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Molecular modeling plays an important role in the discovery of organic structure-directing agents (OSDAs) for
zeolites. By quantifying the intensity of host-guest interactions, it is possible to select cost-effective molecules
that maximize binding towards a given zeolite framework. Over the last decades, a variety of methods and
levels of theory have been used to calculate these binding energies. Nevertheless, there is no consensus on
the best calculation strategy for high-throughput virtual screening undertakings. In this work, we compare
binding affinities from density functional theory (DFT) and force field calculations for 272 zeolite-OSDA
pairs obtained from static and time-averaged simulations. Enabled by automation software, we show that
binding energies from the frozen pose method correlate best with DFT time-averaged energies. They are
also less sensitive to the choice of initial lattice parameters and optimization algorithms, as well as less
computationally expensive. Furthermore, we demonstrate that a broader exploration of the conformation
space from molecular dynamics simulations does not provide significant improvements in binding energy
trends over single-point calculations. The code and benchmark data are open-sourced and provide robust and
computationally-efficient guidelines to calculating binding energies in zeolite-OSDA pairs.

I. INTRODUCTION

Zeolites are nanoporous materials widely used in catal-
ysis, separation, sorption and many other industrially-
relevant applications.1 These metastable polymorphs
are typically crystallized by adding inorganic cations
and organic molecules to amorphous precursor gels in
hydrothermal conditions,2–4 although organic-free ap-
proaches are also possible.5–12 In particular, a combina-
tion of electrostatic effects and dispersion interactions al-
lows the molecules to act as organic structure-directing
agents (OSDAs) that template the pore structure of
the zeolite and determine its topology.4,13,14 By explor-
ing a variety of OSDAs under different synthesis con-
ditions, several new zeolites have been discovered over
the last decades.15 Nevertheless, only around 250 differ-
ent topologies have been experimentally identified,16,17 a
majority of which rely on OSDAs to be realized. Access-
ing known and new zeolites with desired pore structures
and compositions through OSDA design is still an open-
ended problem, often relying on trial and error.18

Computational simulation of zeolite-OSDA interac-
tions has been an important resource to rationalize the
design of templates, explain synthesis outcomes, or locate
preferential placements for OSDAs.14,19 Early molecular
modeling works relied on shape-matching methods20–23

to assess the goodness-of-fit between an OSDA and a ze-
olite. Later, it was shown that host-guest interactions
computed from atomistic simulations are good predic-
tors of synthesis outcomes for zeolites.24–30 This descrip-
tor has enabled theory-driven discovery of many zeolites
over the last years.15,31–36
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Yet, the interaction energy between guests and hosts
is strongly dependent on the level of theory and com-
putational pipeline employed. Methods based on quan-
tum mechanics, such as density functional theory (DFT)
calculations, offer mostly parameter-free descriptions of
the total energy once a suitable exchange-correlation
functional is chosen. However, the large size of typical
zeolite-OSDA systems demands considerable computa-
tional resources, preventing the use of DFT for OSDA
screening purposes. A more cost-effective approach is
to use force fields (FF) to compute interatomic inter-
actions. Several parametrizations have been employed
to model host-guest interactions in zeolites, including
CVFF,25,28,37–39 Dreiding,40–43 COMPASS,44 UFF,45,46

and others.24,47–51

Even after a level of theory is appropriately cho-
sen, different ways to calculate interaction energies be-
tween zeolites and OSDAs remain. As an example, one
could calculate binding affinities by computing energies
by performing structural optimizations,24,44,51, molecu-
lar dynamics (MD) simulations,40,41,43,47,49,50,52 or cal-
culating van der Waals (vdW) contributions by freez-
ing host and guest structures.25,39,45,46,53,54 Furthermore,
optimizations and dynamics can be performed at con-
stant pressure50,51 or volume.25,39,43,45,46,52 In screening
approaches, calibrating strategies to obtain consistent,
computationally-efficient results often make up for bi-
ases in simulation methods, matching experimental re-
sults better than higher levels of theory with less system-
atic errors.55,56 This is especially important in a diverse,
combinatorial chemical space such as the one provided
by pairings of OSDAs and zeolites.

