and Tyr109 of
IL-6 as shown in Figure 4(C). The result in Figure 4(D) shows
that Tyr56, Phe33, Glu101, and Tyr103 of IL-6 respectively

combine with amiloride through five hydrogen bonds, and
form an π-π stacking. The results suggest that acarbose has a
stronger ability to bind IL-6 than amiloride. In addition, the
binding modes between acarbose and TNF-α/IL-6 reveal
that acarbose binds with these molecules through different
binding sites. The above results suggest that there are the
some differences in the binding modes for the different
drugs and targets.

2.5 Mechanism of action and the results of clinical tri-
als of CQ and HCQ
In this study, chloroquine (CQ) and hydroxychloro-
quine (HCQ) had high confidence scores. In particu-
larly, CQ has been added to the list of trial drugs
in the Guidelines for the Diagnosis and Treatment
of COVID-19 (seventh edition) published by the Na-
tional Health Commission of the People’s Republic
of China (http://www.nhc.gov.cn/yzygj/s7653p/202003/
46c9294a7dfe4cef80dc7f5912eb1989.shtml). CQ and HCQ
are FDA-approved drugs for malaria treatment and are
viral mRNA and protein synthesis inhibitors, respectively.
However, we still exclude CQ and HCQ from the candidate
drugs list, because there is the great controversy whether
CQ and HCQ is an effective treatment against COVID-19.
Here, based on PubMed publication, we summarize their
potential mechanism of action and results of clinical trials in
order to promote the understanding of the availability and
dangers of CQ and HCQ to patients with COVID-19.

CQ and HCQ share similar chemical structures and
mechanisms of action, and demonstrate strong im-
munomodulatory capacity, preventing inflammation and
organ damage as shown in Fig.5. Several in vitro stud-
ies have shown that CQ inhibits the production of TNF-
α and IL-6 via different mechanisms in human mono-
cytes/macrophages. CQ inhibits the release of IL-6 by
decreasing the stability of IL-6 mRNA [108]. In contrast,
CQ has been shown to inhibit TNF-α synthesis mainly
by blocking conversion of cell-associated 26-kDa TNF-α
precursor into the soluble 17-kDa mature form, rather than
by reducing the stability of TNF-α mRNA [108], [109],
[110]. Meanwhile, one anti-inflammatory mechanism of CQ
might involve impairment of antigen presentation [111].
CQ increases the intracellular pH and inhibits lysosomal
activity in antigen-presenting cells (APCs) including mono-
cytes, macrophages and B cells, thus preventing antigen
processing and major histocompatibility complex (MHC)
class II-mediated autoantigen presentation to T cells [112].
This process reduces T cell activation, thus reducing the
production of cytokines including IL-6 and TNF-α [113].
HCQ is able to decrease the release of cytokines including
IL-6 and TNF, via blocking proliferative responses to T-cell
mitogens [114], [115]. In addition to a role in immune modu-
lation, HCQ and CQ inhibit receptor binding and membrane
fusion, which are required for cell entry by coronaviruses.
These drugs can interfere with the glycosylation of ACE2 of
SARS-CoV to impede the binding of the virus to receptors
on cells [116]. CQ increases the endosomal pH and inhibits
protease activity such that the virus/cell fusion process is
blocked [117].

Based on the above findings, compared to exhibiting
antiviral ability, HCQ and CQ antagonize the inflammatory
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Fig. 5. Possible pathway of CQ and HCQ contributing to excessive inflammatory responses and antiviral effect in patients with COVID-19.

response through more pathways. Interestingly, a clinical
study including 550 critically ill COVID-19 patients has
demonstrated that low dose HCQ significantly reduces fa-
tality of critically ill COVID-19 patients, and their mecha-
nism of action is likely mediated through its inhibition of
inflammatory cytokines on top of its ability in inhibiting
viral replication [118]. Meanwhile, we noticed that high
concentrations of HCQ or CQ have in vitro antiviral effect
on several viruses, including SARS-CoV and SARS-CoV-2
[119], [120], which may contribute directly to the therapeutic
effects of these drugs in COVID-19 patients. Notably, we
also noticed a few negative reports about CQ and HCQ
[121], [122]. The negative studies do not support the use of
HCQ, either alone or in combination, as an antiviral drug for
the treatment of COVID-19 in humans. In addition, WHO
announced that the HCQ arm of the Solidarity Trial to find
an effective COVID-19 treatment was being stopped, be-
cause CQ did not reduce mortality for hospitalised patients
with COVID-19 (https://www.who.int/news/item/29-06-
2020-covidtimeline). The results of the trial are under review
for publication in a medical journal.

