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ABSTRACT: Protecting group free one-pot multicomponent Curtius reaction affords a robust and versatile AB2 type diurethane 
dendron, which ensures late-stage modification of both dendron and dendritic macromolecule yielding a surface functionalized 
polyurethane dendrimer. This strategy is highly useful in the synthesis of unsymmetrical or Janus dendrimers. 

Since the first successful synthesis of poly(amidoamine) 
dendrimers by Tomalia et al. in 1985,1 development of den-
dritic macromolecules, including dendrimers and hyper-
branched polymers has developed rapidly in the field of mac-
romolecular chemistry2 because of their extensive applications 
in the chemical3 and biomedical fields.4,5 Dendritic macromers 
have been reported for a wide variety of compounds like poly-
ethers, polyamines, polyamides, polyarylenes, polycarbos-
ilanes, and polycarbonates. Though a few such structures are 
reported in the field of polyurethanes, construction of a well-
defined architecture of polyurethane dendrimers (PUDs)6 is 
challenging owing to high reactivity of externally added or in-
situ formed isocyanates towards nucleophiles, which could 
lead to significant amounts of side products. Pleasingly, two 
seminal works published simultaneously in 1993 by two re-
search groups founded synthetic routes to PUDs, which are 
valid to date. The first route described by Spindler and Fré-
chet7 using isocyanate chemistry assured the synthesis of den-
dritic structures via growth of  two generations in a single 
synthetic operation. The second route described by Kumar and 
Ramakrishnan7 using Curtius rearrangement as an isocyanate 
free approach trapped in-situ formed isocyanate by an alcohol 
affording a urethane. 

PUDs have been synthesized employing both divergent8–12 
and convergent13–16 methods in the last two and half decades 
after the aforementioned pioneering works. First reported by 
Hawker and Fréchet,13 the convergent synthesis involves a 

small number reactions per molecule during the coupling of 
dendron and activation of functional group at focal point. This 
ensures greater structural control than in divergent synthesis 
appraoch.17 Moreover, the functional groups can be precisely 
placed throughout the dendritic structure, an attribute required 
to construct functional macromolecules. Nevertheless, fewer 
reports have been reported on PUDs employing the convergent 
method. Previously, our group reported convergent synthesis 
of PUDs containing dodecyl as end groups using a protec-
tion/deprotection strategy.18,19 This work reports on a fast, 
efficient, and protecting group free approach to the synthesis 
of PUDs where terminal pentene functionalized end groups of 
dendron can further undergo pre- or post-modification via 
thiol-ene click chemistry. This enables easy modification of 
the dendritic periphery, which could be of particular interest 
because these peripheral groups are the moieties to come in 
frequent contact with the external environment. 

As a proof of concept, herein we report the synthesis of the 
first-generation dendritic wedge, its attachment to a core struc-
ture, and pre-and post-modification using thiol-ene reaction. 
The versatility of this approach is depicted by an AB2 type 
dendritic monomer that can undergo either a thiol-ene click 
reaction20 or attachment to the core. As shown in Scheme 1 
‘hydroxy’ and ‘ene’ functionalized dendrons can be utilized in 
either of the two ways- click and attach to the core or attach to 
the core and click- to synthesize a polyurethane dendrimer. 
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Scheme 1. General representation of strategy employed 

 

 

To build AB2 type dendron or branching monomer, we se-
lected three molecules, 5-hydroxyisophthalic acid, 4-penten-1-
ol, and 11- bromoundecanol as branching unit, peripheral 
group, and spacer group respectively. Accordingly, the 
branching monomer was prepared in a two-step sequence of 
reactions. We exploited the Curtius reaction21 to synthesize the 
phenolic diurethane 1. The formation of 1 involved one-pot 
multicomponent Curtius reaction in which 5-
hydroxyisophthalic acid (1 eq) 1a was converted to an isocya-
nate analogue 1b through an acyl azide intermediate under 
mild condition using diphenyl phosphoryl azide22 (DPPA, 2.1 
eq) and triethylamine (2 eq) (Scheme S2). Organic isocyanates 
are electrophilic reactive intermediates, which can be trapped 
easily by nucleophiles in situ thereby forming the urethane 
linkage. The hydroxy diisocyanate 1b was trapped by 4-
penten-1-ol to afford the phenolic diurethane 1, which in turn 
furnished branching monomer 2 with an excellent yield when 
refluxed with 11-bromoundecanol. Unlike previously reported 
synthetic protocol,18,19 this strategy is concise and does not 
require any protection-deprotection of functional groups. 

