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Abstract 

RNA is an emerging target for drug discovery. However, like for proteins, not all RNA binding sites are 

equally suited to be addressed with conventional drug-like ligands. To this end, we have developed the 

structure-based druggability predicator DrugPred_RNA to identify druggable RNA binding sites. Due to 

the paucity of annotated RNA binding sites, the predictor was trained on protein pockets, albeit using only 

descriptors that can be calculated for both, RNA and protein binding sites. DrugPred_RNA performed well 

in discriminating druggable from less druggable binding sites for the protein set and delivered sensible 

predictions for selected RNA binding sites. Further, the majority of drug-like ligands contained in a data 

set of RNA-containing pockets were found in pockets predicted to be druggable, further adding confidence 

to the performance of DrugPred_RNA. The method is robust against conformational changes in the binding 

site and can contribute to direct drug discovery efforts for RNA targets. 
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Introduction 

The vast majority of targets for approved drugs are proteins.1,2 However, in recent years it has been 

increasingly realized that also RNAs constitute promising drug targets as they play a key role in many 

biological processes, can fold into diverse 3D structures, and specifically recognize small molecules.3–6 By 

targeting RNA the functions of currently undruggable protein-mediated pathways and the non-coding 

transcriptome can be modulated and thus the size of the druggable genome can be increased considerably.3 

A prime example of an RNA drug target is the bacterial ribosome, where protein synthesis is inhibited 

through binding of small molecules.7 This is illustrated by linezolid, an FDA-approved antibiotic, which 

acts by binding to ribosomal RNA (Figure 1).8 Another active research area are RNA-binding splicing 

modifiers for the treatment of spinal muscular atrophy with several compounds in clinical trials.9,10 

Riboswitches, which are non-coding RNA structures in the 5’-UTR and regulate gene expression through 

metabolite binding are new RNA drug targets for antibiotics.11,12 For example, compounds binding to the 

flavin mononucleotide (FMN) riboswitch, e. g. ribocil and 5FDQD, have been shown to kill bacteria (Figure 

1).13,14  Riboflavin is known to bind to both the FMN riboswitch and riboflavin kinase. In both binding sites, 

the ligand is recognized in a similar way forming hydrophobic contacts and hydrogen bonds between the 

surrounding residues and the pteridine ring system, the dimethylbenzene ring, and the ribose chain. This 

fact nicely illustrates the capability of RNA to make specific molecular interactions with a wide variety of 

functional groups and ligand surfaces.3  

 

Figure 1 Examples of RNA-binding small molecules 

When targeting RNA, the question arises which targets are best suited for drug discovery and where in 

chemical space to look for potent ligands. Analysis of RNA-binding small molecules has revealed that some 

RNA ligands have drug-like properties comparable to FDA approved drugs while others lie outside this 
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space.4,15 Warner et al. have argued that RNA targets that bind such drug-like molecules and are thus 

deemed to be “ligandable” hold the greatest promise.3 Consequently, tools are needed to identify such 

targets. 

Targets are commonly considered to be “ligandable” or “druggable” if they possess binding sites that allow 

them to bind orally bioavailable drugs with high affinity.16,17 The terms to name such pockets are hotly 

debated and several alternative terms such as “bindability”, “tractability” or “chemical tractability” have 

been proposed.17 We will use the term “druggability” throughout this manuscript because it is the prevalent 

term used in literature. Druggability is not an absolute property and for other pockets potent drugs can be 

developed, albeit larger efforts might be required. According, we will label pockets that are not classified 

to be druggable as “less-druggable”.  

Over the last few years, several methods have been reported that are able to segregate druggable pockets 

from less-druggable ones based on the 3D structure of the binding site.17 Typically, these methods use 

descriptors describing the hydrophobicity, size and shape of the pockets to classify the them using machine 

learning methods. As training and validation sets, protein pockets that have been assigned to either category 

are used. One of these methods, the DLID (drug-like density) measure,18 has also been applied to analyse 

RNA pockets. DLID uses PocketFinder19 to identify potential binding sites and the descriptors volume, 

buriedness and hydrophobicity to estimate how likely a pocket is to bind a drug-like molecule. Warner et 

al. used this approach to illustrate the diversity of selected RNA binding sites.3 Hewitt et al. conducted a 

comprehensive analysis of RNA structures in the PDB using the same method and concluded that many 

RNAs contain pockets that are likely suitable for small molecule binding.20 However, they did not 

distinguish between the binding of drug-like ligands and other molecules. 

In our group, we have developed DrugPred as a structure-based druggability prediction method.21,22 

DrugPred describes the size and shape of the binding site using a “superligand” as a negative print, which 

is obtained by merging predicted binding modes of drug molecules that were docked into the pocket using 

only steric constraints. Descriptors encoding polarity and size of the pocket are subsequently calculated 

based on the superligand and used to predict the druggability of the binding site. DrugPred was trained and 

validated on a set of non-redundant druggable and less druggable protein binding sites (NRDLD) which 

has become a standard in the field. In comparison studies, DrugPred performed at least equally well than 

other methods and achieved an accuracy of about 90%.21,23,24 

Here, we adopted DrugPred for druggability predictions of RNA binding sites. One of the original DrugPred 

descriptors is the hydrophobicity indices of the amino acids lining the binding site.21,25 As this descriptor 

cannot be calculated for RNA pockets, we have implemented alternative descriptors and re-trained the 
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predictor, and thus made a prediction software which is applicable to bot,h protein and RNA binding sites. 

Compared to the protein field, there is very little data about ligands binding to RNA, and even less data that 

can be accessed in an efficient way. The NALDB and SMMRNA databases contain affinities of small 

molecules binding to RNA extracted from the literature.26,27 However, it is not possible to download the 

data for further processing. The R-BIND database links binding data also to RNA crystal structures, but for 

only five of the ligands in this database a complex structure is available in the Protein Data Bank 

(PDB).28Due to the paucity of suitable data, we opted to train and validate our modified DrugPred model, 

which we termed DrugPred_RNA, on protein data. Subsequently, DrugPred_RNA was used for 

druggability predictions of RNA structures including the ribosome. In the following, we present the 

construction of DrugPred_RNA together with its validation on protein and RNA binding sites. 

Methods 

Scripts to download crystal structures from the PDB, process them and to calculate ligand and binding site 

descriptors were written using Python 3.6.8. with the Biopython (1.73) and RDKit (2019.09.1) libraries.29,30 

NRDLD set for training and validation 

As training and test set, our non-redundant set of druggable and less druggable binding sites (NRDLD) with 

the most recent modifications was used.21,22 The binding sites were carved out of the cif-files downloaded 

from the PDB by keeping all protein residues with an atom within 15 Å of the ligand. The isolated binding 

sites together with co-factors and metal ions if present were saved in the PDB format and used for descriptor 

calculation as described below. 

