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Abstract

The synthesis quality of artificial inorganic nanocrystals is most often assessed by

transmission electron microscopy (TEM) for which new high-throughput advances have

dramatically increased both the quantity and information richness of metal nanopar-

ticle (mNP) characterization. Existing automated data analysis algorithms of TEM
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mNP images generally adopt a supervised approach, requiring a significant effort in

human preparation of labelled data that reduces objectivity, efficiency, and generaliz-

ability. We have developed an unsupervised algorithm AutoDetect-mNP for automated

analysis of TEM images that objectively extracts morphological information of convex

mNPs from TEM images based on their shape attributes, requiring little to no human

input in the process. The performance of AutoDetect-mNP is tested on two datasets of

bright field TEM images of Au nanoparticles with different shapes, demonstrating that

the algorithm is quantitatively reliable, and can thus serve as a generalizable measure of

the morphology distributions of any mNP synthesis. The AutoDetect-mNP algorithm

will aid in future developments of high-throughput characterization of newly synthe-

sized mNPs, and the future advent of time-resolved TEM studies that can investigate

reaction mechanisms of mNP synthesis and reactivity.

Introduction

The shape attributes of a metal nanoparticle (mNP) determine many of its physical, chem-

ical, and functional properties, including plasmonic behavior,1–4 catalytic efficiency,5–8 and

biological activity.9,10 Significant research effort has focused on developing methods for the

shape-controlled synthesis of mNPs, and an accurate and efficient method for their char-

acterization has been indispensable for the success achieved by these studies.11–18 To date,

transmission electron microscopy (TEM) remains the most reliable and widely used method

for characterizing the morphology of NPs, for which rapid advancement in automated high-

throughput electron microscopy has drastically increased both the acquisition rate and the

quality of TEM data.19–23 Increased efficiency in TEM data acquisition now enables the

scale of NP shape characterization to increase from tens or hundreds of particles to orders

of magnitude more, extracting information at the level of more informative statistical dis-

tributions. The information from TEM data at such a scale far exceeds the capability of a

human analyst, and hence the development of automated methods for TEM image analysis
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is imperative.

An ideal algorithm for the automated analysis of TEM images should be able to perform

two tasks: particle detection, which includes identification and segmentation of particles

of interest, and information extraction, which generally involves the characterization of the

shapes of the particles based on their attributes such as aspect ratios and other attributes.

While a variety of robust algorithms have been developed to perform automated particle

detection,21,24–29 these algorithms were not designed to perform statistical information ex-

traction and data analysis that identify morphological features of the NPs. When information

extraction has been automated, it has generally analyzed all the detected particles without

differentiation or classification of their shape and shape attributes.21,24,25 Such an approach

may be acceptable when analyzing homogeneous samples with the aim of quantifying simple

metrics such as average particle sizes. However, the assumption of homogeneity is subjec-

tive, and far from universally applicable. By taking the assumption of homogeneity, other

potentially important information may be missed, including the presence of unexpected side

products, or the relative populations of different competing products, which may be lost

without detailed automated classification of particle shapes. Existing algorithms capable of

classifying the particles based on their shapes have thus far adopted supervised approaches,

requiring the user to pre-define expected categories or shapes of particles.26,27 Such super-

vised methods reduce the generalizability of these algorithms, often limiting their application

to the particular classes of particles on which they were trained. To our best knowledge,

there has not been an unsupervised algorithm capable of analyzing TEM images without

significant human input or presumptions.

Here, we develop an unsupervised algorithm for the analysis of TEM images and the

classification of particle shapes for mNPs, requiring minimum human input in the process

(Figure 1). We demonstrate the quantitative reliability of the AutoDetect-mNP algorithm

and its potential to serve as an unbiased, general method for the characterization of the

shape distributions of nanoparticles using two datasets of gold nanoparticles (AuNPs) with
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Figure 1: Scheme of the AutoDetect-mNP algorithm. The algorithm can be divided into four
parts: particle detection, feature extraction, filtering and resolution of irregularly shaped
particles, classification of particle shapes.