 
Scheme 2. Synthesis of branching monomer

 

 

Protecting group-free Curtius reaction is a key step to from 
the urethane linkage in this approach and we spent some time 
investigating the efficacy of this reaction. This reduces an 
extra step required to activate the dendron at its focal point. 
Since the reaction intermediate 1b (Scheme 2) has nucleo-
philic phenolic group, it could potentially compete with 4-
penten-1-ol to react with its own isocyanate leading to the 
formation of polymeric side products. This directed us to op-
timize the reaction conditions. Unprotected phenolic hydroxy 
group in 1b resulted in two noticeable side products – diure-
thane phosphate 1c and dimer of monourethane 1d. Taking ad- 

 
Scheme 3.  Optimization of Curtius reaction 

Table 1. Effect of base on Curtius reaction a  

Entry Base pKa Yield (%) 

1 1c 1d 

1 Pyridine 5.2 19 11 2 
2 PVP 5.6 5 11 36 
3 DMAP 9.6 20 12 5 
4 Et3N 10.8 39 10 4 
5 No base - 1 24 1 

a Conditions: 1a (1.0 eq), DPPA (2.1 eq), triethylamine (2.0 eq), 
4- penten-1-ol (1.5 eq). Crude was purified by flash chromatog-

raphy using ethyl acetate/hexane as eluting solvent. 

 
vantage of difference between pKa values of aromatic hydroxy 
(~ 10) and carboxylic groups (~3-5), we anticipated that a base 
with pKa less than that of phenolic -OH (~10) could prevent 
the potential formation of urethane phosphate. Surprisingly, 
the bases with low pKa 

HO

thiol-ene click, SH

then attach to core,

attach to core,

then thiol-ene click, SH

O

S

S

H
N

O

polyurethane dendrimer 
model

functionality

G-1 dendron

core

core

core

COOHHOOC

OH

i) DPPA, Et3N, DMF
stir, rt, 15 min

ii) 95 0C, 20h
OH

HO

HN
O

HN
O

O

O

139% over 3 steps

1a

HOCH2(CH2)9CH2Br

K2CO3, KI, acetone
reflux, 18h

91%

2

NCOOCN

OH1b

HN
O

HN
O

O

O

OHO

HN

O

NH

OO O

O
P

O

O

O
Ph

Ph

NH

O

O

O

OHO

HO

O
O

HN

O

O

H

H

i) DPPA, Et3N, DMF
stir, rt, 15 min

ii) 95 0C, 20h
OH

39% over 3 steps

1a +
+

1

1c 1d

1c 1
HCl, H2O/dioxane (1:2)

pH 4, 99 0C, 26h
82%



 

Scheme 4. Synthetic routes to polyurethane dendrimers 

 

 
values did not increase the yield of 1 (Table 1; entry 1, 2, 
and 3) and the base with larger pKa (triethylamine) gave 
better yields (Table 1; entry 4). This reaction did require a 
base as depicted by entry 5 in Table 1, where the yield of 1 is 
negligible in absence of a base. In addition, while good 
yields were obtained at temperature 85 – 95 °C, side prod-
ucts were formed in higher amounts at higher temperature. It 
is noteworthy that one of the side products 1c can be recy-
cled back to branching monomer 1. 