Descriptor calculation 

A superligand as a negative print of the binding site was obtained as done previously with minor 

modifications.21 In brief, a set of approved drug molecules was docked into the pockets using DOCK 3.6.31 

Since the aim of docking was solely to obtain information about the shape and the volume of the binding 

sites, all receptor atoms were set to carbon atoms and assigned a partial charge of 0. Subsequently, 

compounds for which a docking pose were obtained and for which the ratio of van der Waals (VDW) score 

to number of heavy atoms was ≤−1.3 were merged into a superligand. Only the atoms adhering to all of the 

following criteria were retained during this process: 1) the atom had to be a non-hydrogen atom 2) at least 

two atoms coming from different docked compounds had to be closer than 1.2 Å 3) only one of the atoms 

within 1.2 Å from other atoms was kept in the final superligand. If no docked ligands passed these filters, 

the ligand contained in the complex structure was used as superligand. 

Based on the superligand, binding site and buried superligand atoms were determined. For that purpose, 

using FreeSASA32 as implemented in RDKit, the solvent accessible surface area (SASA) of each receptor 
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and superligand atom in the superligand-bound and superligand-free state was calculated using a 1.0 Å 

probe radius and ProtOr radii33. All receptor atoms for which the SASA differed between superligand-

bound and unbound state were assigned as being binding site atoms. Likewise, all superligand atoms for 

which the SASA changed between the free and complexed state were assigned as buried superligand atoms 

and all superligand atoms with SASA> 0 Å in the unbound state were assigned as superligand surface 

atoms.  

Using superligand and binding site atoms as input, descriptors describing the size, shape and polarity of the 

pocket were calculated (Table S1). For shape descriptors that are not based on the surface area or the number 

of receptor or superligand atoms, the Descriptors3D module of RDKit was used. For calculating polarity 

descriptors, we considered all carbon, phosphor, and sulphur atoms in addition to nitrogen atoms of the 

bases that are bound to the ribose to be hydrophobic and all oxygen atoms of amino acids, ribose sugars 

and phosphate groups in addition to non-aromatic nitrogen atoms of amino acids to be polar. The SASA 

values of these atoms were calculated with FreeSASA using the same settings as described above. The side 

chains of histidine and tryptophane residues as well as the RNA bases are known to form hydrogen bonds 

in the plane of the heterocycles while parallel to this plane they engage in pi-stacking interactions which 

are more hydrophobic in nature. To account for this ambivalent behaviour, the SASA of endocyclic 

aromatic nitrogen atoms of bases and amino acid side chains and exocyclic oxygen and nitrogen atoms of 

the bases was split into a hydrophobic and a polar contribution in the following way. The SASA of these 

atoms was calculated both in the absence (SASA_total) and the presence (SASA_pol) of two blocking 

carbon atoms which were placed perpendicular to the plane of the aromatic ring with a 1.70 Å distance 

from the atom of interest. The area SASA_pol was considered to belong to a polar atom while the difference 

SASA_total – SASA_pol was considered to belong to a hydrophobic atom. Similarly, if more than half of 

an atom’s SASA value considered to be hydrophobic area, the atom was included in the hydrophobic 

binding site atom count. 

Training the predictive model using decision trees 

Machine learning was carried using the decision tree algorithm eXtreme Gradient Boosting package 

(XGBoost)34 in R35. As learning objective, logistic regression for binary classification with output 

probability was used. Thus, all binding sites obtained a score between 0.0 and 1.0, whereas pockets with a 

score ≥ 0.5 were labelled druggable and pockets with a score < 0.5 were labelled as less druggable. 

Divergent from the default settings, the following parameters were used for training the model:  

− Max_depth = 3 (Maximum depth of trees) 

− Scale_pos_weight = 0.59 (Adjusts for the skewness between training and testing set) 
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− Early_stopping_rounds = 20 (Validation metric needs to improve at least once in every 30 rounds 

to continue training.). 

The influence of the descriptors on the model was evaluated with the help of Shapley Additive Explanation 

(SHAP) values as implemented in the SHAPforxgboost package.36,37 The same package was also used to 

make Figure 2. Descriptors included in the final model were chosen by iteratively removing the least 

impactful descriptors until the predictive performance of the model was negatively affected. To further 

assess the robustness of the final model (called DrugPred_RNA), leave-one-out-cross validation was carried 

out yielding a training and testing error of 0.00342 and 0.127, respectively. 

Assembly of RNA containing data sets 

We selected RNA structures for druggability assessment by querying the PDB for structures containing 

only RNA and ligands (accessed November 2019). In addition, the PDB was searched for entries containing 

ligands and the keyword riboswitch to include structures which were excluded in the first query due to the 

presence of proteins. In total, this yielded 1084 structures. Subsequently, all structures that contained 

ligands that were detergents, buffer salts or crystallization components were filtered out reducing the data 

set to 427 unique entries (Table 1, see supplementary material for three letter codes of filtered out ligands). 

If a crystal structure contained several instances of the same ligand, only the first instance was retained. In 

addition, all metal ions and water molecules were deleted. This resulted in 465 distinct binding sites 

spanning 224 unique ligands. A second variant of this set was also prepared. In this variant, metal ions 

which were not more than 5 Å away from a ligand atom were retained. If a binding site contained several 

metal ions, several copies of the binding sites each of them containing one of the metal ions were prepared. 

This variant contained 343 entries. In the following, the first variant is called the metal-free and the second 

variant the metal-containing set. Further, a data set containing ligand binding sites in ribosome crystal 

structures was compiled by querying the PDB for structures that contained “ribosome” as keyword. These 

structures were treated as described above. In addition, the ligands were visually inspected to remove buffer 

components that had slipped the filter rules. This resulted in 731 binding sites in the metal-free ribosome 

set and 732 in the metal-containing set. 
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Table 1: Data sets of RNA and ribosomal binding sites for assessing DrugPred_RNA. 

 RNA data set Ribosome data set 

 Total Metal-free 

entries 

Metal- 

containing entries 

Total Metal- free 

entries 

Metal- 

containing entries 

Unique PDB IDs 427   590   

Binding sites 

containing small 

molecule ligands 

808 465 343 1463 731 732 

Unique ligands 224   247   

Druggable 

entries 

298 172 126 356 215 141 

 

The binding sites were carved out of the original cif-files by keeping all RNA residues with at least one 

atom within 15 Å of the ligand and potentially metal ions. The isolated binding sites were saved in the PDB 

format and used for descriptor calculation as described above.  

