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ABSTRACT 

A structure-based computational approach for the prediction of tobacco-specific nitrosamine 

(TSNA) metabolites by cytochrome P450s has been developed that predicts the known 

CYP2A13 metabolites of nicotine-derived nitrosamine ketone (NNK), N-nitrosonornicotine 

(NNN), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) resulting from 

hydroxylations and heteroatom oxidations reported in metabolomics literature. This 

computational approach integrates 1) machine learning models trained on quantum-

mechanically-derived molecular surface properties for a set of CYP substrates with known 

metabolites to predict sites of metabolism across CYP isoforms with 2) the use of ensemble 

molecular docking to identify which of these predictions are conformationally accessible to the 

CYP2A13 binding site. This method is generalizable to any CYP isoform for which there is 

structural information, opening the door to the prediction of P450-based metabolite prediction, 

as well as prediction and rationalization of metabolomics data. 

  



3 
 

INTRODUCTION 

 

Smoking-induced diseases such as lung cancer and chronic obstructive pulmonary disease 

(COPD) are linked to exposure to cigarette toxicants [1]. Cigarette smoke contains more than 

7,000 chemical constituents, with some of these designated as Harmful and Potentially Harmful 

Constituents (HPHCs) by the Food and Drug Administration [2]. Some of these HPHCs are 

directly carcinogenic, while others are procarcinogenic, requiring metabolic activation through 

cytochrome P450 (CYP) pathways. Tobacco-specific nitrosamines (TSNAs) are carcinogenic 

compounds produced by the combustion of tobacco, as well as by tobacco curing and processing, 

as the oxidation products of nicotine and structurally-related compounds such as nornicotine, 

anabasine, and anatabine. TSNAs are omnipresent in tobacco products, albeit in different 

concentrations, depending on the processing and the product. Eight TSNAs are found in tobacco: 

NNN, NNA, NNK, NNAL, NAT, NAB, iso-NNAL, and iso-NNAC (Figure 1). 
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Figure 1  Nitrosamine compounds found in tobacco 
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Of these, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) N-nitrosonornicotine (NNN),  and 

4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) are the most carcinogenic [3]. The 

carcinogenic behavior of these nitrosamines occurs as a result of their alkylation of DNA [4]. 

Damage to DNA accumulates through N- and O-methylation and pyridyloxobutylation of the DNA 

bases and phosphate groups [5]. Since these tobacco-specific nitrosamines (NNK, R/S-NNAL, 

and NNN) are known to be among the primary carcinogens found in tobacco, the characterization 

of their CYP metabolites, not only as carcinogenic nitrosamines in themselves, but as biological 

markers detectable in urine [3], is of particular interest and is the focus of this work on CYP 

metabolite prediction (Table 1). 

 
Table 1  TSNAs used in CYP metabolite prediction 

 
NNK 

 
R-NNAL 

 
S-NNAL 

 
NNN 

 

Cytochrome P450s catalyze several reactions, such as methylations, demethylations, oxidations 

and hydroxylations, involved in the processing of xenobiotics in preparation for excretion by the 

kidneys. As hydroxylations and oxidations lead directly to water-soluble metabolites, these are of 

primary interest in connecting detectable TSNA metabolites to their parent molecules. Several 

CYPs, including CYP1A1, CYP1B1, CYP2B6, CYP2E1, CYP2J2, CYP2A13, CYP2A6 and 

CYP3A5, are expressed in human lung [6, 7]. For example, CYP2A6 and CYP2A13 are the most 

efficient cytochrome P450 enzymes in the metabolic activation of NNK and NNN, with CYP2A13 

being 61 – 214 times more efficient than CYP2A6 in the activation of NNK [8, 9]. Some metabolites 

of HPHCs are well characterized as to their metabolic activation by CYPs. However, other HPHC 

metabolites and their dose-dependent impact in the different tissues of the body have not yet 

been fully characterized [10].  
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Experimental characterization of CYP metabolites of TSNAs is a complex, multidisciplinary 

process that requires a significant amount of time and effort [1]. To assist in the experimental 

metabolomics characterization of P450 metabolites, computational modeling approaches have 

proven to be powerful approaches that have a predictive and rationalizing aspect [11–13]. A 

computational prediction tool that prioritizes the most likely TSNA CYP metabolites would be 

extremely helpful in prioritization of the experimental metabolic experiments (e.g., which 

metabolites are most likely to be produced from a given set of chemicals in a given tissue) and in 

the analysis of experiments. The present work aims at developing such a predictive tool for the 

prediction of TSNA metabolites of cytochrome P450s. The present manuscript presents an 

approach that integrates structural biology (ensemble docking and structure-based properties) 

together with artificial intelligence (machine learning) to identify the most likely metabolites of 