different shapes comprised of short and long rods and triangular prisms. AuNPs have been

studied extensively by TEM, and protocols for their synthesis with controlled sizes and

shapes are well established,12,15–17,30–34 making them an ideal candidate for demonstration of

the strengths of the unsupervised algorithm. Furthermore, while shape-controlled synthesis

of AuNPs have been extensively reported in literature, a generalizable quantitative method

for the characterization of the shape distribution of these particles on a statistical scale

beyond manual analysis of TEM images has yet to be established.12,15–17,30–33 AutoDetect-

mNP is capable of processing thousands of particles from over a hundred TEM images in

a matter of minutes, extracting morphological descriptors for convex Au nanoparticles and

classifying the particles without the need of human intervention, thus greatly increasing the

generalizability and efficiency of the process. In the future, AutoDetect-mNP can serve as a

general and unbiased metric for reporting shape and shape attribute distributions of mNPs

using TEM or other image acquisition strategies, and will play an important role in the future

development of automated platforms for high-throughput mNP synthesis and time-resolved

TEM characterization of mNP reactivity.
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Results and discussion

AutoDetect-mNP algorithm

Our goal is to develop an unsupervised algorithm capable of achieving four tasks in an

automated manner for mNP particle classification. The components of our algorithm are

individual mNP detection, feature extraction of particle shape attributes, the resolution and

filtering out of overlapping particles, and finally shape classification and the analysis of their

distributions that are interpretable from their features.

Particle detection of mNP requires the segmentation of the foreground from the back-

ground of the TEM images, and thus the isolation of individual particle from the segmented

image. Since TEM images of Au NPs typically show sharp contrast between the foreground

and background, well-developed algorithms reported in previous literature generally shows

satisfactory performance.26 In this study, K-means image segmentation has proven sufficient

for this step. Six shape descriptors are used to distinguish the mNPs that are segmented

from the images: solidity, convexity, area, eccentricity, aspect ratio, and circularity, .26,35–38

The first two descriptors are important for cleaning the dataset for mNP detection by

measuring the degree of convexity of the particles. Since a TEM image can only capture

the 2D projections of 3D particles, overlapping particles will appear as the union of their

projections. Additionally, particle detection can sometimes fail to render the complete edges

of certain particles, or identify contamination on TEM sample grids as particles. Fortunately,

overlapping and incorrectly detected particles often have non-convex shapes, allowing them

to be easily differentiated from correctly detected mNPs, which typically have convex shapes.

In this work, we apply a filter based on solidity and convexity to separate non-convex particles

from correctly detected convex particles. A particle with solidity < 0.9 or convexity < 0.95

is considered non-convex. Non-convex particles are analyzed and resolved by the ultimate

erosion of convex shapes (UECS) algorithm reported by Park et al.39 Although we only

quantify convex mNPs in this work, which represent a significant proportion of widely studied
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mNPs, future research efforts can use a similar algorithm and different descriptors to extend

the application of the algorithm to non-convex NPs.

Particles that pass the solidity and convexity filter are then classified based on the 4

geometrical shape descriptors. The classification process consists of two unsupervised steps:

K-means clustering followed by naive Bayes classification. This general approach of unsuper-

vised classification based on geometric descriptors ensures that it can be naturally extended

to any convex NP systems. Data points were divided into K classes, assuming features in

each class follow a normal distribution. Each data point was then assigned to the class that

maximizes the joint probability of all the features belonging to that class. In a standard

implementation of K-means clustering and naive Bayes classifier, the number of classes, K,

needs to be pre-defined by the user. To increase the generalizability of our algorithm, we use

the Pmax metric to automatically determine the optimal K for each individual dataset. For

each dataset, matrix P (K) is defined as a function of the number of classes, K, such that

Pij =
E[pj(xi)]

E[pi(xi)]
, i, j ≤ K

, where Pij is the element on the i-th row and j-th column of P (K), pi(x) is the likelihood of

data point x belonging to class i, and xi denotes data points assigned to class i. Maximum

entropy Pmax(K) is then defined as the maximum of the off-diagonal elements of P (K). The

optimal K is then selected as the value of K that minimizes Pmax(K).