Binding site similarity consensus scoring 

To investigate the robustness of DrugPred-RNA, binding sites were grouped based on binding site 

similarity. First, the binding site sequence of each pocket was generated by including all residues that 

contained at least one binding site atom (identified as described above) in ascending order while for 

modified nucleic residues the name of the corresponding unmodified residue was used. Subsequently, all 

binding site sequences were pairwise aligned using BioPython and the global alignment similarity was 

calculated. If this value was > 85% the pockets were assigned to the same family. As done previously, the 

consensus of the druggability predictions within each family (C) was calculated using the formula 

𝐶 =  
|𝑛𝑑 − 𝑛𝑙𝑑|

𝑁
× 100% 
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where nd is the number of druggable binding sites within the family, nld is the number of less druggable 

binding sites N is the total number of family members.22  

Results 

Construction of DrugPred_RNA 

Compared to protein data, there is very little data about ligands binding to RNA and a data set of sufficient 

size composed of druggable or less druggable RNA bindings sites to train a druggability predictor could 

not be compiled. Therefore, we opted to predict the druggability of RNA binding sites by training a 

descriptor on protein binding sites and to subsequently apply it to the prediction of RNA pockets. This 

approach required that only descriptors that can be calculated both for protein and RNA binding sites were 

used. This was not the case for our previously derived DrugPred model, as it contained the two descriptors 

“relative occurrence of hydrophobic amino acid” and “hydrophobicity indices of the amino acids”.21 Thus, 

a modified DrugPred model, termed DrugPred_RNA was derived. As training and test set, our non-

redundant set of druggable and less druggable binding sites (NRDLD) with the most recent modifications 

was used.21,22 For all 110 binding sites in the NRDLD, 23 descriptors describing the size, shape and polarity 

were calculated (Table S1). Subsequently, the data set was divided into a training and test set as done 

previously22 to train and evaluate a predictor. For DrugPred and DrugPred 2.0, partial least squares-

discriminant analysis (PLS-DA) was used to model the data. However, using only protein-independent 

descriptors with PLS-DA resulted in worse predictions (data not shown). Therefore, we retreated to decision 

tree modelling based on XGBoost.34 To avoid overfitting, the maximum depth of trees was limited to 2 and 

the early stopping option was used (Figure S 1). In an iterative process, weak descriptors were removed 

until the predictive performance of the model was negatively affected. With the final model, termed 

DrugPred_RNA, of the 75 binding sites in the training set, 1 druggable pocket was misclassified as less 

druggable, and of the 35 binding sites in the validation set, 4 were misclassified (2 false positives and 2 

false negatives) leading to accuracy, precision and recall values between 0.85 and 1.00 (Table 2 and Figure 

S2). With DrugPred_RNA, the error in the test set is slightly better than with DrugPred 2.0 while the error 

for the training set is slightly worse.  

  



9 

 

The influence of the descriptors on the model output was evaluated with the help of Shapley Additive 

Explanation (SHAP) values which describe the importance of each descriptor on the model’s output taking 

into account the interaction with other descriptors.36,38 Each descriptor for each data point (here, a particular 

binding site) is assigned a positive or negative SHAP value describing the contribution of the descriptor to 

the model output (here, druggable or less druggable) for that data point. The mean SHAP value formed by 

all SHAP values for a descriptor for the entire data set indicates the importance of the descriptor for the 

model (the larger the absolute mean SHAP value, the more important the descriptor, Figure 2A). For 

DrugPred_RNA, positive SHAP values imply high druggability probability, while negative SHAP values 

imply low druggability probability. Further, by plotting the individual SHAP values for a descriptor against 

the descriptor values, it becomes evident which descriptor values contribute positively or negatively to the 

model (Figure 2B). The sum of the SHAP values of all descriptors for a single data point indicates the 

direction of the prediction.  

 

 

 

Table 2: Performance of DrugPred_RNA and DrugPred 2.0 on the training and test set of the NRDLD 

 Training set [druggable / less druggable] Test set [druggable / less druggable] 

 
DrugPred_RNA DrugPred 2.0 DrugPred_RNA DrugPred 2.0 

Accuracy 0.99 0.91 0.91 0.94 

Precision 1.00 / 0.97 0.92 / 0.89 0.95 / 0.86 0.95 / 0.93 

Recall 0.98 / 1.00 0.94 / 0.86 0.91 / 0.92 0.95 / 0.93 
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The final DrugPred_RNA predictor was based on 12 descriptors (Figure 2A, Table S1). According to the 

SHAP values, the two most important descriptors were the relative polar surface area (psa_r, absolute mean 

SHAP value = 1.46) and the fraction of hydrophobic binding site atoms (fr_hpb_atoms, absolute mean 

SHAP value =  0.63), which both describe the polarity of the binding site. As expected, druggable binding 

sites were less polar than less druggable sites (Figure 2B and Figure S 3). Both the high-ranking descriptor 

fr_buried_sl_atoms (absolute mean SHAP value = 0.34) and the less important descriptor sa_vol_r 

(absolute mean SHAP value = 0.09) encode how compact a pocket is with less druggable pockets being 

more shallow (lower descriptor values for fr_buried_sl_atoms and higher values for sa_vol_r) than 

druggable ones. Further, two descriptors for the solvent accessibility of the pocket (exp_sl_sa, absolute 

mean SHAP value = 0.22 and sl_bs_r, 0.19) were included in the final model. Here, it was found that 

druggable binding sites were less solvent accessible than less druggable ones. The descriptor hsa was also 

found to be among the more important ones (absolute mean SHAP value = 0.30). This descriptor describes 

size of the surface area of hydrophobic binding site atoms and correlates roughly with the size of the pocket. 

Other descriptors describing the size of the pocket were also included in the model but had less influence 

on the predictions (no_bs_atoms, absolute mean SHAP value = 0.17, and no_sl_atoms, 0.20). In agreement 

with previous findings, druggable pockets were larger and more hydrophobic than less druggable ones. The 

descriptors InertialShapeFactor, SpherocityIndex and PMI3 describing the shape of the superligand as a 

negative print of the binding site were also included in the final model. Pockets with a superligands with a 

Figure 2: SHAP values for the DrugPred_RNA model. A) Absolute mean SHAP values ranked from 

highest to lowest impact on the model’s output. B) Individual SHAP values for each pocket in the training 

set for the top six descriptors in the model plotted against the descriptor values. Locally estimated 

scatterplot smoothing (LOESS) curves are overlaid on the descriptor observations (black dots). The 

midpoint in each curve indicates the cut-off value from where the model’s prediction changes the direction. 

The plots for the reaming descriptors are displayed in Figure S 3. 
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larger third moment of inertia (PMI3, absolute mean SHAP value = 0.27) and which were less spherical  

(SpherocityIndex, absolute mean SHAP value = 0.08, InertialShapeFactor, absolute mean SHAP value  =  

0.08 ) were more likely to be assessed as druggable, albeit the latter two descriptors were determined to be 

less important. 

Druggability predictions for RNA containing binding sites 

Encouraged by the good performance of DrugPred_RNA on the NRDLD, we proceeded with druggability 

predictions for RNA and ribosomal binding sites. No benchmark set for the evaluation of RNA druggability 

predictions is available in the public domain. Therefore, using the PDB, we compiled two data sets for this 

purpose, one containing RNA only binding sites and one with ribosome binding sites which in addition to 

ribosomal RNA could also contain ribosomal proteins. As binding sites, we considered all pockets that 

contained a ligand that is not a common crystallization buffer component. If a binding site contained metal 

ions within 5 Å of the ligand, several copies of the binding sites each of them containing one of the metal 

ions in addition to the metal-free pocket were prepared. In total, the RNA binding site set was composed of 

427 unique PDB IDs spanning 808 binding sites (464 metal-free and 343 with metal ions, Table 1). 224 

different ligands were found in these pockets. The binding sites were grouped into different families 

whereas family members were required to have a binding site sequence similarity of > 85%. This resulted 

in 46 different families in the RNA set (Table S2). The ribosomal binding site set was prepared in a similar 

fashion resulting in 590 unique PDB IDs with 731 pockets in the metal-free and 732 in the metal-containing 

subset. 247 different ligands were bound to these pockets and they were grouped into 66 different families. 