2.6 Performance evaluation of AIdrug2cov for pharma-
cological applications
To evaluate the network representation performance of
AIdrug2cov, the pharmacological interpretation results were
based on comprehensively compared with those obtained
from LINE [123], GraRep [124], struc2vec [125], and NeoDTI
[126] models. The first three of these models have shown re-
markable performance in the link prediction and node clas-
sification for 7 biomedical network datasets [127]. NeoDTI is
specially designed to predict drug-target interactions, which
also integrate IMC model.

• LINE: This model captures local and global network
structures by approximating the 1st-order proximity
and 2nd order proximity of nodes.

• GraRep: This model considers high-order proxim-
ity to preserve the network structure, and employs
different loss functions to capture local relational
information from the different k-step.

• struc2vec: This model uses a hierarchy to measure
node similarity at different scales, and constructs a
multilayer network to encode structural similarities.

Then, deepwalk [128] is performed on the multilayer
network to learn the low-dimensional vector of each
node.

• NeoDTI: This model integrates neighborhood infor-
mation of a heterogeneous network constructed from
diverse data sources via a number of information
passing and aggregation operations.

2.6.1 Experiment settings and evaluation metrics

The AIdrug2cov model parameters followed those BERT
[129] which is L=12, H=768, and A=12, where L, H, and
A are the number of Transformer blocks, the hidden size,
and the number of self-attention heads, respectively. The hy-
perparameters of the LINE, GraRep, and struc2vec models
were selected according to the guidelines in [127], because
Yue et al. carefully optimized them by grid search. The
hyperparameter for the NeoDTI model was set to the default
value in [126]. In this study, the embedding dimension(d)
was set to 768 for all model.

To evaluate the performance of the embedding methods
on DDI network reconstruction, we adopted Precision@k
[130] as the evaluation metric. The one error, coverage, rank-
ing loss, and average precision were used to evaluate the
overall performance of all representation methods in ATC
classification. These metrics are defined in detail in [131],
and are frequently used for evaluating the performance
of ATC classifiers. The area under precision recall (AUPR)
curve and the area under receiver operating characteris-
tic(AUROC) curve were employed to evaluate the perfor-
mance of all representation methods in bio-link prediction.

2.6.2 DDI network reconstruction

For DDI network reconstruction, the Precision@k was cal-
culated for different k values of 2,000, 4,000, 6,000, 8,000,
and 10,000, which corresponded to roughly 20%, 40%, 60%,
80%, 100% of the total number of the DDI edges (10,036),
respectively. Fig. 6 illustrates the Precision@k values for the
different k values. AIdrug2cov significantly outperformed
the baseline methods. In addition, AIdrug2cov showed
the best precision while baseline methods, when the was
k=6,000, while the baseline methods exhibited the best re-
construction precision when k was 2,000. This finding indi-
cates indicates that AIdrug2cov may reconstruct more edges
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Fig. 6. Precision@k from DDI network reconstruction.

than the baseline methods. This may be attributable to the
capability of AIdrug2cov to learn semantic features among
nodes through a deep bidirectional Transformer encoder.

2.6.3 ATC classification
For ATC classification, we performed 10-fold cross-
validation, in which a subset of 10% of the drug entities
were randomly selected as the test set, and the remaining
90% of drugs were treated as the training set. To reduce the
data bias of cross-validation, it was repeated 10 times and
the average performance was computed.

Table 4 shows the results of ATC classification gener-
ated by the AIdrug2cov and baseline methods, and the
best results are marked in boldface. The results clearly
demonstrated that AIdrug2cov was able to achieve better
results for ATC classification than the baseline methods.
In particular, AIdrug2cov achieved an approximately 50%
improvement in terms of one error value. A major reason for
this superiority is that AIdrug2cov takes into consideration
the various types of semantic information that indicate the
anatomical therapeutic chemical of drugs to a certain extent.
This result indicates that AIdrug2cov is a powerful network
representation method for predicting the ATC classification
of given drugs.

TABLE 4
Results of ATC classification generated by AIdrug2cov and baseline

methods.

Method One error Coverage Ra-Loss Avg-pre
AIdrug2cov 0.4209 2.6583 0.1642 0.6795

NeoTDI 0.7797 4.2910 0.2904 0.4211
GraRep 0.7628 4.2976 0.2905 0.4237

LINE 0.7685 4.2335 0.2845 0.4307
struc2vec 0.7981 4.3794 0.2966 0.4050

a. Ra-Loss and Avg-pre stand for ranking-loss and average preci-
sion, respectively.
b. Among the mentioned evaluation metrics, smaller values show
better performance except in the case of average precision.