In this work, we compare methods to calculate bind-
ing energies of OSDAs in zeolites and propose guidelines
to compute these interactions in high-throughput virtual
screening approaches. In particular, the following contri-
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butions are put forward:

1. Different simulation constraints, structural opti-
mization algorithms and initial conditions of the
hosts significantly change the trends in binding en-
ergies for all simulation methods;

2. Binding energies of zeolite-OSDA pairs from the
Dreiding FF are best calculated by constant vol-
ume simulations with the frozen pose method, as
opposed to structural optimizations or MD simula-
tions;

3. A reference dataset of 272 OSDA-zeolite pairs cal-
culated with DFT and FF approaches can enable
further benchmarks with other FF parametriza-
tions, software packages or simulation pipelines;

4. An open-source Python interface to the General
Utility Lattice Program (GULP), GULPy, to en-
able faster generation of input files, parsing of out-
puts, structure manipulation, and execution of FF
calculations.

II. METHODS

A. Simulation Details

DFT calculations were performed using the Vi-
enna Ab-initio Simulation Package (VASP),57,58 ver-
sion 5.4.4, within the projector-augmented wave (PAW)
method.59,60 The Perdew–Burke–Ernzerhof (PBE) func-
tional within the generalized gradient approximation
(GGA)61 was used as the exchange-correlation func-
tional. vdW interactions were taken into account through
Grimme’s D3 corrections.62,63 Several benchmarks have
shown that including dispersion corrections in DFT cal-
culations is imperative to accurately predict trends in
binding energies between zeolites and guests.53,54,64–72

Although D3 is known to overbind the guest species
to zeolites,54,70–72 it provides an excellent balance be-
tween cost and accuracy for binding energies compared to
higher levels of theory such as random phase approxima-
tion, Møller-Plesset perturbation theory, or many-body
dispersion. The kinetic energy cutoff for plane waves was
restricted to 520 eV. Integrations over the Brillouin zone
were performed using Monkhorst-Pack k-point meshes73

(Γ-centered for hexagonal unit cells) with a uniform den-
sity of 64 k-points/Å−3 (see Table S1 for complete k-
point meshes for each zeolite). For isolated molecules, a
vacuum of 15 Å thickness was employed in all directions
to avoid unphysical interactions between periodic images.
A stopping criterion of 10−6 eV was adopted for the self-
consistent field (SCF) cycle energy convergence. Relax-
ation of unit cell parameters and atomic positions was
performed until the Hellmann–Feynman forces on atoms
were smaller than 10 meV/Å. Ab initio MD (AIMD)
simulations were performed in the NPT ensemble with

Langevin dynamics74,75 within the Parrinello-Rahman
method76,77, and 0.5 fs timesteps. The sampling temper-
ature was fixed at 400 K to simulate typical hydrother-
mal conditions in zeolite synthesis.3 The fictitious lat-
tice mass was set to 1,000 atomic mass units, and all
Langevin friction coefficients were set to 1 ps−1. The ex-
ternal pressure has been set to 0 kbar to allow compar-
isons with similar works where this value is implicit.50,51

Ground-state geometries were thermalized by randomly
displacing the atoms by up to 0.02 Å in each Cartesian
coordinate before being used as initial configurations for
AIMD calculations. AIMD simulations were performed
for 500 fs, with only the last 200 fs considered for pro-
duction. Despite the short time lengths, this is enough
to have well-equilibrated trajectories (see Fig. S1).

FF simulations were performed using the General Util-
ity Lattice Program (GULP), version 5.1.1,78,79 through
the new GULPy package.80 MD simulations were per-
formed in the NVT and NPT ensembles with modified
Nosé-Hoover dynamics81 using the Leapfrog Verlet in-
tegrator, 0.5 fs timesteps, temperature of 400 K, and 0
kbar of external pressure. Fully optimized geometries
were used as initial configurations for MD calculations.
All MD trajectories consisted of a production run of 5
ps preceded by a 5 ps equilibration run. The Dreid-
ing force field82 was used to model interactions between
the zeolite and the OSDA. It has been widely used for
OSDA screening41–43 and some of its predictions have
been experimentally verified33,83. Initial FF optimiza-
tion of unloaded zeolites was performed with the Sanders-
Leslie-Catlow (SLC) parametrization.84 Whereas several
other parametrizations have been proposed for pure-silica
zeolites,85–89 SLC is still widely used in the field due to
the good correlation of predicted energies with experi-
mental enthalpies of formation.90