Subsequently, the druggability of the pockets in all sets was predicted. In the RNA data set, 36% of the 

binding pockets (metal-containing and metal-free combined) were predicted to be druggable while in the 

ribosomal data set 24% of the pockets were predicted to be druggable . 

To assess the impact of metal ions on the druggability prediction, we compared the predictions of metal-

free and metal-containing versions of same parent pocket. In both sets, for the majority of the cased no 

change in the prediction outcome was found, regardless if there were metal ions present in the binding site 

or not. Accordingly, metal ions had only a very minor influence on the prediction outcome. In the following, 

we therefore only present data for pockets which were stripped of metal ions. 

Assessment of druggability predictions on RNA-containing binding sites 

Next, the quality of the predictions of DrugPred_RNA on RNA-containing binding sites was evaluated. 

The following aspects were considered for the evaluation 1) the agreement of the predictions with anecdotal 

examples, 2) the extent to which binding sites which are known to efficiently bind drug-like ligands were 
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predicted to be druggable, and 3) the robustness of predictions with respect to substitutions and 

conformational changes in the binding sites.  

For this assessment, the drug-likeness of the ligands was predicted using the quantitative estimate of drug-

likeness (QED) score.39 This score weighs multiple molecular features (e. g. molecular weight, number of 

hydrogen bond donors or acceptors, polar surface area, presence of unwanted functionalities) into one single 

unitless score, which ranges from 0 (undesirable) to 1 (desirable). Albeit this metric does not provide a clear 

cut-off to distinguish “desirable” from “undesirable” compounds, the authors denoted a mean score of 0.67 

for attractive compounds, 0.49 for less attractive and 0.34 for too complex and unattractive compounds. 

Accordingly, in the following we classified compounds with a QED score ≥0.67 as drug-like, with a QED 

score ≤0.49 as less drug-like and compounds with a score in between as moderate drug-like.  

Further, for a binding site to be druggable, it needs to bind drug-like ligands potently.16,17 Thus, if a potent 

drug-like ligand is known, one can with certainty say that a binding site is druggable. However, the absence 

of a potent ligand does not necessarily imply that a binding site is less druggable as there is always the 

possibility that a ligand can be optimized to increase its binding affinity. To take this into account, we used 

ligand efficiency(the binding energy normalized by the number of heavy atoms, LE) instead of binding 

affinity  as a measure to judge if a ligand binds potently to its target.40 Under the assumption that the ligand 

efficiency stays at its best constand during optimization, we considered ligands to bind potentilly to their 

target if they have a LE of around 0.30 kcal⋅mol-1⋅heavy atom-1 which translates to low nanomolar binding 

affinities of compounds with a molecular weight of maximum 500 Da. If no such ligand is known, we 

abstained from classifying a binding site on a general basis. 

Evaluation of the performance of DrugPred_RNA based on anecdotal examples 

Linezolid is an FDA approved antibiotic targeting the 50S ribosomal subunit (Figure 1).8 Based on its QED 

score of 0.89, it is highly drug-like. Its modest affinity of 20 µM translates to a ligand efficiency (LE) of 

0.27 kcal⋅mol-1⋅heavy atom-1. The binding site detected by DrugPred_RNA encompasses linezolid. 

Linezolid is deeply buried in the pocket and forms mainly hydrophobic contacts in addition to a hydrogen 

bond to the ribose backbone of G2540 (Figure 3A). DrugPred_RNA predicted this pocket to be druggable. 

According to the individual SHAP values of the descriptor values, the druggability was driven by a low 

relative polar surface area (psa_r = 0.29), a large third moment of inertia (PMI3 = 11.7 x 10), and a large 

size (hsa = 748 Å2). These descriptors outweighed the fraction of hydrophobic atoms (fr_hpb_atoms = 

0.49), the exposed surface area of the superligand (exp_sl_sa  = 294 Å2) and the superligand atom/binding 

site atom ratio (sl_bs_r = 1.2) which were in a range more frequently associated with less druggable pockets. 

Based on the binding mode of linezolid and the fact that linezolid is a drug-like ligand the prediction that 
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this binding pocket is druggable appears to be sensible, despite the ligand not binding as potently as 

expected for a drug.  
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Figure 3: Evaluation of the performance of DrugPred_RNA based on anecdotal examples. The RNA 

backbones are shown as orange tubes, nucleobases as thin sticks with carbon atoms coloured pink and 

ligands as thick sticks with carbon atoms in green. The surface of the superligand created by 

DrugPred_RNA as a negative print of the pocket is shown as blobs with the solvent exposed surface 

area coloured grey and the remaining surface area coloured blue. Hydrogen bonds are indicated as 

dotted black lines. For each pocket, the individual SHAP values for the six most important descriptors 

together with the descriptor values are also displayed. The SHAP value plots are labelled with the PDB 

codes and the three letter codes of the ligands found in each pocket. A) The binding site of linezolid in 

the 50S ribosomal subunit. B) Ribocil bound to the FMN riboswitch. C) TAR RNA complexed with 

acetylpromazine. D) Guanine bound to the guanine riboswitch. E) Lysine in the binding site of the 

lysine riboswitch. F) Splicing site complexed with a splicing site modifier. G) Paromomycin bound to 

a bacterial ribosome site.  

The FMN riboswitch has been validated as a target for the antibiotic compound ribocil, a drug-like small 

molecule (QED score = 0.71, Figure 1).13 The affinity for ribocil (KD = 13 nM) is driven by hydrogen 

bonding with the base of A99 and the ribose group of A48 as well as stacking interactions with A85, A49 

and, G62 (Figure 3B).41 The binding site was rather deep (fr_buried_sl_atoms = 0.35) and characterized by 

a low relative polar surface area (psa_r = 0.33), a large the fraction of hydrophobic atoms (fr_hpb_atoms = 

0.74), a rather large size of the hydrophobic contact surface area (hsa = 730 Å2) and a large third principal 

moment of inertia (PMI3 = 10.6 x 104). These values drove the site to be predicted as druggable despite its 

spherociity index lying in the less druggable range (SpherocityIndex = 0.41). This agrees with the site 

binding drug-like ligands like ribocil with high ligand efficiency (LE = 0.41 kcal⋅mol-1⋅heavy atom-1). 
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A known ligand for the HIV-1 trans activating region (TAR) RNA is the drug acetylpromazine (QED = 

0.85, Figure 4).42 Developed for a different target, the compounds binds only with moderate affinity and 

efficiency to TAR RNA (KD = 270 µM, LE =  0.22 kcal⋅mol-1⋅heavy atom-1).43 In the structure of the 

complex, the ligand forms stacking interactions with U25 and U40 (Figure 3C). DrugPred_RNA predicted 

the ligand binding site to be druggable. As with the examples above, the classification was driven by a large 

fraction of hydrophobic atoms (fr_hpb_atoms = 0.78),  the depth of the pocket (fr_buried_sl_atoms = 0.41), 

the high proportion of the superligand atoms to binding site atoms (sl_bs_r = 1.4) and the large third 

moment of inertia (PMI3 = 46.5 x 103). These properties overcame the high solvent accessibility (exp_sl_sa 

= 508 Å2), and the relative high polarity of the binding site (psa_r = 0.39). More potent ligands for HIV 

TAR RNA are also known albeit structural information about their binding modes is lacking. Examples are 

a drug-like screening hit (QED = 0.72) and furimidazoline (QED = 0.72) which have affinities of 230 nM 

and 1 µM, resp. translating to LEs of 0.33 and 0.31 kcal⋅mol-1⋅heavy atom-1 (Figure 4).44,45 Assuming that 

these ligands bind into the same pocket as acetylpromazine, the prediction that this pocket is druggable 

appears to be reasonable.  