2.6.4 Bio-link prediction
For bio-link prediction, we performed a 10-fold cross-
validation test on all positive pairs and a matching number

of randomly sampled negative pairs. Similar to prediction
of ATC classification, the ratio between the test and training
set was 1:9, and each method was repeated 10 times and the
average performance was computed. Table 5 summarizes
the overall performance of different methods for the bio-
link prediction, that is, disease-target association (DisTA),
target-drug interaction (TDI), and drug-side-effect associa-
tion (DSA).

TABLE 5
Results of bio-link prediction generated by AIdrug2cov and baseline

methods.

Method
DisTA DTI DSA

AUROC AUPR AUROC AUPR AUROC AUPR
AIdrug2cov 0.9613 0.9555 0.9973 0.9968 0.9391 0.9361

NeoTDI 0.9209 0.9044 0.8782 0.8806 0.9271 0.9183
GraRep 0.9179 0.8976 0.8050 0.7975 0.8902 0.8786

LINE 0.9020 0.8846 0.8403 0.8352 0.8788 0.8684
struc2vec 0.8336 0.7942 0.7514 0.7426 0.8384 0.8279

In this DisTA, and DSA prediction tasks, AIdrug2cov
outperformed the baseline methods. In particular,
AIdrug2cov was significantly superior to struc2vec,
improving the AUROC and AUPR by over 10%. For
DTI prediction, the baseline methods achieved poor
results below 0.9 in terms of AUROC and AUPR, while the
AIdrug2cov method showed the excellent performance with
results close to 1. These findings suggest that AIdrug2cov
can still obtain good results when other methods fail to
accurately predict the DTI. In addition, we observe that
AIdrug2cov greatly outperform other baseline methods,
with significant improvement (13% in terms of AUPR and
AUROC) over the second best method.

Interestingly, GraRep and LINE had improved the link
prediction performance compared with struc2vec, whereas
their result is lower than NeoDTI of ones. For example,
compared with struc2vec, LINE achieved 4.8-11.2% im-
provement in terms of AUROC value on the 3 bio-link
prediction tasks. NeoTDI achieved 5.2% increment with
regard to average AUPR in the 3 bio-link prediction tasks,
when compared with GraRep. This may be because NeoDTI
use a neighborhood information-preserving learning pro-
cedure to enforce the extracted feature representations of
nodes to match the observed networks. There may be a lack
of structural identity in the heterogeneous network, thus
leading to the poor performance of struc2vec.

The proposed AIdrug2cov method clearly achieved very
promising results in various prediction tasks. Three key
factors were responsible. First, AIdrug2cov uses 23 types
of meta-paths to integrate the structure and semantic fea-
ture among diverse vertices in the heterogeneous network.
Second, although AIdrug2cov considers only the first-order
proximity of nodes in the construction process of seman-
tic paths, it can capture long-range dependencies without
regard to their distance in the input or output sequences
by relying entirely on an attention mechanism. Moreover,
AIdrug2cov uses masked language models to enable train
deep bidirectional representation.
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Fig. 7. Results of DDI network reconstruction; ATC classification; DisTI, TDI, and DSeI with different embedding dimensions.

2.6.5 Effect of dimension

The embedding dimension (d) is a common hyperparameter
among AIdrug2cov, LINE, GraRep, struc2vec, and NeoDTI.
In this study, each method was run 8 times with a different
embedding dimensions (i.e. d=48, 96, 192, 384, 768, 1,536,
2,304, and 3,072) to evaluate the impact of dimensionality
on the prediction performance and time efficiency. Fig.7
illustrates the effects of dimension on DDI network recon-
struction (k=10,000), ATC classification, and bio-link predic-
tion. Generally, the prediction performance improved with
increasing embedding dimensionality. The same conclusion
is described in [127]. This is intuitive since higher number
of dimensions can encode more useful information.

However, the performance tends to saturate or decre-
ment when the dimension reaches to a threshold (e.g. 768).
In this study, the time cost first increased gradually when
the dimension was below 768 but tends to increase sharply
(note that the y-axis is log-based) when the dimensionality
continued to increase, as shown in Fig. 8. There, we suggest
that the dimensionality should be set to approximately 768
to optimize performance and time efficiency.
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Fig. 8. Influence of dimensionality on the training time of the different
embedding methods.