Au nanorods

To confirm the reliability of the AutoDect-mNP algorithm, we first analyzed TEM images

of two pure Au nanorod samples, each with a different aspect ratio of ∼5 (long rods) and

∼2 (short rods), the synthesis of which was previously reported by Ye et al.32 The algorithm

yields statistical results on the pure nanorod samples that consistently show nanorods with

their known aspect ratios with narrow size and shape distributions as shown in Figure 2
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(short rods) and Figure S1 (long rods). However, we also found a non-negligible amount of

spheroidal impurities present in both samples. Due to the relatively low concentrations of

these nanorod samples, it is unlikely that these spheroidal particles are Au nanorods stand-

ing on their tips. We note that the presence of spheroidal impurities during the synthesis

of Au nanorods has been previously observed,11,17,32 and the amount of impurities are typ-

ically estimated by optical spectroscopy or visual inspection of a few electron microscopic

images,12,16,17,30–32 which is both time consuming and prone to human biases. AutoDetect-

mNP determines the impurities of the Au nanorods to be 15% in long rods and 5% in short

rods. This shows that the algorithm can potentially serve as a quantitative method for the

objective determination of impurity content of a mNP synthesis.

Figure 2: Detection and classification of Au NPs of different morphologies in short rods. (a)
Maximum entropy as a function of number of classes in which K = 2 was found to be the
optimal number of classes. (b-c) Montages of sample particle shapes in each class. (d-f)
Classification results denoted by colors overlaid onto original TEM images of Au nanorods
(green: spheroids, blue: short rods). (g-j) Four features used for classification and Gaussian
distributions for each class, with classification results denoted by colors. Counts normalized
by total number of particles.
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Next we examined the accuracy of the algorithm on a sample with a known 1:1 mixture

composition of two Au nanorods with different aspect ratios, determined from spectroscopic

measurement of their colloidal concentrations using computed extinction coefficients.32 The

performance of AutoDetect-mNP on the nanorod mixture is shown in Figure 3 in which

it automatically identifies three classes among all the recognized particles as long rods,

short rods, and spheroids. Visual inspection of the distributions of the shape descriptors

(Figure 3h-k) shows that, similar to the cases of the pure rods (Figure 2g-j, Figure S1g-j),

the most prominent distinctions differentiating the three classes are seen in aspect ratio and

circularity. To test the quantitative performance of the algorithm, the numbers of detected

particles in each class were counted for the mixture sample and compared to the two pure

nanorod samples (Table S1). We find that the composition of the nanorod mixture sample

is calculated to be 45% long rods and 55% short rods, which shows satisfactory accuracy

compared to the spectroscopically determined 1:1 ratio between the two samples.

The performance of AutoDetect-mNP was also compared to that of three human experts

who were asked to independently classify the particles into three predefined classes: long rods,

short rods, and spheroids found in a set of 20 images randomly selected from the nanorod

mixture dataset. The total number of particles recognized by the algorithm (860) was very

close to the number recognized by human experts (915±25). The distinct numbers of long

rods and short rods identified by the algorithm were found to be very close to the average of

human labelling results, with small deviations (Table S2). While the difference between the

numbers of spheroids identified by human labellers and the algorithm was larger (12.8%),

this is likely due to the fact that the spheroids have a relatively small absolute population

(88±15 according to human labelling). As such, the algorithm is capable of achieving a

similar degree of accuracy as human experts, while being significantly more efficient.
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Figure 3: Classification results of a 1:1 mixture of Au nanorods with different aspect raios
(a) Maximum entropy as a function of number of classes in which K = 3 was found to be
the optimal number of classes. (b-d) Montages of sample particle shapes in each class. (e-
g) Sample TEM images of the mixture with classification results denoted by color (purple:
long rods, green: spheroids, blue: short rods). (h-k) Four features used for classification and
Gaussian distributions for each class, with classification results denoted by colors. Counts
normalized by total number of particles.
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Au triangular prisms

After validating the performance of the algorithm on an artificially constructed data set, we

demonstrate the potential of AutoDetect-mNP for characterizing and quantifying mNPs for

a new synthesis of Au triangular prisms as reported by Jones et al.33 We chose Au triangular

prisms since they show a relatively high variation in shapes from the synthesis.11,15,33,40 From

the 114 TEM images collected for the product, the AutoDetect-mNP algorithm identified

two classes from the detected particles: a class of triangular particles (Figure 4b) and a class

of rod-shaped impurities (Figure 4c). By visually inspecting the rod-shape impurities, it can

be seen that a majority of the rod-shaped mNPs are in fact real impurities, with a much

smaller population of artifacts originating from incorrectly detected particles (Figure 4c).