Ligands binding to the guanine and lysine riboswitch have been shown to act as antibiotics.46,47 In both 

cases, the pockets are rather small and almost fully enclose the natural ligands (Figure 3D and E). Structure-

activity relationships (SAR) are very tight and only small modifications of the ligands are possible without 

losing binding affinity. DrugPred_RNA predicted these pockets to be less druggable which agrees with the 

SAR data. The predictions of the pockets were driven by their low relative polar surface areas (psa_r = 

0.16 and 0.39, resp.), their lack of a sufficiently large hydrophobic surface area (hsa =109 Å2 and 98 Å2, 

resp.), small third principal moments of inertia (PMI3 = 357 and 8380, resp.), their shallowness 

(fr_buried_sl_atoms = 0.0 in both cases), and their small size (no_bs_atoms = 37 and 59, no_sl_atoms = 8, 

13, resp.). 

Splicing modifiers for the treatment of spinal muscular atrophy are currently in clinical trials.9,10 In our data 

set, the ligand SMN-C5 was included (Figure 3F). This ligand is moderate druglike (QED = 0.55) and has 

Figure 4: Ligands of HIV-1 TAR RNA 
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a binding affinity of 28 μM translating to a LE of 0.22 kcal⋅mol-1⋅heavy atom-1 for its target RNA. In the 

NMR structure, the flat ligand is lying in a highly solvent exposed binding site. DrugPred_RNA predicted 

this binding site to be less druggable. The prediction was due to the pocket being polar (psa_r =  0.46, hsa 

= 120 Å2), shallow (fr_buried_sl_atoms = 0.11), and having an undesirable shape (sl_bs_r =0.75, PMI3 = 

8.38 x 103). The druggability prediction appears to be reasonable based on the properties of the pocket, 

especially the high solvent exposure, but not on the fact that splicing modifiers are currently in clinical 

trials. This discrepancy is probably caused by the compounds binding in vivo to a ribonucleoprotein-RNA 

complex with a still unknown structure.48 Thus, the biological relevant pocket of this type of compounds 

could not be included in our study. 

One class of FDA-approved ribosome binding antibiotics are aminoglycosides. These are relatively polar 

natural products which break the rule of 5 for drug-like compounds.49 One example of an aminoglycoside 

is paromomycin which acts by binding to the 16S ribosomal RNA (Figure 3G). Its low QED score of 0.11 

is in agreement with the poor bioavailability of this compound class and the fact that aminoglycosides get 

into the bacteria by active transport.50 In the complex of paromomycin bound to the ribosome of T. 

thermophilus, the ligand forms several hydrogen bonds with surrounding binding site residues and water 

molecules (not shown), with little to hydrophobic interactions. The terminal sugar ring in this ligand is 

located outside of the superligand created by DrugPred_RNA, suggesting that this area is a less optimal for 

ligand binding. The SHAP values suggested that despite the depth of the pocket being in a range beneficial 

for druggable sites (fr_buried_sl_atoms = 0.40), the lack of hydrophobic atoms (fr_hpb_atoms = 0.45), the 

large polar surface area (psa_r = 0.48), the solvent-exposure (exp_sl_sa = 354 Å2) combined with a less 

ideal shape (InertialShapeFactor  = 1.10x10-4, sl_bs_r = 1.2, ) contributed to the pocket being predicted as 

less druggable. This prediction agrees with the nature of the known ligands. 

Overall, the results for the selected anecdotal examples looked very promising. The predictions of 

DrugPred_RNA generally agreed with what one would await based on the physico-chemical properties and 

binding efficiencies of known ligands. As expected, pockets predicted to be druggable were generally larger 

and more hydrophobic while the less druggable sites among the selected examples were more polar and 

solvent exposed Encouraged by these results, we went on to investigate the performance of DrugPred_RNA 

on a broader level. 

Assessment of RNA-containing pockets binding drug-like ligands 

In the next step, we investigated if the drug-like ligands contained in our RNA test sets bound to pockets 

predicted to be druggable. In total, the sets contained 331 unique ligands which 22 of them having a QED 

score ≥ 0.67. Four of these ligands were found in the binding site of the preQ1 riboswitch. Upon closer 

inspection of these pockets it became evident that some of the bases in these structures were not resolved. 
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These pockets were therefore not further considered. Out of the remaining ligands, 12 (67%) were found in 

binding sites assessed by DrugPred_RNA as druggable (Table S 4) and 6 (23%) in binding sites assessed 

to be less druggable (Table S 5). As only 16 % of all metal-free binding sites were predicted to be druggable, 

the drug-like ligands were clearly enriched in druggable binding sites. 

For 11 out of the 12 drug-like ligands binding to pockets predicted to be druggable, we could find binding 

data in the literature. Based on this data, 9 ligands bind efficiently to their target with LEs > 0.30 kcal⋅mol-

1⋅heavy atom-1 hinting that these pockets are indeed druggable. The two remaining ligands were linezolid 

with the 50S ribosomal subunit as target and acetylpromazine binding to HIV-1 TAR RNA. For the reasons 

discussed above, these pockets also appear to be druggable. Thus, all druggability predictions for the 

pockets binding the 11 drug-like ligands with known binding data appear to be sensible. 

On the other hand, 6 drug-like ligands were found in pockets predicted to be less druggable (Table S 5). 

For 5 of them we could retrieve affinity data in the literature and all of these bind rather efficiently to their 

targets (LE ≥ 0.29 kcal⋅mol-1⋅heavy atom-1). Three of these ligands are fragments binding to the TPP 

riboswitch, one ligand binding the influenza A virus promoter region, and one a ligand for the Spinach 

aptamer. The TPP riboswitch contains a rather large and partially buried binding site (Figure 5). Several 

other examples of this pockets with slightly different binding site conformations were also contained in the 

set (Figure 5c). Some of them were predicted to be druggable, discussed in more detail below. That the TPP 

riboswitch binding site conformation binding efficiently the drug-like fragments were predicted to be less 

druggable can be considered a false negative prediction. The drug-like ligand of the to influenza A promoter 

region sits on the surface of the RNA molecule and is almost entirely solvent exposed (Figure 6). It is highly 

unusual that a ligand with such a binding mode bind that efficiently (LE = 0.29 kcal⋅mol-1⋅heavy atom-1). 