3 DISCUSSION

In this study, we proposed AIdrug2cov, which is a network
representation learning-based drug mechanism discovery
and anti-inflammatory response to develop an effective
therapeutic approach for COVID-19 patients. Based on com-
prehensive evaluation, AIdrug2cov identified 40 potential
targets related to COVID-19 and 22 high-confidence drugs
that bind to cytokines to prevent excessive inflammatory re-
sponses in patients with COVID-19. In addition, the results
of DDI network reconstruction, ATC classification, and bio-
link prediction demonstrate that AIdrug2cov significantly
outperforms than other state-of-the-art network representa-
tion approaches. In summary, AIdrug2cov is a practically
useful tool for accelerating COVID-19 therapeutic develop-
ment.

Previous evidence reported in the literature suggests
that the most popular targets predicted by AIdrug2cov
are mediators of inflammation; these findings indicate that
SARS-CoV-2 infection is associated with a cytokine storm
and severe pulmonary inflammation in patients, consistent
with the findings of several previous studies [1]. Similar to
the case in patients with SARS-CoV infection, the levels of
TNF-α [1], [20], IL1B [21], IL-6 [22], [23], CCL2 [21], [24],
IFNG [26], and CXCL10 [1], [21] are significantly elevated
and are associated with adverse clinical outcomes in pa-
tients with COVID-19. Therefore, this work proposed that
using TNF and IL-6 target discovers high-confidence drugs
for preventing cytokine storm and excessive inflammatory
responses in patients with COVID-19. Recent studies have
similarly suggested that drugs targeting IL-6 and TNF-
α are effective in blocking inflammatory storms, and are
promising treatments for severe COVID-19 patients [1], [20],
[22], [23]. The data presented in this study and the previous
reports in the literature indicate that it is important to iden-
tify proteins related to COVID-19, especially those related
to inflammatory response, and to apply this knowledge
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towards discovering candidate drugs to reduces fatality of
patients with COVID-19.

To the best of our knowledge, 14 of the predicted 22
drugs predicted by AIdrug2cov initially proposed as poten-
tial anti-inflammatory therapeutic for COVID-19 patients.
Eight predicted drugs have been determined in clinical
studies against COVID-19. Interestingly, four drug (i.e.,
imatinib, oseltamivir, azithromycin, and ribavirin) not only
as an immunomodulator but also as antiviral agent in
clinical trail have been used to treat patients with COVID-
19. A possible reasons for the inconsistent result is that
these studies use different experimental approaches and
drug dosage, thus leading potential data conflicts or noises.
Therefore, standard assays must be carried out to measure
the effects of these drugs. In addition, all predicted drugs
must be validated in preclinical models experiments and
randomized clinical trials before being used in patients.

On five pharmacological tasks, DDI network recon-
struction, ATC classification, and 3 bio-link predictions,
AIdrug2cov significantly outperformed other state-of-the-
art network representation approaches. A major reason for
the success of AIdrug2cov is that it takes into consider-
ation types of various semantic information that indicate
the anatomical therapeutic chemical of drugs to a certain
extent. Recent studies have shown that the semantics of
nodes are critical for knowledge discovery in real world
biomedical problems [132]. Compared to previous path-
based approaches, AIdrug2cov can capture long-range de-
pendencies without regard to their distances in the input
or output sequences by relying entirely on an attention
mechanism to improve representation performance.

On five biomedical tasks, AIdrug2cov significantly
outperforms baseline network representation approaches.
These results suggest that AIdrug2cov is a powerful repre-
sentation technique, and can greatly facilitate the biomedical
studies. A major reason for the success of AIdrug2cov is that
this work focuses on the exploration of structural charac-
teristics of the heterogeneous drug networks, and observe
that the heterogeneous drug networks is multi-hub network
where drugs and proteins are important hubs. Therefore,
we specially design 23 types of meta path. The multiple
types of meta paths integrate the structure and semantic
feature among vertices in the heterogeneous drug networks.
A mass of studies [133], [134], [135] have suggested that
meta paths could contribute to learning meaningful rep-
resentation for various tasks. However, these meta path-
based representation approaches are mainly proposed on
non-biomedical networks, and only a few studies are focus
on biomedical issues. Meanwhile, compared to previous
path-based approaches, AIdrug2cov uses a deep bidirec-
tional Transformer encoder, which can capture long-range
dependency without regard to their distance limits in the
original network to improve representation performance.
In addition, AIdrug2cov uses masked meta path learning
strategy to enable train deep bidirectional representation
model for capturing context-dependent relation. Neverthe-
less, most of path-based representation approaches adopts
Skip-Gram that is a left-to-right architecture, where every
token can only attend to previous tokens [133].