We would like to point out that the relative population of the incorrectly detected particles

is low enough that their presence would not influence the classification results on a statistical

scale.

While the two classes identified by the algorithm show clear distinctions, further inspec-

tion of the class of triangular particles (Figure 4b) reveals that there is significant intraclass

variations within the triangular particles, as evident from the non-Gaussian distributions

of the features (Figure 4g-j).To quantify the distinctiveness of the two classes, we evaluate

the average cross entropy from information theory, where the average cross entropy between

two distributions p and q is defined as H(p, q) = 1
N

∑N
i pi log(qi), where N is the number

of elements in distribution p, and pi and qi represent the likelihood of the i-th element of

distribution p predicted by distribution p and q, respectively. H(p, q) quantifies the distinc-

tiveness between distribution p and distribution q: the larger H(p, q), the more distinct p is

from q. Using this measure, the two classes identified from the triangular prism sample are

found to be much less distinct than the nanorod case. This can be seen quantitatively by

comparing the average cross entropy with respect to the bulk distribution (Table S3). We

hypothesize that the distinctions between the triangular particles and rod-shaped impurities

were so large that the possible presence of intraclass variations among the triangular particles
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were weighted to a lesser degree and thus not identified by the algorithm.

Figure 4: Detection and classification of Au NPs of different morphologies in a sample of
triangular prisms. (a) Maximum entropy as a function of number of classes in which K = 2
was found to be the optimal number of classes. (b-c) Montages of sample particle shapes in
each class. (d-f) Classification results denoted by colors overlaid onto original TEM images
of Au nanorods (green: triangular particles, blue: rod-shaped impurities). (g-j) Four features
used for classification and Gaussian distributions for each class, with classification results
denoted by colors. Counts normalized by total number of particles.

To validate this idea, we applied the automatic classification of AutoDetect-mNP on the

triangular particles alone in an attempt to further characterize the variations among these

particles (Figure 5). The classification results showed that the triangular particles can indeed

be further classified into three sub-classes: triangles, symmetrically truncated triangles, and

asymmetrically truncated triangles (Figure 5). Compared to the 2-class scenario (triangles

and rod-shaped impurities) in the first iteration of classification, classifying the particles into

four classes (triangles, symmetrically truncated triangles, asymmetrically truncated trian-

gles, and rod-shaped impurities) in the second iteration significantly improved log-likelihood
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from 6.58 to 14.89, indicating that the second iteration of classification offered a more de-

tailed and more reasonable classification of the particles in the dataset. Upon applying more

iterations of classification, the log-likelihood did not improve further, suggesting there is

no more significant intraclass variation to capture and that the algorithm has converged.

Applying further iterations of classification on the class of rod-shaped impurities also did

not improve the log-likelihood, suggesting that the class has little intraclass variation. In

this case, the averaged cross entropy between subclasses are now sufficiently large such that

these subclasses are quantifiably distinct from each other. Interestingly, inspection of the

distributions of the shape descriptors for the three subclasses originated from the triangular

shaped class (Figure 5) shows that none of the four shape descriptors can serve as a good

differentiator for the three sub-classes alone. However, by taking into account of all four

descriptors the algorithm was able to make a clear distinction between the three sub-classes.

This demonstrates the importance of using high-dimensional features for the classification

of shapes.