However, the structure of the complex has been determined by NMR and it is possible that the resolution 

of the structure is not accurate enough to reveal the actual details of the binding mode.51 The Spinach 

aptamer binds a small molecule dye, DFHBI, which forms hydrogen bonding and pi-stacking interactions 

in the binding site (Figure 7). The top six SHAP-values for this entry showed that while the fraction of 

hydrophobic atoms (fr_hpb_atoms = 0.8) and the hydrophobic surface area value (hsa = 409 Å2) were in a 

range that is favorable for druggable binding sites, the shallow shape of the pocket (fr_buried_sl_atoms = 

0.17, sl_bs_r = 0.79), combined with the solvent exposure (exp_sl_sa = 376 Å2) and the high relative polar 

surface area (psa_r = 0.38) drove the site to be predicted as less druggable. Considering the drug-likeness 

of the ligand together with its efficient binding, this prediction can be considered to be a misclassification 

by DrugPred_RNA. Taken together, the druggability predictions for the TPP riboswitch pockets binding 

the fragments and the Spinach aptamer were likely false negatives, while the prediction for influence A 

promotor region appeared to be sensible. This could point to DrugPredRNA having a tendency to 
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misclassify druggable binding sites as less druggable. However, the investigated data set was too small to 

conclude firmly on this. 
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Figure 5: Druggability predictions for TPP riboswitch binding sites. The flexible residue G72 is highlighted 

in all figures. A) The TPP riboswitch binding site (PDB ID 4nyc) in complex with a fragment screening hit 

(green sticks) and the superligand generated by DrugPred_RNA (blob, with solvent-exposed areas colored 

grey, remaining blue). B,D) The six descriptors with the highest SHAP values for 4nyc_SVN (B) and 

4nyg_VIB (D). C) The TPP riboswitch binding site (PDB ID 4nyg) in complex with thiamine (VIB). E) 

Superposition of all E. coli TPP riboswitch binding sites. Entries predicted as druggable are colored  in green 

and as less druggable in red. The conformations of the residue G72 influences the prediction outcome. 
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Figure 6: Binder of influenza A promoter region (PDB ID 2lwk). The surface of the superligand created by 

DrugPred_RNA as a negative print of the pocket is shown as a blob with the solvent exposed surface area 

coloured grey and the remaining surface area coloured blue. 

Figure 7: a) The Spinach aptamer (PDB ID 5ob3, orange thick and thin lines) bound to the dye DFHBI 

(green sticks). The surface of the superligand created by DrugPred_RNA as a negative print of the pocket 

is shown as a blob with the solvent exposed surface area coloured grey and the remaining surface area 

coloured blue. B) Individual SHAP values for the six most important descriptors together with the 

descriptor values obtained by DrugPred_RNA. 
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Assessment of the robustness of the druggability predictions 

Further, we assessed the robustness of the predictions with respect to conformational changes and base 

composition of the binding sites. For that purpose, all binding sites with a sequence similarity >85% were 

grouped together resulting in 46 families in the RNA binding site set and 56 in the ribosome set. The 

families spanned between 2 and 23 members in the RNA dataset (Table S2) and 2 and 56 in the ribosomal 

set (Table S3). Subsequently, the consensus of the predictions for each family was calculated. The 

consensus was defined as (100*|#druggable binding sites - #less-druggable binding sites|)/(total number of 

predictions).22 Thus, 100% consensus would be obtained if all pockets in one family were predicted to 

belong to the same class (druggable or less druggable) and 0% if one half of the pockets was predicted to 

belong to one class and the other half to the other class. In the RNA set, for 74% of all 46 evaluated families, 

a consensus of 80% or more was obtained. Out of those, 22 families were predicted to be less druggable 

with a consensus score of 100% while 7 families were predicted to be druggable with a consensus score 

≥80%. In the ribosome set, 75% of the 52 families had a consensus score of ≥80% whereas 21 of these 

families were predicted to be druggable and the remaining ones to be less druggable. Thus, in most cases 

using different crystal structures of the same or a related pocket did not change the outcome of the 

prediction. 

The TPP riboswitch family containing pockets from 16 distinct PDB entries, obtained a low consensus 

score of 12.5% with the majority of the pockets predicted as less druggable (Table S2). Superimposing the 

pockets, it became evident that there is some plasticity in the binding sites (Figure 5c). One guanine residue 

(G72 in the E. coli TPP riboswitch) can adopt several conformations depending on the bound ligand leading 

to considerably differentsuperligands (Figure 5a and b). Consequently, the pockets differ in compactness 

(fr_buried_sl_atoms, sl_bs_r) and solvent exposure (exp_sl_sa). Some of the binding site  conformations 

were  predicted to be druggable and others less druggable (Figure 5C). No distinct pattern emerged of which 

conformation was favored but it became evident that a position which hindered the size of the superligand 

was unfavorable. 

Conclusion 

RNA is an emerging target for drug discovery.3–6 However, like for proteins, not all RNA binding sites are 

equally suited to be addressed with conventional drug-like ligands. To identify pockets that are primed to 

potently bind such ligands we have developed the structure-based druggability predictor DrugPred_RNA. 

Due to the paucity of annotated RNA binding sites, the predictor was trained on a set of protein pockets, 

albeit containing only descriptors that can be calculated for both, RNA and protein binding sites. 

DrugPred_RNA performed comparable on the protein binding site set as our previous DrugPred 2.0 

predictor trained with slightly different descriptors (Table 2) In addition, druggability predictions of 
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DrugPred_RNA on selected anecdotal examples appeared to be sensible (Figure 3). Likewise, the majority 

of the drug-like ligands contained in our RNA binding site sets were found in pockets predicted to be 

druggable, further adding confidence to the DrugPred_RNA predictions (Table S 4and Table S 5). As 

observed before,21,52 using different conformations of a binding site could result in opposing druggability 

predictions (Table S2 and Table S3). However, for the majority of cases consistent predictions were 

obtained indicating that DrugPred_RNA is robust towards small changes in binding site conformations. 

Interestingly, many riboswitches were found among the binding site families that were predicted to be 

druggable (Table S2). This finding underlines the notation that these promising targets for new antibiotics 

could be addressed with drug-like ligands.3,12,20 Further, also in the ribosomal binding site set druggable 

pockets were contained (Table S3) which can help to direct efforts when targeting the ribosome for the 

development of drugs to overcome the looming antibiotic crisis.7,53 Collectively, DrugPred_RNA is a 

promising tool for structure-based druggability predictions of RNA binding sites that can be used to decide 

in which area of chemical space to search for ligands for a given binding site. 
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Tables 

Table S1: Descriptors to describe size, polarity, and shape of ligand binding sites together with mean SHAP 

values for descriptors included in the final model. 