However, we acknowledge several limitations in our
current study. The top-k targets and agents in this study

were regarded as candidate entities related to COVID-19
according to a confidence score. The operation is simple
and is popularly applied to the recommended systems, but
the results neglect statistical significance to a certain extent.
How to select associated candidate entities is also an impor-
tant question for drug repositioning. The selection strategy
of candidates must be improved in order to promote the
precision of drug repositioning. For example, the confidence
score could be converted to a z-score based on permutation
tests, and the corresponding p-value could be calculated. For
each virus, those predictions with a p-value < 0.05 could be
treated as candidates [136].

Owing to the lack of wet-lab validation, the mechanisms
of action of the COVID-19 targets and drugs could not be
verified in this study. Although previous literatures provide
certain evidence proving that the majority of proteins and
drugs predicted by AIdrug2cov are able to target COVID-
19 through multiple pathways, the previous studies used
different experimental platforms and viruses. However,
there are some differences in mechanisms of action between
different drugs and different types of cells. Therefore, stan-
dard assays must be carried out to measure the effects of
these targets and drugs on the cytotoxicity, virus yield and
infection rate of SARS-CoV-2, and all predicted targets and
drugs must be validated in preclinical models experiments
and randomized clinical trials before being used in patients.

In conclusion, this study offers a powerful network
representation approach for drug mechanism discovery and
anti-inflammatory response mechanism analysis that can be
used to identify effective therapeutic strategies for patients
with COVID-19. Our approach can increase clinical testing
accuracy, which is a critical for the rapid development of ef-
ficient treatment strategies for the emerging disease COVID-
19. Meanwhile, the proposed AIdrug2cov method could
also be applied to develop effective treatment strategies for
other types of viral infections and human diseases.

4 METHOD

4.1 Construction of a heterogeneous network
A heterogeneous information network is defined as G =
(V,E) where V represents the set of vertices, and E is the
set of edges. In a heterogeneous network, each vertex v and
each edge e are associated with an object type mapping
function, φ(v) : V → A, and a link type mapping function,
ψ(e) : E → R, respectively. A and R denote the sets of
object and link types, where |A|+ |R| > 2.

In this study, we assembled four types of nodes (i.e.,
drug, target, side-effect, and disease), and eight types of
links(i.e., drug-disease association (DDA), drug-drug in-
teraction (DDI), drug-target interaction (DTI), drug-side-
effect association (DSA), protein-protein interaction (PPI),
disease-target association (DisTA)), anddrug-drug structure
similarity (DDSS) and protein-protein sequence similarity
(PPSS)) form the public databases, as shown in Fig.1(A).
The drug-drug and drug-target interactions were extracted
from DrugBank and ChEMBL. The human protein-protein
interactions were extracted from the Human Protein Ref-
erence Database (HPRD), the Human Reference Interac-
tome (HuRI) database and the Biological General Reposi-
tory for Interaction Datasets (BioGRID). The protein-disease
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and drug-disease network were collected from the Toxi-
cogenomics Database and repoDB. We also extracted the
drug-side-effect associations from the Comparative Toxi-
cogenomics Database (CTD) and the Side Effect Resource
(SIDER). In addition, a protein sequence similarity network
was obtained by calculating the Smith-Waterman similari-
ties [137] of the amino acid sequence derived from UniProt.
Furthermore, the drug similarity network was obtained by
calculating the Tanimoto coefficient [138] from the Morgan
fingerprint with a radius of 2 using the RDKit [139]. In
the heterogeneous network, there were 11,490 nodes and
1,887,041 edges; all edges were nonnegative and undirected.

4.2 Semantic-path and deep bidirectional Transformer
encoder-based network representation
We developed a promising heterogeneous network repre-
sentation approach, AIdrug2cov, by integrating semantic
paths and a multi-layer bidirectional Transformer encoder
model, as shown in Fig.1(B). In this work, network vertices
were regarded as the vocabulary, and a set of semantic
paths was treated as a corpus that is fed into a deep
bidirectional Transformer encoder model to learn the low-
dimensional representation of the network vertices, which
existed in a continuous vector space. The proposed network
representation was able to capture structural and semantical
correlations between diverse vertices in the heterogeneous
network, thus encoding latent forms of nodes.