Figure 5: Further classification of the Au triangular prisms class. Distributions and relative
population of particles in each class (red: pure triangles, cyan : symmetrically truncated
triangles, yellow : asymmetrically truncated triangles)

The AutoDetect-mNP refined classification of truncated triangular particles in TEM im-

ages of Au triangular prisms is supported by previous studies characterizing these particles

at both bulk15,33,40–42 and single particle14,26,43 levels. However Figure 5 also emphasizes
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that the AutoDetect-mNP algorithm can provide the statistical distributions of each species

and their descriptors. These information can potentially be used to interpret kinetically

controlled formation mechanisms and relative speed of growth of different facets during the

formation of Au nanoparticles by, for example, helping to illuminate the shape transition from

three-fold symmetrical triangular particles to six-fold symmetrical hexagonal particles (Fig-

ure S4). In future studies, a kinetic growth model, potentially similar to the one previously

reported by Handwerk et al.,44 could be established based on the statistical distributions

of particle shapes shown herein, which can potentially help to validate or improve existing

models of nanoprism growth such as the twinned facets model proposed by Jaggannathan

et al.15,45

Conclusions

In this work, we developed an unsupervised machine learning algorithm, AutoDetect-mNP,

that classifies Au NPs in TEM images based on extracted morphological information without

human intervention. AutoDetect-mNP automatically decides the optimal number of classes

for clustering based on intra- and inter-class feature similarities, and provides more relevant

statistical distributions of the features for each class generated by the algorithm. The use

of classes as a way of characterizing the shape distributions of nanoparticles can also be

quantified with a cross-entropy measure post defacto to distinguish it from a more featureless

continuum.

By comparing the analysis results on the composition of Au nanorod mixtures with differ-

ent aspect ratios with human labelling, we demonstrated that our method is quantitatively

reliable while being much more efficient, and potentially less biased than human labelling.

Applying the algorithm to the characterization of shape distributions of synthesized Au

triangular prisms, the algorithm identified rod-shaped impurities from the triangular main

products. Furthermore, running the algorithm iteratively on identified classes can organize
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the shapes of the particles hierarchically. It is hoped that the quantitative shape distribu-

tions provided by the algorithm can potentially help to provide insights into the mechanism

of the formation of the nanoparticles.

As for now, the AutoDetect-mNP algorithm has only been applied to Au NPs. However,

the geometric features utilized in the algorithm can be easily applied to other NP systems

as well, and it is straightforward to add new features to expand the application domain of

the algorithm. We can imagine future studies using AutoDetect-mNP to answer scientific

questions such as optimizing reaction conditions for a high-throughput experimental setup,

modelling reaction mechanism with real-time analysis of particle shapes captured by TEM

videos, or studying the self-assembly of NPs with different shapes.

Methods

Chemicals and Materials

Hexadecyltrimethylammonium bromide (CTAB,>98.0%) and sodium oleate (NaOL,>97.0%)

were purchased from TCI America. Hydrogen tetrachloroaurate trihydrate (HAuCl4·3H2O,

≥99.9%), L-ascorbic acid (BioXtra, ≥99.0%), silver nitrate (AgNO3, ≥99.0%), sodium

borohydride (NaBH4, 99.99%), sodium iodide (NaI, ≥99.5%), sodium hydroxide (NaOH,

≥97.0%), sodium citrate tribasic dihydrate (≥99.0%) and hydrochloric acid (36.5%-38.0%

wt%) were obtained from Sigma Aldrich (USA). NaBH4 powder was stored in an argon

glovebox. HAuCl4·3H2O, L-ascorbic acid, and AgNO3 were stored in a vacuum desiccator

at room temperature. Deionized water (DI-water, Milipore, Milford, MA, USA) was used

for all aqueous solution. All the glassware was thoroughly cleaned using freshly prepared

aqua regia (3:1 volume ratio of HCl and HNO3, respectively) followed by fully rinsing with

copious amounts of DI-water. All chemicals were of reagent grade and used without further

purification.

14



Synthesis of gold nanorods

Two types of AuNRs were synthesized by a facile seed-mediated growth involving a binary

surfactant mixture. The seed solution was prepared as follows: 10 mL of 0.1 M CTAB

solution was mixed with 100 µL of 25 mM HAuCl4 in a 20 mL scintillation vial under

vigorous stirring. 600 µL of ice cooled 10 mM NaBH4 was rapidly injected into the Au-

CTAB solution and stirred for 2 min. Upon the addition of NaBH4, the color of the seed

solution turned yellow-brownish. Afterward, the seed solution was left undisturbed at 28 ◦C

for 30 min prior to use in the following step.