Descriptor name Description Descriptor type 
Mean 

absolute 

SHAP value 

csa Sum of SASA of binding site atoms size NA 

psa Sum of SASA of polar binding site 

atoms 

polarity NA 

psa_r psa / csa polarity 1.46 

hsa Sum of SASA of hydrophobic binding 

site atoms 

polarity/size 0.30 

ali_sa_r Sum of SASA of aliphatic binding site 

atoms / csa 

polarity NA 

exp_sl_sa Sum of SASA of superligand atoms that 

are solvent exposed in the superligand-

receptor complex 

shape 0.224 

no_sl_atoms Number of superligand atoms size 0.202 

no_bs_atoms Number of binding site atoms size 0.167 

fr_buried_sl_atoms Number of atoms buried inside the 

superligand / number of superligand 

surface atoms 

shape 0.345 

fr_hpb_atoms Number of hydrophobic binding site 

atoms / no_bs_atoms 

polarity 0.629 

sl_bs_r no_sl_atoms / no_bs_atoms shape 0.193 

vol Volume of superligand size NA 

sa_vol_r Surface area of superligand / vol shape 0.0907 

PMI1 First principal moment of inertia shape/size NA 

PMI2 Second principal moment of inertia shape/size NA 

PMI3 Third principal moment of inertia shape/size 0.277  

NPR1 PM1 /PM3 shape NA 

NPR2 PM2 / PM3 shape NA 

Asphericity 

0.5

(𝑃𝑀3 − 𝑃𝑀1)2 + (𝑃𝑀3 − 𝑃𝑀1)2

+ (𝑃𝑀2 − 𝑃𝑀1)2

𝑃𝑀12 + 𝑃𝑀22 + 𝑃𝑀32  

shape NA 
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Eccentricity √𝑃𝑀32 − 𝑃𝑀12

𝑃𝑀32
 

shape NA 

SpherocityIndex 3 × 𝑃𝑀1

(𝑃𝑀1 + 𝑃𝑀2 + 𝑃𝑀3)
 

shape 0.0825 

RadiusOfGyration 

√2𝜋
𝑃𝑀3×𝑃𝑀2×𝑃𝑀1

3
 

𝑀𝑊
 

shape NA 

InertialShapeFactor 𝑃𝑀2

𝑃𝑀1 × 𝑃𝑀3
 

shape 0.0849  
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Table S2: RNA families based on binding site sequence similarity. For each family, a head with PDB ID 

and three letter code of the small molecule bound to the pocket are listed. The total number of family 

members and the consensus score are also given. The druggability column contains the prediction that 

the majority of the members in each family obtained.  

Family Head Description Members Consensus 

score 

Druggability 

1 2gis_SAM SAM-I RS 23 100.0 druggable 

2 1j7t_PAR Ribosomal binding site 17 41.2 less druggable 

3 1y26_ADE Adenine/Guanine RS 11 100.0 less druggable 

4 1o9m_42B 
Ribosomal binding site/ 

HIV-1 Kissing loops 
18 88.9 less druggable 

5 2yie_FMN FMN RS 16 100.0 druggable 

6 3ds7_GNG 
Purine/ 

deoxyguanosine RS 
8 50.0 less druggable 

7 4qk8_2BA c-di-AMP RS 10 45.5 less druggable 

8 3irw_C2E c-di-GMP RS 8 75.0 druggable 

9 2ho7_G6P glmS ribozyme 7 100.0 less druggable 

10 2cky_TPP TPP RS 16 12.5 Less druggable 

11 1i9v_NMY tRNA / Corn aptamer 4 100.0 less druggable 

12 3d0u_LYS Lysine RS 3 100.0 less druggable 

13 4ts0_38E Spinach aptamer 5 60.0 less druggable 

14 6qiq_J48 CAG repeats 3 100.0 druggable 

15 3e5c_SAM SAM-III RS 3 100.0 druggable 

16 4znp_AMZ pfI/ZTP/ZMP RS 3 33.3 druggable 

17 1byj_GE1 Ribosomal sites 5 100.0 less druggable 

18 3owi_GLY Glycine RS 3 100.0 less druggable 

19 
1aju_ARG 

HIV-2 Trans-Activating 

Region 
3 100.0 less druggable 

20 3suh_FFO THF RS 3 100.0 less druggable 

21 2ktz_ISH HCV IRES 3 33.3 less druggable 

22 6e8s_EKJ Mango aptamer 2 0.0 - 

23 6dmc_G4P ppGpp RS 2 100.0 druggable 

24 6c63_EKJ Mango-II aptamer 2 100.0 druggable 

25 5ny8_AGU Guanidine-III RS 2 100.0 less druggable 
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26 5eao_CVC Hammerhead ribozyme 2 100.0 druggable 

27 2oe5_AM2 Human ribosomal site 2 100.0 less druggable 

28 5ddp_GLN Glutamine riboswitch 2 100.0 less druggable 

29 2o43_ERN Ribosomal site 2 100.0 druggable 

30 4yaz_4BW cGAMP RS 2 100.0 druggable 

31 4qlm_2BA ydaO RS 2 100.0 druggable 

32 1nta_SRY Streptomycin-binding 

aptamer 
2 100.0 

less druggable 

33 5bjo_747 Corn aptamer 2 33.3 druggable 

34 4l81_SAM SAM-I/IV RS 2 100.0 druggable 

35 4k32_GET - 2 100.0 less druggable 

36 4jf2_PRF PreQ1-II RS 2 100.0 less druggable 

37 5ux3_8OS RNA hairpin 2 100.0 less druggable 

38 3td1_GET Protozoal cytoplasmic 

Ribosomal site 
2 100.0 

less druggable 

39 6dlq_PRP PRPP RS 2 100.0 druggable 

40 3sd3_FFO THF RS 3 100.0 less druggable 

41 6e1t_HLV PreQ1-I RS 2* 0.0 - 

42 3npn_SAH SAH RS 2 100.0 druggable 

43 1f1t_ROS Malachite green aptamer 2 100.0 druggable 

44 3gca_PQ0 PreQ1-I/PreQ0 RS 2* 100.0 less druggable 

45 3fu2_PRF PreQ1-I RS 2* 100.0 less druggable 

46 1eht_TEP Theophylline-binding RNA 2 100.0 druggable 
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Family Head Ligand Organism Members Consensus Druggability 