4.2.1 Semantic-path and multi-hub characteristic of net-
work
A meta path [140] is a composite relation denoting a se-
quence of adjacent links between any two nodes in het-
erogeneous network. The different adjacent links indicate
distinct semantic. For example, meta path(A): drug treats−−−→
disease

treated by−−−−−→ drug represents that a disease can be treated
by two drugs. Meta path(B): drug binds to−−−−→ protein causes−−−−→
disease indicates that a drug binds to a protein that causes
a disease. Meta paths is widely used to capture the rich
structure and semantic for non-biomedical heterogeneous
networks. However, not all meta paths have a positive effect
on representation learning, and the selection of meta-path is
still an open question [141], [142].

To develop a special representation learning for hetero-
geneous drug networks, first, AIdrug2cov focuses on the
exploration of structural characteristics of heterogeneous
drug networks, and observes that the drug network is a
multi-hub network as shown in Figure 9, where drugs and
proteins are important hubs. Therefore, we specially design

drug structure 

similarity

protein 

sequence 

similarity

drug protein disease 

side-effect disease 

Fig. 9. Structure characteristics of heterogeneous drug networks.

TABLE 6
The semantic path types and statistics

NO. Semantic path Count

1 drug binds to−−−−→ protein 1,923

2 drug binds to−−−−→ protein binds to−−−−→ drug 153,186

3 drug binds to−−−−→ protein interacts with−−−−−−−→ protein 8,728

4 drug binds to−−−−→ protein causes−−−→ disease 2,209,742

5 drug binds to−−−−→ protein interacts with−−−−−−−→ protein binds to−−−−→ drug 12,734

6 drug binds to−−−−→ protein interacts with−−−−−−−→ protein causes−−−→ disease 11,603,240

7 drug binds to−−−−→ protein binds to−−−−→ drug binds to−−−−→ protein 221,020

8 drug binds to−−−−→ protein binds to−−−−→ drug treats−−−→ disease 8,243,362

9 drug binds to−−−−→ protein binds to−−−−→ drug causes−−−→ side-effect 4,482,541

10 drug binds to−−−−→ protein causes−−−→ disease
caused by−−−−−→ protein 2,020,665,247

11 drug binds to−−−−→ protein causes−−−→ disease
treated by
−−−−−→ drug 231,785,524

12 protein binds to−−−−→ drug interacts with−−−−−−−→ drug 34,260

13 protein binds to−−−−→ drug binds to−−−−→ protein 6,344

14 protein binds to−−−−→ drug treat−−→ disease 636,903

15 protein binds to−−−−→ drug causes−−−→ side-effect 270,234

16 protein binds to−−−−→ drug interacts with−−−−−−−→ drug binds to−−−−→ protein 60,096

17 protein binds to−−−−→ drug interacts to−−−−−→ drug treats−−−→ disease 11,188,449

18 protein binds to−−−−→ drug interacts with−−−−−−−→ drug causes−−−→ side-effect 5,315,270

19 protein binds to−−−−→ drug binds to−−−−→ protein interacts with−−−−−−−→ protein 19,371

20 protein binds to−−−−→ drug binds to−−−−→ protein causes−−−→ disease 13,232,097

21 protein binds to−−−−→ drug treats−−−→ disease
caused by
−−−−−→ protein 558,541,026

22 protein binds to−−−−→ drug treats−−−→ disease
treated by−−−−−→ drug 115,924,998

23 protein binds to−−−−→ drug causes−−−→ side-effect
caused by
−−−−−→ drug 38,577,295

Total number 3,023,193,590

23 types of meta path as shown in Table 6, where the
first two nodes in each meta path are drugs and proteins,
respectively. Note that all the meta paths in this work are
reversible, and the meta paths with lengths no longer than
four. Because previous studies have suggested that short
meta paths are good enough, and that long meta paths may
even reduce the quality of semantic meanings [134], [140].
Finally, AIdrug2cov constructs three billion meta paths that
reflect the interaction mechanisms and topological struc-
tures among vertices in heterogeneous drug networks.

4.2.2 Deep Bidirectional Transformers Encoder
The network embedding model in AIdrug2cov is a deep
bidirectional Transformer encoder based on the original
implementation described in [143], and the implementation
is almost identical to the original. The encoder is composed
of a stack of identical layers, and every layer includes two
sub-layers as shown in Fig.10. The first is a multi-head self-
attention mechanism, and the second is a simple, position
wise fully connected feed-forward network. In the encoder
model, a residual connection [144] is employed to connect
each of two sub-layers, and layer normalization is then
performed.