The growth solution was obtained by first mixing 3.6 g of CTAB and 0.4936 g of NaOL in

196 mL of DI-water in a 500 mL Erlenmeyer flask. The solution was heated with occasional

agitation until all the CTAB was dissolved. The mixture was allowed to cool down to 30

◦C and 4 mM AgNO3 referred to Table 1 was then added under stir at 700 rpm for 15 min.

Afterward, 4 mL of 25 mM HAuCl4 was added to the mixture and kept undisturbed at 28

◦C for 90 min. The yellowish color of growth solution turned to colorless. A certain amount

of HCl (Table 1) was added to the solution and the mixture was stirred at 400 rpm for 15

min. Finally, 500 µL of 0.064 M ascorbic acid was injected into the growth solution, and the

mixture was vigorously stirred at 1200 rpm for 30 sec. 80 µL of the seed solution was then

injected, and the solution was stirred for 30 sec before left undisturbed at 28 ◦C for 12 hr

to complete the growth process. 40 mL of the final products were isolated by centrifugation

at 8,000 rpm for 15 min followed by careful removal of the supernatant. 10 mL of DI-water

was added to the pellet and the mixture was sonicated briefly to disperse the pellet.

Table 1: Amount of reagents used for the synthesis of Au nanorods

Sample 4 mM AgNO3 (mL) HCl (mL)

Long rods 1.45 0.84
Short rods 9.6 1.2
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Synthesis of gold triangular prisms

Homogeneous gold triangular prisms were also synthesized by seed-mediated method. The

citrate ligand based seed solution was prepared as follows: 500 µL of 10 mM sodium citrate

solution was mixed with 250 µL of 10 mM HAuCl4 and 18.95 mL of DI-water in a 20 mL

scintillation vial under vigorous stirring. 300 µL of ice cooled 10 mM NaBH4 was rapidly

injected into the Au-citrate solution and stirred for 1 min. Upon the addition of NaBH4, the

color of the seed solution turned yellow-brownish. Afterward, the seed solution was stirred

at 40-45 ◦C for 15 min and left undisturbed at room temperature prior to use in the following

step.

For the growing process, the UV-vis spectra of the seed solution were taken using 1 cm

quartz cuvette to determine the concentration of the seed. The extinction coefficient of the

seed solution is 9.696×106 M−1cm−1 at its wavelength of maximum optical density, 504 nm.

In order to synthesize the triangular prism with edge length in 80 nm, the final concentration

of the seed in the growth solution should be 97.7 pM. Prior to preparing the growth solution,

the stock mixture of 0.05 M CTAB and 50 µM NaI was prepared at room temperature. The

solution was heated with occasional agitation until all the CTAB was dissolved. The mixture

was allowed to cool down to 30 ◦C. The growth solution was prepared by mixing 9 mL of

previously made CTAB/NaI stock mixture, 250 µL of 10 mM HAuCl4 solution, 50 µL of

100 mM NaOH solution, and 50 µL of 100 mM ascorbic acid solution. Finally, a certain

amount of seed solution was added under vigorous stirring. The nanoparticle solution was

then heated around 40 ◦C for 30 min and was cooled down to room temperature.

For the purification process of Au nanoprisms, 0.6 mL of the growing solution was mixed

with 0.4 mL of 1 M NaCl solution into 1.5 mL Eppendorf tubes. The mixture was left

undisturbed for 4 hours and centrifuged twice at 1,000 rpm for 15 sec. The supernatant was

carefully removed, and 0.6 mL of DI-water was added to the pellet and was sonicated briefly

to disperse the pellet.
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Preparation of TEM samples

To prepare the stock sample for TEM analysis, 50 µL aliquot of the nanoparticle solution

was added to 1 mL of DI-water. The sample was centrifuged at 5,500 rpm for 8 min, the

supernatant was carefully removed, and the isolated product was resuspended in 50 µL of

DI-water. We added 200 µL of DI-water to the sample to dilute by a factor of 5 to prevent

overlapping particles on the grid. 5 µL of this solution was pipetted onto a standard carbon

TEM grid (Electron microscopy Sciences, CF-400-Cu). The TEM grid with the sample was

fully dried in a vacuum desiccator at room temperature before TEM imaging.