1 1k8a_CAI Carbomycin H. morismortui 13 100.0 Druggable 

2 1jzx_CLY Clindamycin D. radiodurans, 
T. thermophilus 

17 100.0 Druggable 

3 1fjg_PAR Paromomycin T. Thermophilus 56 41.9 Less druggable   

4 1j5a_CTY Clarithromycin D. radiodurans, 
T. thermophilus 

13 100 Druggable 

5 5jup_GDP GDP   S. cerevisiae  9 77.8 less druggable 

6 1ttt_GNP  GNP E. coli, T. 
aquaticus 

10 100.0 less druggable 

7 4wfa_ZLD Linezolid S. aureus 7 100.0 Druggable 

8 6ole_MVM PF846 H. sapiens 6 100.0 Druggable 

9 1j7t_PAR Paromomycin 16S rRNA 
Synthetic 
constructs 

9 11.1 Druggable 

10 1fjg_SRY Spectinomycin T. thermophilus 9 100.0 less druggable 

11 4u3u_3HE Cicloheximide S. cerevisiae 6 100.0 Druggable 

12 1ibk_PAR Paromomycin T. thermophilus 30 72.4 less druggable 

13 6gxm_GCP GCP E. coli 4 100.0 less druggable 

14 4wpo_GDP GDP T. thermophilus, 
E. coli 

6 100.0 less druggable 

15 3jap_GCP GCP K. lactis, S. 
cerevisiae 

4 100.0 less druggable 

16 3id5_SAM SAM/SAH S. solfataricus 4 50.0 Less druggable 

17 5zq0_SAH SAH S. pneumoniae 4 50.0 Druggable 

18 4v52_NMY Neomycin E. coli, t. 
thermophilus 

4 0.00 less druggable 

19 6hiv_GTP GTP T. brucei 3 33.3 Druggable 

20 4u3m_ANM Anisomycin S. cerevisiae 8 100.0 Druggable 

 

Table S3: Ribosomal binding site families based on binding site sequence similarity. For each family, a head with PDB ID and three letter code of the small 

molecule bound to the pocket together with its name are listed. The organism associated with the binding site, the total number of family members, and the 

consensus score are also given. The druggability column contains the prediction that the majority of the members in each family obtained. 
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21 1m90_SPS Sparsomycin H. morismortui, 
S. cerevisiae 

6 66.7 Druggable 

22 5jup_SO1 Sordarin S. cerevisiae 4 50.0 Less druggable 

23 6gaw_GSP GSP S. scrufa, H. 
sapiens 

3 100.0 less druggable 

24 5lzx_GCP GCP H. sapiens 3 100.0 less druggable 

25 3jct_GTP GTP S. cerevisiae 4 100.0 less druggable 

26 4wf1_NEG Negamycin E. coli 4 100.0 less druggable 

27 1kqs_PPU Puromycin H. morismortui 3 100.0 Druggable 

28 6hiv_UTP UTP T. brucei 2 100.0 less druggable 

29 4k32_GET Geneticin Leishmania 2 100.0 less druggable 

30 4ji3_SRY Streptomycin T. thermophilus 2 100.0 Less druggable 

31 4io9_1F2 Carbomycin A 
derivative 

D. radiodurans 2 100.0 Druggable 

32 1hnw_TAC Tetracycline T. thermophilus 2 100.0 Less druggable 

33 3wru_SJP Neomycin analogue - 2 100.0 Less druggable 

34 3td1_GET Geneticin - 2 100.0 Less druggable 

35 5lzb_GNP GNP E. coli 2 100.0 less druggable 

36 5kcr_6UQ Avilamycin E. coli 2 100.0 Less Druggable 

37 5jvg_6NO Avilamycin D. radiodurans 2 100.0 less druggable 

38 5juu_SO1 Sodarin S. cerevisiae 2 0.0 - 

39 3oij_SAH SAH S. cerevisiae 2 100.0 less druggable 

40 3jcj_GNP GNP E. coli 2 0.0 Druggable 

41 5aj4_GDP GDP S. scrofa 2 0.0 Druggable 

42 3jah_ADP ADP O. corniculm, H. 
sapiens 

2 100.0 Less drugga 

43 3j7a_34G Enetube P. falciparum 2 100.0 less druggable 

44 3cpw_ZLD Linezolid H. morismortui 2 100.0 Druggable 

45 4v9o_GCP GCP T. thermophilus 2 100.0 less druggable 

46 2otj_13T 13-deoxytedanolide H. morismortui 2 100.0 Druggable 

47 4v56_SCM Spectinomycin E. coli 2 100.0 less druggable 

48 2g5k_AM2 Apramycin Leishmania 2 100.0 Less druggable 
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49 4u56_BLS Blasticidin S  S. cerevisiae, T. 
Thermophilus 

2 100.0 Les druggable 

50 6rxt_GTP GTP C. thermophilum 2 100.0 Less druggable 

51 4u4y_PCY Pactamycin, 
amicoumacin 

S. cerevisae 2 100.0 Druggable 

52 6sg9_SAH SAH T.  Brucei 2 100.0 Druggable 
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Table S 4: Drug-like ligands (QED ≥ 0.67) found in binding sites predicted to be druggable 

Ligand ID PDB ID Receptor name QED score KD [nM] 

LE 

[kcal⋅mol-1⋅heavy 

atom-1] 

RNA data set     

MGR 1q8n 
Malachite green 

aptamer 
0.76 80054 0.34 

6YG 5kx9 FMN RS 0.69 13.441 0.41 

L8H 2l8h HIV-1 TAR RNA 0.67 NA#55 - 

PMZ 1lvj HIV-1 TAR RNA 0.85 27,00044 0.22 

Ribosomal data set    

917 5v7q 50S ribosomal subunit 0.94 70056 0.39 

ZLD 3cpw 50S ribosomal subunit 0.89 20,00057 0.27 

G6M 6ddg 50S ribosomal subunit 0.79 2,60053 0.31 

3HE 4u3u 80S ribosome 0.76 14058 0.48 

G6V 6ddd 50S ribosomal subunit 0.76 2,60059 0.30 

ANM 3cc4 50s ribosomal subunit 0.78 20,00060 0.34 

HN8 5on6 80S ribosome 0.71 NA# - 

3K8 4u55 80S ribosome 0.71 39 0.32 

* RS = riboswitch, # binding affinity unknown 
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Table S 5: : Drug-like ligands (QED ≥ 0.67) found in binding sites predicted to be less druggable 

Ligand ID PDB code Receptor name QED KD [nM] 

LE 

[kcal⋅mol-

1⋅heavy atom-1] 

RNA data set     

VIB 4nyg TPP RS 0.79 1,50061 0.45 

2QC 4nyb TPP RS 0.77 103,00061 0.43 

0EC 2lwk Influenza A 0.86 50,00051  0.29 

1TU 5ob3 Spinach aptamer 0.85 53062 0.49 

218 2hop TPP RS* 0.77 6,00063 0.38 

Ribosomal data set     

TRP 

4v6o Tryptophan-

sensing 

ribosomal site 

0.67 

NA# - 

RS = riboswitch, # binding affinity unknown 
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Figures 

 

Figure S 1: Training and test set accuracy error vs. rounds of xgboost iteration. The line denotes the earliest 

iteration (17) where the error on the test set has not improved in the following 20 iterations 
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Figure S2: Druggability predictions with DrugPred_RNA for the NRDLD training (A) and test set (B). 

Cyan bars represent druggable and red bars less druggable binding sites. All pockets at the right side of 

the black line are classified as druggable while the pockets on the left side of the line are classified as 

less druggable. The full names of the proteins are listed in 21. 

  



40 

 

 

Figure S 3: Individual SHAP values for each pocket in the training set for all descriptors in the final model 

plotted against the descriptor values. Locally estimated scatterplot smoothing (LOESS) curves are overlaid 

on the descriptor observations (black dots). The midpoint in each curve indicates the cut-off value from 

where the model’s prediction changes the direction.  