Initial zeolite structures were downloaded from the In-
ternational Zeolite Association (IZA) database and pre-
optimized using either DFT or SLC, as described above.
Conformers for OSDAs were generated using RDKit91

with the MMFF94 force field,92,93 and further optimized
using the BP86-D3/def2-SVP94–96 level of theory as im-
plemented in ORCA.97,98 Subsequent optimizations of
these geometries with VASP did not change the final
structure of the isolated molecule. Nonetheless, the
energies derived from these calculations were necessary
to adopt the same reference method (PBE-D3/PAW)
throughout the work. Generation of OSDA-zeolite poses
was performed using the VOID package.99 A complete
description of the docking strategy, software and param-
eters is found in Ref. 99.

B. Calculation of binding energies

Typically, host-guest interactions are described in
terms of binding energies, since free energies of binding
are typically unavailable from simple simulations. A gen-
eral expression for the binding energy (Eb) of a molecule
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FIG. 1. a, Workflow of calculations performed to obtain different binding energies for each of the OSDA-zeolite pairs in the
dataset. Resulting energies for poses (Ep), zeolite hosts (Eh) and OSDA guests (Eg) are shown in the figure. b, Schematic on

the calculation of E
(frz)
h and E

(frz)
g energies within the frozen pose scheme. The host and guest geometries are kept fixed at the

relaxed positions obtained in the pose optimization and a single point calculation is carried for each of the isolated systems.

in a host is given by

Eb = Ep − Eh − nEg, (1)

in which Ep is the energy of the zeolite-OSDA pose, Eh

is the energy of the pure-silica, unloaded zeolite host, Eg

is the energy of the guest template, and n is the number
of guests per pose. Whereas the interaction energy be-
tween docked guests could be subtracted from Eq. (1),
it is often useful to include this term when computing
the stabilization provided by the OSDA towards the ze-
olite. It is well-known that guest-guest interactions in-
fluence the product zeolite, particularly when more than
one molecule is packed into the same cavity.39,100 There-
fore, removing these contributions from the final binding

energy expression may not be representative of the actual
stabilization obtained in experimental settings.

The literature contains multiple examples on how to
calculate each of the terms in Eq. (1). For example,
the energies can be obtained by time-averaging the host-
guest energies along an MD simulation,40,41,43,47,49,50,52

〈
E

(MD)
b

〉
=

〈
E(MD)

p

〉
−

〈
E

(MD)
h

〉
− n

〈
E(MD)

g

〉
, (2)

or by subtracting energies resulting from structural opti-
mizations (opt),24,44,51

E
(opt)
b = E(opt)

p − E(opt)
h − nE(opt)

g . (3)
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Moreover, the resulting geometries from structural opti-
mizations can be frozen in their relaxed positions, and
the energy components calculated for the isolated host
and guests without further relaxation,

E
(frz)
b = E(opt)

p − E(frz)
h −

∑
i

E
(frz)
g,i , (4)

where the summation is performed for all guests docked
in the host. In this scenario, there are different val-
ues of Eh and Eg for each pose, since the final atomic
structure is dependent on the host-guest interactions.
Here, we refer to this strategy, widely used in the zeolite
literature,25,39,45,46,53,54 as the “frozen pose” method. Fi-
nally, structural relaxations and MD simulations can be
performed at constant pressure or volume, adding an ad-
ditional degree of freedom for each of these simulations.
Fig. 1 schematizes different pathways for obtaining all
these energies.