In order to calculate the concentration of each nanorod, we referred to the theoretical

extinction coefficient of the AuNR reported by Park et al.46 Each extinction coefficient of

long and short AuNR was extracted to 1.4 × 1010 L mol−1 cm−1 at 1059 nm for long rods,

and 1.1 × 1010 L mol−1 cm−1 at 698 nm for short rods. The optical density of the solution

was collected using a Shimadzu UV-3600 UV-VIS spectrophotometer with 1 nm resolution.

The path length of the cuvette was 1 cm. To make 50:50 ratio of short and long AuNRs, the

concentration of each sample was fixed to 90 pM.

TEM imaging

Images of Au NPs were acquired using a FEI Tecnai T20 transmission electron microscope

equipped with a Gatan RIO16IS camera and a LaB6 filament. All images were recorded

under 200 kV accelerating voltage. Drift correction feature of the imaging software was

enabled during the acquisition of all images. For each sample, images were taken from a

series of evenly spaced locations on the sample grid, typically resulting in 50-100 images of

the sample containing > 1000 recognizable NPs. We observed that magnification and camera

exposure time can significantly impact the performance of particle detection. Therefore, it

is potentially helpful to optimize these imaging parameters before beginning to collect large

amounts of data for the algorithm. For the data showed in this work, long rods were imaged

at 43kx magnification with 1 s exposure time; short rods were imaged at 19kx magnification
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with 1 s exposure time; mixtures were imaged at 43kx magnification with 1 s exposure time;

triangular prisms were imaged at 26kx magnification with 1.5 s exposure time.

AutoDetect-mNP algorithm

Unprocessed TEM images in dm4 format were loaded into Matlab by the ReadDMFile func-

tion available from MathWorks file exchange. Particle detection was performed by Matlab’s

built-in function imsegkmeans. Imsegkmeans segments the image by performing a K-means

clustering on the pixel intensities of each image. Shape descriptors for each particles were

calculated by the regionprops function in Matlab. The definition for each shape descriptors

is as follows: Area is defined as the total area, in nm2, of the region encompassed by the

edge of the particle; eccentricity is defined as the eccentricity of the smallest ellipse that

encapsulates the particle; aspect ratio is defined as the ratio between the major and minor

axis lengths of the particle; circularity is defined as the reciprocal of the 1st Hu’s moment

invariant of the particle;37,38 solidity and convexity, are defined as the ratio of the areas and

perimeters, respectively, between the particle and the smallest convex polygon that encapsu-

lates the particle. Hu’s moment invariants of the particles were calculated by codes available

from MathWorks file exchange.

UECS was implemented using Matlab codes adapted from those published by Park et

al.39 The UECS algorithm attempts to resolve convex components from non-convex shapes

by iteratively eroding the shapes until convex shapes are obtained. If convex shapes are not

obtained after 90% of the area of the original particle has been eroded, the particle will be

discarded.

K-means clustering and naive Bayes classifier used for unsupervised classification are well

established clustering algorithms, and are implemented in Matlab. An example demonstrat-

ing using Pmax(K) to decide the optimal number of classes is shown in Figure 6. In Figure 6,

circularity of the Au nanorods was used as an example to demonstrate the selection of op-

timal K. In this case, K = 3 is selected as the optimal K for this dataset, which agrees
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Figure 6: Unsupervised clustering of extracted features and selection of optimal number of
clusters (K). Using circularity of Au nanorods as an example.
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with the observation that the dataset is roughly consisted of three normal distributions. Of

note, particles resolved by UECS were excluded during the automated classification process

to avoid skewing of classification results by potential artefacts generated by UECS. Instead,

these particles were assigned classes after the normal particles are clustered into different

classes.
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