4.2.3 Training regime
The network embedding model uses ”masked language
learning” to enable trained deep bidirectional representation
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inspired by the Cloze task. In masked language learning,
the input corpus is randomly masked by some token, and
the objective is to predict the masked word based only on
its context. AIdrug2cov follows the method used in BERT
[129] to mask an input corpus. First, 15% of tokens were
randomly selected for masking. For every selected token, it
has 80% time to be replaced by 〈MASK〉 token. With 10%
and 10% time, it will be randomly replaced by any other
token in the dictionary or kept unchanged correspondingly.
The advantage of this procedure is that the randomness can
increase the generalization ability of the model, and prevent
it over-fitting. In addition, because random replacement oc-
curs is only 1.5% (i.e., 15%*10%) of the time for all tokens, it
does not seem to harm the model’s language understanding
capability.

4.3 Identification of potential targets and drugs for the
COVID-19
Based on over representations, the inductive matrix com-
pletion (IMC) model and CMap were used for target iden-
tification and drug repurposing for COVID-19 to facilitate
therapeutic efficiency.

4.3.1 Inductive matrix completion-based confidence score
prediction
In this work, the heterogeneous drug networks includes 8
type of edge, r ∈ R = {DDA, DDI, DTI, DSA, PPI,
DisTA, DDSS, PPSS}. For r ∈ {DDA, DDI, DTI,
DSA, PPI, DisTA}, P r

ij = 1 if node i is linked to node
j, and P r

ij = 0 otherwise. For r ∈ {DDSS, PPSS}, P r
ij

is equal to the similarity value between node i and j. As
shown in Figure 1(C), AIdrug2cov uses the IMC model [145]
to obtain edge-type projection matrices Gr, Hr ∈ Rd×k for
reconstructing the original edge-type matrix P r as much as
possible, where d is the dimension of representation vectors,
and k � d∗d. A similar strategy has been popularly applied
to the bio-link prediction [126], [146]. The optimization
function is defined as follows:

min
Gr,Hr

∑
r∈R

∑
(i,j)∈Vr

‖P r
ij − FiGrH

T
rF

T
j ‖22 (1)

Fig. 10. Learning architecture of the deep bidirectional Transformers
encoder model

where Vr is a set of node pairs with r type of edge in the
heterogeneous drug networks.

Based on the representation vectors and edge-type pro-
jection matrices, the predicted confidence score of interac-
tion between each drug i and node j can be obtained by:

score(i, j) = FiG
T
PDIH

T
PDIFj (2)

4.3.2 COVID-19 target identification
In this study, COVID-19 target identification of COVID-19
was conducted with SARS data caused by the virus SARS-
CoV since SARS-CoV and SARS-CoV-2 are highly similar
and closely related coronaviruses. Phylogenetic analysis has
revealed that the genome of SARS-CoV-2 is similar to that of
SARS-CoV, with approximately 79% sequence identity [4].
Further sequence alignment has revealed that the similarity
of the sequence of the main protease between SARS-CoV-2
and SARS-CoV, which is essential for the life cycle of the
virus, is up to 96.1%. In addition, the pathogenic mecha-
nisms of SARS-CoV-2 and SARS-CoV are highly similar [3].
Therefore, predicted targets related to SARS can reasonably
be treated as potential targets of COVID-19.

As shown in Fig.1(E), in the process of COVID-19 target
identification, the low-dimensional vector of nodes was feed
into the IMC model to predict the confidence scores of
SARS-protein interactions. Then, the proteins were ranked
according to confidence scores, and the top-k proteins were
regard as potential targets of COVID-19. Finally, Enrichr
[18], a comprehensive gene set enrichment analysis tool, was
used to perform functional enrichment analyse, including
GO and KEGG enrichment analyses to evaluate the func-
tional pathways and biological relevance of the potential
targets of COVID-19.