Being a green reaction, thiol-ene click chemistry has been 
widely used in the efficient growth of dendrimers.23–27 We 
utilized thiol-ene click here as a tool to ascertain the robust-
ness of monomer 1 towards synthesis of PUDs by function-
alizing the dendritic surface via different methods. Accord-
ingly, 4 was synthesized via two different routes as shown in 
Scheme 4. To accomplish this, 1-octanethiol and 1,3,5-
triisocyanatobenzene 3b (preparation in Scheme S3) were 
selected as thiol-ene click partner and a simple trifunctional 
core respectively. In its click and attach approach, the wedge 
2 was irradiated with 1-octanethiol under   UV light in pres-
ence of free radical initiator 2,2’- azobis (2-methyl propi-

onitrile) (AIBN) to obtain thioether functionalized dendron 3 
in high yield (82%). The convergent synthesis of 4 was ac-
complished when dendron 3 was attached to the core 3b in 
presence of Lewis acid BF3.OEt2. In the attach and click 
approach, dendron 2 was attached to the core 3b under iden-
tical conditions to furnish a dendrimer 5 with pentene pe-
ripheral groups, which underwent subsequent thiol-ene click 
with 1-octanethiol under identical reaction conditions to 
produce dendrimer 4. Its noticeable that the overall yield of 
post-modification route is lower because of larger number of 
reactions required to undergo completion at periphery. 

The most powerful feature of convergent synthesis lies on 
its ability to selectively modify both focal point and chain 
ends. This strategy allows one to vary the number and type 
of functional moieties in the resultant dendrimers. In this 
study, we modified the chain ends without changing its focal 
point, which in turn resulted in surface modified dendrimer 
4. There are two possible approaches for the installation of 
functionality at the core – introduction of end groups prior to 
and after the dendritic growth. The structural features of 
dendron 2 guarantee both pre- and post-modification routes. 
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Scheme 5. Functionalization of core with different dendrons 

 

All novel compounds including dendritic wedges and den-
drimers were characterized by 1H, 13C NMR, and mass spec-
trometry (HRESI-MS or MALDI-TOF) (details in SI). Fig-
ure 1 shows solution state 1H NMR of branching monomers 
(2 and 3) and dendrimers (4 and 5) in deuterated acetone as a 
solvent before and after thiol-ene functionalization. Disap-
pearance of peaks with chemical shifts at 5.0 and 5.9 ppm (-
CH=CH2) (Figure 1a and 1d) and appearance of new peaks 
at 2.6 ppm (-SCH2-) and 0.9 ppm (-CH3) (Figure 1b and 1c) 
provided an evidence that thiol-ene click preceded success-
fully. Moreover, a new peak assigned at 7.5 ppm (aromatic 
CH) (Figure 1c and 1d) furnished further evidence of suc-
cessful attachment of dendron 2 or 3 to the trifunctional core. 

 

 
 

Figure 1. Typical 1H NMR of branching monomers and den-
drimers. (a) dendron 2, (b) dendron 3, (c) dendrimer 4, and (d) 
dendrimer 5. All spectra were taken in 500 MHz spectrometer 
using CD3COCD3 as a solvent. 

 
To further exploit the potential of this approach, we em-

barked on the search for successful functionalization of a 
different core, hexamethylene diisocyanate (HDI) using two 
different dendrons (Scheme 5). 1- Octanethiol and 1-
octadecanethiol clicked dendritic monomers 3 and 6 were 
allowed to attach to the bifunctional core HDI at ambient 
temperature in presence of BF3.OEt2 that produced three 
different dendrimers (7, 8, and 9) (complete structure in SI) 
as amorphous white solid (72% yield) including a Janus 
dendrimer 8.28,29 Separation turned out to be simple and con-
venient with flash chromatography using hexane/ethyl ace-
tate as eluent. At this point, we utilized click and attach ap-
proach as overall yield of this approach was higher than at-

tach and click approach. It’s noteworthy that the proportion 
of products 7:8:9 is 1:2:1, which in agreement with statistical 
distribution of their attachment to the core. Thus we antici-
pate this approach will allow access to hetero or Janus den-
drimers.28 

In summary, we presented thiol-ene click inspired protect-
ing group free approach to the convergent synthesis of poly-
urethane dendrimers. As a representative of proposed ap-
proach, generation one dendrimers were synthesized via 
click and attach, and attach and click methods under mild 
conditions. An efficient and robust bifunctional dendron 
synthesized from a one-pot multicomponent Curtius reaction 
enabled late stage modification of itself and accompanying 
dendrimers. Additionally, functionalization of a bifunctional 
core with two different dendrons furnished a mixture of three 
dendrimers including a Janus dendrimer. Access to this type 
of investigation will contribute to concise and versatile syn-
thesis of dendritic macromolecules. 
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