TSNAs produced by the human cytochrome P450 isoform CYP2A13, known to efficiently 

metabolize TSNAs in the lung [14].  

Several computational approaches to predicting CYP oxidation sites from chemical structure have 

already been reported in the literature [15] and are currently available for use through web servers. 

Two of the more recent applications use quantitative structure-activity relationship (QSAR) 

modeling of molecular surface properties (CYPScore) [16] and Density Functional Theory (DFT) 

transition state energies of molecular fragments (SMARTCyp) [17] to predict substrate 

metobolism. The CYPScore model is trained on substrates with known metabolitic sites produced 

from metabolism by several CYP isoforms: 3A4, 3A5, 2D6, 2C9, 1A2, 2C19, 2E1, while the 

original SMARTCyp model was trained using substrates metabolized by 3A4 alone. The 

predictions made by these approaches, while powerful when dealing with one of these P450s 

[11], are not applicable to CYP isoforms that have not been fitted to experimental data. And the 

structural relationship between the CYP-substrate reaction complex and its resulting metabolite 

are not considered and cannot be recovered. As shown on Figure 2, the approach described here 

extends beyond these previously-developed computational tools by combining the prediction of 

isoform-independent CYP metabolism from quantum mechanical surface properties [18] of the 

substrates (which provides the ability to predict CYP hydroxylations, double bond oxidations, 

heteroatom oxidations and dealkylations; arrow “A” on Figure 2) with isoform-specific site 

prediction through the use of ensemble docking (Arrow “B” on Figure 2), which is recognized as 

a specific and efficient structure-based approach to ligand prediction [19]. This method is thus 

able to relate a predicted metabolite to a three-dimensional representation of the oxidation 

reaction that produced it. 
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Figure 2  Flowchart of the integration machine learning (A) and ensemble docking 
(B) in the present computational approach to TSNA metabolite prediction 
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METHODS 

 

Machine Learning Prediction of CYP Reactivity 

A set of 620 known substrates with known CYP metabolism sites, representing 9726 non-

hydrogen (heavy) atoms, collected from the literature [16, 17] was used to train machine learning 

models to identify molecular and structural properties associated with P450 oxidation single-step 

hydroxylations and N→O oxidations. Cepos InSilico’s Parasurf ’10 [20] was used to calculate 

quantum-mechanically-derived molecular surface properties of TSNAs at the AM1 semiempirical 

level of theory. The local surface properties calculated for each atom in the data set are molecular 

electrostatic potential, local ionization potential, local electron affinity and local polarizability 

(Table 2). The Sybyl atom types originally developed by Tripos, Inc., augmented by five new atom 

types (Supplementary Information) to represent previously non-parametrized atom types, were 

used to train individual learning machines using the multilayer perceptron, support vector machine 

and AdaBoost classifiers in the SciKit-Learn package [21]. Learning machines of each type were 

trained using the local properties, and including the AM1 Mulliken partial charge, for each atom 

type. For each atom type, the learning machine with the best classification statistics was used to 

predict activity for that atom type. Relevant machine learning classification rates are given in 

Supplementary Information.  