III. RESULTS

A. Correlations between binding energy calculations

To compare the different methods of calculating bind-
ing energies, we created a dataset of 272 zeolite-OSDA
poses from 164 unique complexes, which cover 60 neu-
tral OSDAs and 55 zeolite frameworks (Fig. S2 and Ta-
bles S2-3). Different loadings were considered for pairs
in which the molecule was small compared to the zeolite
cavity, following the method described in Ref. 99. Only
neutral OSDAs were simulated due to ambiguities on how
to calculate DFT energies for charged systems without
considering the presence of heteroatoms. It is unclear
whether the charge-compensating background potential
added in the DFT calculation may affect the lattice pa-
rameters and energy references for the pose. Further-
more, typical approaches employ FFs without explicitly
considering charges, even for cationic molecules. There-
fore, this dataset of neutral molecules docked in pure-
silica zeolites allows exploring variations of binding ener-
gies with a focus on OSDA/zeolite shapes and sizes.

DFT-optimized structures of zeolites and molecules
were used as inputs for the docking scheme. We later
repeated this docking step for some SLC-optimized zeo-
lites as substrates to analyze the effects of different initial
host lattices on the binding energies (Sec. III C). For each
of the 272 poses created from DFT substrates, we carried
structural optimizations at constant pressure using DFT,
and calculated binding energies using Eq. 3. Nonethe-
less, the physical reality is best described by a dynamic
simulation at the NPT ensemble, with the temperature
set to ranges of typical hydrothermal conditions. To ob-
tain such binding energies from ab initio MD without in-
curring into excessive computational cost, we performed
AIMD simulations for 40 different complexes whose poses
contained less than 80 atoms. All other energies listed in

Fig. 1 are calculated for all 272 poses. A summary of
the calculation tree is shown in Fig. 2a (see Fig. S3 for
a complete description).

After performing all calculations, binding energies ob-
tained for the same initial docked structures were com-
pared. If the property of interest in the benchmark were
the mean absolute error (MAE) between the methods,
systematic shifts due to parametrization inaccuracies or
energy rescaling due to dynamic effects (e.g. sampling
temperature in MD simulations) would largely influence
the final results. Instead, a theoretical screening method
should quantify trends of host-guest binding energies to
inform OSDA selection, as in many other computational
screening approaches.41,43,101 To quantify the correlation
in the ordering between two different methods, the Spear-
man’s rank correlation coefficient (ρ) is employed as a
figure of merit. It correlates two variables according to
the rank of the data points, and is invariant to transla-
tions and rescalings of the sets under comparison.102 An
increasing, monotonic relationship between host-guest in-
teractions from two different methods has ρ = 1. Since
DFT was chosen as the reference method, a higher cor-
relation with DFT suggests that the method is better in
capturing trends in binding energies.

Fig. 2b summarizes all pairwise correlation coeffi-
cients. First, we observe that binding energies from DFT
optimizations at constant pressure, henceforth denoted
DFT (opt, P), correlate well with those from DFT (MD,
P, N = 40) simulations (ρ = 0.82). The best FF strategy
to calculate binding energies is the frozen pose method at
constant volume, whose correlation coefficient with DFT
(MD, P) is 0.78. MD-derived energies from simulations
with the NVT ensemble have a similar correlation with
DFT (MD, P) (ρ = 0.77). These values are in excellent
agreement with the baseline of ρ = 0.82 from the two
DFT methods. The same trend is observed if DFT (opt,
P, N = 272) energies are adopted as reference, with an
even higher statistical power due to the larger number
and diversity of poses. FF (frz, V) outperforms other
methods by achieving a correlation of ρ = 0.68 with
DFT (opt, P) binding affinities, followed by FF (MD,
V) (ρ = 0.55). Although MD simulations in principle
allow sampling a larger fraction of molecular conforma-
tions within the guest, average binding energies derived
from constant volume MD simulations are extremely cor-
related with their frozen pose counterparts (ρ = 0.88, see
also Fig. S4). This suggests that further exploring the
phase space beyond the local minimum does not signif-
icantly change the trends in binding energies for most
cases. To ensure this subsampling effect was not due to
short trajectories, we increased the total time of the FF-
based MD simulation to 30 ps, 5 ps of which were ded-
icated to an initial equilibration run. Nevertheless, we
did not find significant changes in the average energies
obtained from longer trajectories. This result has impor-
tant consequences. It demonstrates that frozen pose cal-
culations are slightly better predictors of reference bind-
ing energies than MD simulations while also being orders
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FIG. 2. a, Dependency tree of the atomistic simulations performed in this work. The docking algorithm generates poses from
host structures optimized using PBE-D3 or SLC and ligands optimized with BP86-D3. Then, subsequent calculations with
Dreiding and PBE-D3 are performed for each pose. b, Correlation matrix of binding energies calculated with different methods.
The value of Spearman’s correlation coefficient is reported in each element of the matrix.

of magnitude faster to compute.