4.3.3 Anti-inflammatory drug discovery for COVID-19
Studies have shown that SARS-CoV-2 induces excessive
and aberrant non-effective host immune responses that are
associated with severe lung pathology and lead to death
[1]. Similar to SARS-CoV infection, SARS-CoV-2 infection is
also associated with a cytokine storm and severe pulmonary
inflammation in moribund patients, and is characterized
mainly by elevated plasma concentrations of IL-6, TNF-
α. In particular, researchers have proposed that IL-6, and
TNF-α might be promising therapeutic targets. Therefore,
this study predicted drugs related to IL-6 or TNF-α to
facilitate the therapies efficacy. Similar to the methods for
target identification, IMC model are integrated to predict
confidence scores for interaction between drugs and IL-
6 or TNF-α and drugs, and the top-k candidate drugs
according to confidence scores were selected for IL-6 or
TNF-α, respectively. In addition, we performed the CMap
[19] analysis to further screen candidate drugs for COVID-
19. Due to the lack of gene expression data from the SARS-
CoV-2 infected patients, we used the gene expression pro-
files of peripheral blood mononuclear cells (PBMCs) from
ten SARS-CoV infected patients (GEO:GSE1739) [147] to
identify potential COVID-19 therapeutic drugs. The detailed
connectivity analysis steps are listed as follows.

Step 1: Student’s t test was performed to identify genes
that were differentially expressed in samples from SARS
patients compared with normal samples. For each gene,
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the statistical significance was assessed by computing the
p value. The log2(FC) value was calculated as the fold
change (FC) between the average signal intensity of 10 SARS
patients and that of 4 normal human subjects was calculated
for each gene. Any gene meeting the criteria of a p <0.01 and
an absolute log2(FC) > 1 was considered to be the up- and
down-regulated genes.

Step 2: The CMap scores were computed based on the
sets of up- and down-regulated genes in SARS-CoV infected
patients by using a web server (https://clue.io/query).

Step 3: In AIdrug2cov, under the hypothesis that if a drug
has a gene expression signature that is opposite to a disease
signature, that drug could potentially be used as a treatment
for that disease [148]. Therefore, drugs with the CMap scores
< 0 were treated as COVID-19 therapeutic drug candidates.

Finally, we used literature-reported knowledge to filter
drugs that tended to increase the release of IL-6 or TNF-α.

4.4 Pharmacological application of AIdrug2cov
To evaluate and interpret the node representation perfor-
mance of AIdrug2cov, we performed various pharmacolog-
ical tests, including DDI network reconstruction, ATC clas-
sification, and bio-link (i.e., DisTA, TDI, DSA) prediction.

4.4.1 DDI network reconstruction
As network representations, embedding vectors are ex-
pected to reconstruct the original networks well [130]. Here,
we reconstructed the DDI network edges based on the prox-
imity nodes to evaluate the representation performance of
AIdrug2cov. First, the proximity matrix was attained by di-
rectly calculating the cosine similarity between embedding
vectors. Then, the pairs of nodes were ranked according to
their proximity. Finally, the ratio of real links in the top k
pairs of vertices was treated as the reconstruction precision.
A more reconstruction precision indicated a more higher
embedding quality.

4.4.2 ATC classification
In drug development, identification of the ATC class of an
uncharacterized compound is a challenging and important
task, since such a prediction system could be used to de-
duce not only a compound’s possible active ingredients but
also its chemical, therapeutic, pharmacological, and other
properties.In addition, node classification, which aims to
predict the classes of unlabeled nodes for a partially labeled
network, is one of the most important tasks in network
analysis. Therefore, the AIdrug2cov low-dimensional em-
bedding vectors were treated as feature of nodes, and fed
into the Multi-label K-Nearest Neighbor (ML-KNN) [149]
model which is frequently used to predict the ATC classes of
drug. Generally, good network embedding should capture
the network structure and hence be useful for ATC classifi-
cation.

4.4.3 Bio-link prediction
Another important task of network embedding is predicting
unobserved links in a network, which refers to predicting
either missing interactions that may appear in the future.
Link prediction is pervasive in biological network analy-
sis, but verifying the existence of links between nodes is

time-consuming and cost-expensive [150]. Therefore, a great
number of efforts have been devoted to predicting potential
interactions based on network embedding approaches, such
as deeper [151], and NeoDTI [126].

To further demonstrate the effectiveness of the proposed
embedding methods, the IMC model was also employed to
predict DisTA, TDI, and DSA, that is, disease → protein
→ drug → side-effect associations. The IMC model has
been widely used for biomedical link prediction, such as
drug-target interaction prediction [152], and gene-disease
interaction prediction [145]. The previous findings suggest
that a good network representation model can significantly
improve prediction accuracy, and should be able to capture
the inherent structure of a network well enough to predict
likely but unobserved links.

AVAILABILITY AND IMPLEMENTATION

The source code and data of AIdrug2cov can be downloaded
from https://github.com/pengsl-lab/AIdrug2cov.git.
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