 

Table 2  Local molecular surface properties used in addition to 
Mulliken atomic partial charge to predict active sites 

Local Property Description 
SA Solvent Accessible Surface Area 
MEP max Molecular Electrostatic Potential maximum 
MEP min Molecular Electrostatic Potential minimum 
IEl max Local Ionization Potential maximum 
IEl min Local Ionization Potential minimum 
EAl max Local Electron Affinity maximum 
EAl min Local Electron Affinity minimum 
POLmean Mean Polarizability 
Field(N) max Electrostatic Field maximum 
Field(N) min Electrostatic Field minimum 
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Structure-Based Prediction of CYP Reactivity 

The TSNA compounds used in the present work were nicotine-derived nitrosamine ketone (NNK), 

N-nitrosonornicotine (NNN), and the R and S enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-

1-butanol (NNAL), as shown in Table 1. The molecular docking calculations were performed using 

the docking facility in MOE2019.01 [22] with the London ΔG scoring function for initial placements 

and the GBVI/WSA ΔG scoring function during the refinement steps. The force field used for 

refinement was Amber 10:EHT with Generalized Born approximations to Poisson-Boltzmann 

electrostatics. The CYP2A13 X-ray crystal structure used in this work was the human lung 

CYP2A13 co-crystallized with nicotine (PDB ID: 4EJG). Protonation states were assigned at pH 

7 using the Protonate3D facility in MOE. 

The protonated structure of CYP2A13 was used as the starting structure for the 100 ns molecular 

dynamics simulation using NAMD [23] with Amber10 force field parameters, along with heme 

parameters published by Shahrokh, et al. [24] In preparing the simulation, six TIP3 water 

molecules were automatically placed into the binding pocket volume previously occupied by 

nicotine in 4EJG by automated solvation in MOE and their orientations in the pocket optimized. 

The explicitly-solvated (TIP3) periodic system was generated with 10 Å padding on each side of 

the system and equilibrated for 100 ps, followed by a production run at 310 K and 1 bar using a 

Langevin barostat and thermostat. The resulting CYP conformations were used in ensemble 

docking of the TSNAs in the active site. Although ensemble docking provides an avenue for 

treating the target as a flexible entity, it typically requires the use of supercomputing facilities to 

perform the long MD simulations and extensive numbers of dockings. For instance, in the case of 

the 2A13 system modeled here, 100 ns of simulation time generates approximately 50,000 frames 

– each of which could potentially be used as targets to which the TSNA set would need to be 

docked, leading to roughly half a million poses per TSNA that would need to be evaluated. To run 

the calculations on a non-supercomputer machine in a reasonable amount of time required some 

trade-off between the dynamic treatment of the binding site along with a significant reduction in 

the number of docking calculations. As suggested in [11, 19, 25–27], the MD trajectory were 

clustered by the RMSD of binding site residues so that a diverse set of binding site conformations 

is selected for docking. This clustering was performed using the binding site residues Phe 107, 

Ala 117, Phe 118, Phe 209, Phe 300, Ala 301, Thr 305, Leu 366 and Leu 370 with Chimera, which 

also identified representative frames for each cluster (the trajectory frame closest to the average 

of each cluster), and sorted by the occupancy of the cluster (Figure 3). As in previous ensemble 
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docking approaches, a cutoff of 10 members per cluster was chosen, resulting in a set of ten 

representative frames of this MD trajectory. 

 

Figure 3  2A13 binding site residues used for dynamics trajectory clustering 

 

A proximity cutoff for a substrate’s heavy atoms to the virtual oxo-heme oxygen was set at 4.0 Å, 

which was found necessary to recover all TSNA active sites in the subsequent dockings, in 

agreement with reactive distances (3.0 Å – 5.2 Å) for CYPs used in previous published 

computational CYP-substrate modeling work [11, 28]. Over the course of the molecular dynamics 

simulation, an average of 6 waters remained within 10 Å of the heme cofactor. 

Each TSNA was docked to the binding sites of the 10 representative frames of the CYP2A13 MD 

trajectory ensemble, retaining the top 50 poses in each case. While the TSNA structures were 

docked to the reduced species (i.e. having no oxygen bound to the heme iron of the CYP 

structure), prior ab initio modeling [24] of the FeIV=O complex suggests that the activated oxygen 

is 1.694 Å away from the iron. Accordingly, prior to docking, the coordinates of a virtual oxygen 
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attached to the heme iron were calculated for each frame to be in 1.694 Å away from the heme’s 

iron. In order for a heavy atom to be considered as the site of oxidation by the docking 

calculations, it had to fulfill both of the following criteria: 1) the atom is the closest heavy atom 

within a cutoff distance of 4.0 Å to the virtual oxygen’s atomic location in a given docked pose, 

and 2) that atom has also been identified as an active site by the learning machines. Poses that 

did not meet this criterion were not considered for analysis. 