Additionally, we also observe in Fig. 2b that the corre-
lation between FF binding energies from constant pres-
sure calculations and DFT is much worse than the one
obtained by their constant volume counterparts. Al-
though the physical reality is in principle better described
by a constant pressure constraint, the Dreiding FF does
not correctly capture the behavior of the isolated silicate
frameworks, often leading to unphysical distortions in the
zeolite structure. As such, the configuration space sam-
pled by FF calculations at constant pressure is further
from the ground truth than that from constant volume
calculations, leading to much poorer predictions of bind-
ing energy trends. Indeed, an analysis of the density of
pure-silica zeolites shows that constant pressure FF op-
timizations lead to structures which are 45% denser, on
average, than their experimental counterparts (see Fig.
S5).

B. Stability of structural optimizers for reference hosts

Even at constant volume calculations, structural op-
timizations of unloaded zeolites affect the binding en-
ergies of zeolite-OSDA pairs by changing the host ref-
erence energy Eh in Eq. (1). If the minimization al-
gorithms employed in the atomic relaxation are unable
to find the global energy minimum for a given struc-
ture, then all binding energies for that zeolite will be

lower than the ground truth, as Eh > E
(global)
h . While

the stability of geometry optimization algorithms has

been studied before,103,104 their effects are investigated
here to quantify the errors in binding energies of ze-
olites. We compared the Dreiding energies of pure-
silica, unloaded zeolites optimized at constant volume
through four algorithms: the conjugate gradient (CG)
method, rational function optimization (RFO), Broy-
den–Fletcher–Goldfarb–Shanno algorithm (BFGS), and
symmetry-lowering method (Lower), all as implemented
in GULP. To accelerate the convergence of the struc-
tural relaxation, we started the optimization with the
CG, BFGS or Lower methods, and switched to the RFO
method when the norm of the gradient (|G|) was smaller
than a threshold of choice. In principle, if the algorithms
were equally effective in finding the global energy mini-
mum, all structures would converge to the same ground
state. However, the results indicate that the algorithms
often disagree on the equilibrium energies and geome-
tries. Fig. 3 shows the distribution of energies for zeolites
with respect to the minimum energy configuration for the
same framework found among all four optimization runs.
No optimization scheme outperforms the others across all
zeolites. Whereas at least 75% of the energy differences
tend to be smaller than 1 kJ/mol SiO2, some algorithms
tend to overestimate the energy of the ground state of
a zeolite by up to 100 kJ/mol SiO2. Changing the |G|
threshold also leads to different energy minima. If we use
BFGS as initial optimizer, but switch to RFO at different
values of |G|, the outcomes of the simulation are differ-
ent. We did not find a threshold for |G| that outperforms
others, nor did we find significant advantage in not us-
ing RFO altogether. In fact, avoiding switching to RFO
often increases the number of steps necessary to reach a
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local energy minimum.

While optimization energies E
(opt,V )
h can get trapped

in local minima, MD simulations allow atoms to move
and avoid these higher energy traps. Thus, reference en-

ergies
〈
E

(MD,V )
h

〉
should be more robust to the optimiza-

tion methods used to generate the initial structures. Fig.

3 compares
〈
E

(MD,V )
h

〉
differences according to the al-

gorithm that generated the structure used as input for
the MD simulation. MD energies lower the differences
between the optimizers, but the discrepancies are still as
high as 10 kJ/mol SiO2 for some systems. This suggests
that structural relaxations can affect even time-averaged
energy references. Therefore, finding the global ground
state energy of different hosts is unlikely without a thor-
ough combination of different minimizers. These system-
atic shifts explain the existence of binding energies of
large absolute value, such as the ones observed in ACO
zeolite (see Table S3). Rather than exposing a flaw in
the calculation, they suggest that even after multiple op-
timization attempts, the isolated host has not converged
to its ground state geometry. As a consequence, all bind-
ing energies for that particular host are biased if Eq. (3)
is used to compute the binding affinity of an OSDA to-
wards a zeolite. When OSDAs are ranked across a single
zeolite framework according to their binding energy,99