 

RESULTS AND DISCUSSION 

The prediction tool presented here focuses specifically on the prediction of TSNA metabolites that 

arise from single-step hydroxylations and N→O oxidations by CYPs, as shown in Table 3. The 

depicted metabolite structures represent the first oxidations associated with known CYP oxidative 

pathways that lead to other products detected in metabolomics studies. 

Table 3  Known metabolites of the four TSNAs used in this study 

NNK R-NNAL 

  

S-NNAL NNN 
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Machine learning predictions 

Table 4 shows the predicted hydroxylation and nitrogen oxidation sites for all four parent TSNA 

molecules evaluated here using the machine learning approach. None of the 4 TSNAs were 

included in the machine learning training set. In each case, a fourth site of CYP interaction was 

predicted involves the formation of a coordinate covalent bond between the TSNA nitrosamine 

nitrogen and the iron in the CYP heme (indicated in the crystal structure of the NNK-2A13 

coordination complex in [29], PDB ID: 4EJH), rather than a pathway leading to a known 

metabolite. The machine learning models described in Methods correctly, and uniquely, identified 

each of the known oxidation sites for each TSNA shown in Table 3, representing the known α-

hydroxylation products of each TSNA.  

TSNA Sites of CYP Metabolism 

NNK 

 

R-NNAL 
S-NNAL 

 

NNN 

 

Figure 4  Tobacco-Specific Nitrosamine metabolic sites predicted by 
the machine learning computational model 
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Docking-based predictions 

After clustering the 2A13 MD trajectory, each of the ten frames was used to dock the TSNA set 

using the parameters described in Methods, resulting in a combined list of 500 poses for each 

TSNA. After ranking by docking score, all poses with an atomic site selected as a site of CYP 

metabolism by the machine learning models within the 4.0 Å cutoff from the virtual heme oxygen 

in each ensemble frame were compiled for each TSNA, as described in Methods, resulting in 

much shorter pose lists. The results obtained from ensemble docking are summarized below in 

Table 5. Of the 298 TSNA docking poses identified by docking, 37 were NNK poses, 53 were R-

NNAL poses, 53 were S-NNAL poses, and 155 were NNN poses. And for or all TSNAs but NNK, 

the most frequently selected active sites from TSNA docking to the 2A13 ensemble were the 

aromatic pyridine nitrogens (pathways leading to N→O oxidation metabolites), representing an 

average of 44% of all recovered poses. This latter finding is not in accord with published literature 

on 2A13 metabolites of NNN and NNK [30]. Indeed, the most energetically favorable poses from 

the molecular dockings are those associated with reaction complexes leading to N→O oxidations. 

We attribute this anomaly to the fact that heme oxygens were not modeled in the dynamics 

simulation and are thus not represented in the docking ensemble. The Coulombic repulsions due 

to the negative partial atomic charges calculated for both the TSNA pyridine nitrogens and the 

heme oxygens would substantially lower the predicted binding free energies in the docking 

screen, and relegate these poses to the bottom of the ranked pose list – and most likely beyond 

the threshold set for our selection criteria. 

 

Table 5  Number of docking poses needed to recover all sites identified as active by machine 
learning models 

TSNA 
Minimum number of poses 
recovering all active sites 

Number of poses that met 
selection criteria 

NNK 19 37 

R-NNAL 23 53 

S-NNAL 25 53 

NNN 27 155 

 

In future developments of this approach, the pose list, ranked by docking score for each active 

pose, could potentially be used as an indicator of the relative distribution of metabolite structures 
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produced by a given CYP. This last step would require additional modeling of available 

metabolomics data for known substrates in order to relate the relative distribution of each 

metabolite to the number of poses indicated for that metabolite, and is outside the scope of the 

present paper. A compelling reason for not including metabolite concentration prediction in the 

current model stems from the challenge presented by often conflicting information found in 

literature sources regarding metabolite detection. For instance, in metabolomics studies that 

report no detection of N-oxides from CYP metabolism, they may have been mis-assigned in the 

mass spectroscopic analysis: “The identification of N-oxides represents a challenge because both 

hydroxylation and N-oxidation result in an increase in molecular weight by 16. The molecular ions 

of these metabolites are indistinguishable by mass spectrometry” [31]. Particularly in the cases of 

N-oxide metabolites, we expect there to be discrepancies among studies reporting the absence 

or presence of detectable N-oxides and that this contributes to a crisis of source material because 

the CYP N-oxide metabolites of TSNAs are reported in the literature: “Similarly, NNK-N-oxide is 

the major metabolite formed in the isolated and perfused rat lung, but not in the isolated and 

perfused rat liver. NNK-N-oxide is a major metabolite formed by patas monkey lung microsomes, 

but is not formed in by liver microsomes. In contrast to both rodents and the patas monkey, 

pyridine-N-oxidation of NNK and NNAL are observed in human liver microsomes, but not in 

human lung microsomes.” [32]. 

 

Table 6  Calculated binding site volumes and number of correctly-identified TSNA poses in the 
2A13 ensemble of 10 structures used in ensemble docking. 

 

Binding 
Site 
Volume (Å3) 

Number of 
TSNA 
Poses 
fulfilling 
the 
Methods 
criteria 

1) 20.992 49 

2) 27.648 28 

3) 24.576 14 

4) 19.968 31 

5) 39.424 28 

6) 30.720 12 

7) 5.120 19 



14 
 

8) 11.264 19 

9) 37.376 25 

10) 32.768 22 
 

As shown in Table 6, the calculated binding site volumes for the individual frames of the MD 

ensemble does not correlate well with the number of docking poses selected, suggesting that the 

shape and chemical properties of the binding site, as determined by the relative conformations of 

the binding site residues, is largely responsible for the selectivity in identifying metabolically active 

poses, rather than only a steric effect. 
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CONCLUSIONS 

The computational model presented here identifies known hydroxylation and N→O oxidation 

CYP2A13 metabolites in a structure-dependent manner for the four TSNA substrates evaluated: 

nicotine-derived nitrosamine ketone (NNK), N-nitrosonornicotine (NNN), and the R and S 

enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL). The machine learning 

models in this method are also trained to identify sites of CYP metabolism associated with 

aliphatic, aromatic and benzylic hydroxylations, double bond oxidations, other heteroatom 

oxidations and heteroatom dealkylations. The present approach may be used to predict the 

metabolites of other substrates in the future. Since CYPs are known to metabolize a wide variety 

of substrate structures, their binding sites may be highly flexible. Ensemble docking selects the 

machine-learning-predicted metabolic sites that are within a reactive distance of the heme moiety 

in the CYP binding pocket. This work opens the door to the systematic prediction of metabolites 

for a variety of substrates by any given CYP isoform and, potentially, of the relative abundances 

of specific metabolites by fitting to experimental data.  
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SUPPLEMENTARY INFORMATION 

 

Table S.1  The set of extended Sybyl atom types used in machine learning training and prediction 
C.3 sp3 hybridized carbons  N.3 sp3 hybridized nitrogens 

C.2 nonaromatic sp2 hybridized 
carbons  N.ar aromatic nitrogens 

C.1 sp hybridized carbons  N.pl3 trigonal planar nitrogens 

C.ar aromatic sp2 hybridized carbons  S.3 sp3 hybridized sulfurs 

C.am amide carbons  S.2 sp2 hybridized sulfurs 

C.bz benzylic carbons  P.3 sp3 hybridized phosphorus 

C.oa carbons alpha to oxygen    

C.na carbons alpha to nitrogen    
 

Table S.2  Machine learning models used in substrate active site prediction 
Atom Type Cases Metabolic 