this is often not a problem. Since the energy reference
is shifted by the same amount for all poses, the trends
of binding energies along a single host are preserved, but
comparison for different hosts is hindered. Nevertheless,
non-systematic errors are undesirable in high-throughput
discovery of materials and should be avoided. The role
of energy references in binding energy calculations does
not alter the conclusions drawn from Fig. 2b. If we ana-
lyze the correlations between binding energies on a single
framework (see Fig. S6 for an analysis on SOD zeolite),
the same trends with respect to DFT energies are still
observed. The only difference is that a larger correlation
between FF binding energies at constant pressure and
volume is found, and also between FF and DFT binding
energies at constant pressure.

C. Variability of binding energies according to the initial
substrate parameters

Another constraint required in constant volume sim-
ulations is fixing the host lattice parameters prior to
docking. Since methods such as DFT and SLC lead to
different equilibrium lattice constants, often with SLC
predicting denser zeolites (see Fig. S5b), host-guest in-
teractions are also affected by the choices of unit cells.
To compare the influence of the initial host parameters
in the final binding energy, we performed the docking
procedure a second time for 81 different complexes us-
ing either the DFT or SLC geometry of the host (Fig.
S3d) as an input. The VOID package generated an av-
erage of 14 poses for each host geometry and guest con-

Lower + RFO

<10-2 10-1 100 101 102

CG + RFO (|G| < 0.10)

BFGS + RFO (|G| < 0.05)

BFGS + RFO (|G| < 0.15)

opt MD

E - Emin (kJ/mol SiO2)

FIG. 3. Distribution of Dreiding FF energies of unloaded zeo-
lite frameworks (E) with respect to the minimum energy ob-
tained among all optimization algorithms for the same frame-
work (Emin). The shaded box represents the interquartile
range, the vertical line is the median, and the whiskers span
the range of the distribution. DFT-optimized frameworks
were used as inputs for the Dreiding FF optimization.

former, which has been shown to generate binding ener-
gies that qualitatively correlate with typical experimen-
tal outcomes.99 Host energies were obtained by relaxing
each unloaded zeolite with the four optimization schemes
shown in Fig. 3 and selecting the resulting energy min-
imum as the reference value. Unit cells from DFT- and
SLC-optimized frameworks were assigned different ref-
erence energies, since all relaxations were performed at
constant volume. Then, we selected the strongest binding
affinities among all poses created with the given guests,
hosts and their lattice parameters.99 Fig. 4 compares
the best binding energies for each complex according to
the starting host. Ideally, small changes in unit cell pa-
rameters should not significantly affect the ground state
host-guest interactions, as long as the configuration space
is thoroughly explored. However, we observe that opti-
mization and MD binding energies vary significantly as
a function of the initial substrate. The MAE between
the best binding energies is 52.7 and 50.3 kJ/mol OSDA
for opt and MD methods, respectively. In contrast, the
best binding energies from the frozen pose method are
consistent across different initial zeolite structures, with
a MAE of 10.1 kJ/mol OSDA, five times better than the
other methods. This suggests that binding energies from
the frozen pose method are more robust to variations of
unit cell parameters, rendering them a desirable choice
for high-throughput computational workflows.
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FIG. 4. Correlation between the minimum FF-based binding energy (Eb) for complexes with different initial host lattices, as
calculated by the a, optimization, b, MD, and c, frozen pose methods. The unloaded zeolites were independently optimized
using DFT and FF-SLC before the docking (see Fig. 2a). The MAE indicates that the frozen pose method is more robust to
variations of the initial conditions. All values are given in kJ/mol OSDA.