Sites Model Type Avg. Classification 
Rate (%)* 

C.3 1756 178 MLP 81.7 

C.2 814 35 MLP 93.0 

C.1 22 2 SVC 95.0 

C.ar 5374 217 MLP 94.7 

C.am 247 3 SVC 99.6 

C.bz 412 96 ADA 68.9 

C.na 745 281 SVC 70.2 

C.oa 670 141 MLP 64.0 

N.3 279 13 MLP 90.6 

N.ar 391 13 MLP 93.6 

N.pl3 184 12 ADA 92.2 

S.3 60 44 MLP 74.4 

S.2 27 9 SVC 61.7 

P.3 12 4 ADA 100.0** 
 *Ten-fold cross validation using randomly selected 75% training, 25% testing. 
**Five-fold cross validation using randomly selected 75% training, 25% testing. 
SVC: Support Vector Machine 
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MLP: Multilayer Perceptron 
ADA: AdaBoost Classifier 

 

Table S.3  Trajectory ensemble from the molecular dynamics simulation of 2A13 

Cluster Frame Members  Cluster Frame Members 

1) 11005 27  6) 11887 18 
2) 7897 26  7) 1093 17 
3) 4831 21  8) 3319 15 
4) 2689 19  9) 5713 12 
5) 10165 19  10) 8569 10 

 

Table S.4  Number of NNK active sites recovered in the 2A13 ensemble 

 

 Site 

Cluster 1 2 3 

1) 0 9 1 

2) 1 0 4 

3) 0 2 2 

4) 0 0 2 

5) 0 8 0 

6) 0 0 2 

7) 0 2 0 

8) 0 0 0 

9) 0 0 3 

10) 0 0 0 
  

Table S.5  Number of R-NNAL active sites recovered in the 2A13 ensemble 
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 Site 

Cluster 1 2 3 

1) 0 7 6 

2) 1 2 9 

3) 0 1 1 

4) 1 1 3 

5) 1 4 1 

6) 0 3 0 

7) 0 0 0 

8) 0 1 0 

9) 2 0 3 

10) 1 0 2 
 

 

Table S.6  Number of S-NNAL active sites recovered in the 2A13 ensemble 
 

 Site 

Cluster 1 2 3 

1) 2 9 2 

2) 1 0 7 
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3) 0 0 1 

4) 0 1 2 

5) 0 6 2 

6) 0 0 1 

7) 0 5 1 

8) 0 1 1 

9) 2 0 0 

10) 1 0 5 
 

Table S.7  Number of NNN active sites recovered in the 2A13 ensemble 
 

 Site 

Cluster 1 2 3 

1) 2 4 7 

2) 0 0 3 

3) 4 1 2 

4) 7 7 7 

5) 1 1 4 

6) 0 2 4 

7) 3 4 4 

8) 12 2 2 

9) 1 5 9 

10) 1 7 5 
 

Table S.8  Number of active TSNA poses identified in the 2A13 ensemble 

 NNK R-NNAL S-NNAL NNN 

1) 10 13 13 13 
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2) 5 12 8 3 

3) 4 2 1 7 

4) 2 5 3 21 

5) 8 6 8 6 

6) 2 3 1 6 

7) 2 0 6 11 

8) 0 1 2 16 

9) 3 5 2 15 

10) 0 3 6 13 
 

 

 

Figure 4  Docking pose of NNN active site 1 with a 4.0 Å proximity to the active heme oxygen of 
2A13 
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ADDENDUM 

 

Since the relative distribution of metabolites resulting from the CYP metabolism for some 

substrates is available in the literature, it may be possible to extrapolate metabolite distribution 

from the number of predicted metabolite structures that appear in the ensemble pose lists of this 

method. As shown in Figure 1, we observed that the binding site cavities of the 2A13 ensemble 

yielded many more poses associated with NNN metabolites than with the other three TSNAs. Of 

the 298 TSNA docking poses within 4.0 Å of the virtual heme oxygen in the 2A13 ensemble, 37 

were NNK poses, 53 were R-NNAL poses, 53 were S-NNAL poses, and 155 were NNN poses. 

And for or all TSNAs but NNK, the most frequently selected active sites from TSNA docking to 

the 2A13 ensemble were the aromatic pyridine nitrogens (pathways leading to N→O oxidation 

metabolites), representing an average of 44% of poses (Figure 2). 

 

Figure 1  Distribution of active docking poses for each TSNA in the 2A13 ensemble  
 

 
 

 

Figure 2  Proportion of active sites predicted for each TSNA in the 2A13 ensemble 
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