IV. DISCUSSION

For decades, host-guest interactions have been mod-
eled using a variety of methods. Yet, high-throughput
screening methods typically require selecting parameters
that yield computationally-efficient results and can be de-
ployed robustly without manual supervision. While con-
stant pressure simulations better represent the synthesis
conditions of zeolites, Dreiding FF binding energies at
the NPT ensemble do not correlate well with their DFT
counterparts. Rather, FF simulations at constant vol-
ume show good correlation with DFT optimizations and
MD simulations at constant pressure. This might be a
limitation on the Dreiding FF, which is unable to cor-
rectly describe the unloaded zeolite framework when vol-
ume relaxation is allowed. Several other general-purpose
force fields and parametrizations specific to zeolites have
been proposed and could be benchmarked according to
the guidelines discussed here.

Even when binding energies are compared across dif-
ferent simulation pathways and optimization methods
within a single FF parametrization, results vary dras-
tically. We have shown that energies from structure
optimizations and MD simulations are more susceptible
to initialization issues than frozen pose methods. The
higher correlation between the latter and the DFT bind-
ing energies is also supportive of this robustness. Further-
more, contrary to intuition, a larger sampling of the con-
figuration space through MD simulations does not nec-
essarily lead to significant changes in trends of binding
energies when compared to the frozen pose method. In
practice, this conclusion opens an opportunity for sim-
ulating zeolite-OSDA pairs in larger scales. One of the
major bottlenecks of zeolite-OSDA simulations is to sim-
ulate long MD trajectories of guests docked inside the
host for a variety of loadings and initial configurations, as
has been typically done in screening works the field.41–43

We propose to replace MD simulations by frozen pose
methods within FF calculations, drastically reducing the
time necessary to perform computations while increasing
the robustness of the final binding energy with respect
to the choice of optimization algorithms and unloaded
zeolite geometry. Even if FF (MD, V) binding ener-
gies are better predictors of experimental outcomes than
DFT (MD, P), which has yet to be verified, the use of
the frozen pose method is still justified by its correlation
with the former. Moreover, we show that the absolute
values of the binding energy tend to be more transfer-
able across different initial configurations through this
method, suggesting it can also be used to compare the
influence of each molecule in stabilizing different zeolite
frameworks.99

It is important to note that the chemical space used
in this analysis is comprised of neutral molecules. How-
ever, most known OSDAs are positively charged and di-
rect the formation of zeolites with heteroatoms in their
backbone. Theoretical studies on how OSDAs affect the
position of the heteroatoms have been developed,105–110

although at a high computational cost. Nevertheless,
we suggest that the current analysis should be transfer-
able to cationic OSDAs as well. OSDAs are often mod-
eled without charges in FFs, and vdW interactions tend
to dominate the templating effects.2,13,24,33,41–43,45,83 It
is also assumed that trends in binding energy in pure-
silica frameworks hold with changes in zeolite compo-
sition. More rigorous analyses would be necessary to
simulate charged OSDAs in zeolites through DFT calcu-
lations. Typical methods of charge-compensating back-
ground potentials may shift energy differences depending
on the system, and combinatorial studies on heteroatom
distribution are prone to be computationally expensive.

Finally, benchmarks enable the development of high-
throughput computation infrastructures by providing
clear guidelines for simulating materials in large scales.



8

To support further dissemination of these ideas, we are
releasing the Python interface to the GULP code used to
perform these calculations as the package GULPy, as well
as the data generated in this article.111 They lay down
standards to test and automate calculation workflows of
OSDAs and zeolites with increased reliability.

V. CONCLUSIONS

In summary, we benchmarked different methods to cal-
culate binding energies of OSDAs in zeolites by perform-
ing DFT and FF calculations for 272 zeolite-OSDA pairs.
We showed that Dreiding FF binding energies calculated
with the frozen pose method correlate best with DFT en-
ergies. This method offers additional robustness to the
binding energy with respect to the choice of geometry
optimization algorithms and initial docking conditions.
On the other hand, a larger sampling of the phase space
from MD simulations does not provide significant bene-
fits, since MD-based binding energies correlate very well
with those from the frozen pose method. Remarkably,
simulations at constant volume significantly outperform
those at constant pressure within the Dreiding FF. This
might result from the inability of this parametrization to
correctly model the unloaded, pure-silica zeolite struc-
ture. These results provide reliable parameters for high-
throughput computation of binding energies for zeolites
and OSDAs. This benchmark, code and data aims to
enable robust, large-scale screenings of OSDAs with sig-
nificantly less computational overhead.
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