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Deep generative models are powerful tools for the exploration of chemical space, enabling the on-demand gener-
ation of molecules with desired physical, chemical, or biological properties. However, these models are typically
thought to require training datasets comprising hundreds of thousands, or even millions, of molecules. This per-
ception limits the application of deep generative models in regions of chemical space populated by only a small
number of examples. Here, we systematically evaluate and optimize generative models of molecules for low-data
settings. We carry out a series of systematic benchmarks, training more than 5,000 deep generative models
and evaluating over 2.6 billion generated molecules. We find that robust models can be learned from far fewer
examples than has been widely assumed. We further identify strategies that dramatically reduce the number of
molecules required to learn a model of equivalent quality, and demonstrate the application of these principles
by learning models of chemical structures found in bacterial, plant, and fungal metabolomes. The structure of
our experiments also allows us to benchmark the metrics used to evaluate generative models themselves. We
find that many of the most widely used metrics in the field fail to capture model quality, but identify a subset
of well-behaved metrics that provide a sound basis for model development. Collectively, our work provides a
foundation for directly learning generative models in sparsely populated regions of chemical space.

Chemical space is vast. The number of small, synthetically-
accessible organic molecules alone exceeds 1060 (ref.1). Hu-
mans have explored only infinitesimal regions of this vast
space over the course of recorded history. Yet this limited ex-
ploration has yielded an arsenal of bioactive small molecules
that form the basis for most therapeutic regimens. These suc-
cesses, against overwhelming odds, lead to optimism that
more efficient ways of navigating through chemical space
could help address many of the most pressing challenges fac-
ing humanity.

Historically, many of the most prominent approaches to
chemical space exploration aimed to enumerate the set of
molecules comprising an explicitly defined space, often us-
ing exhaustive graph theoretical approaches2–5 or genetic
algorithms6–8. More recently, deep generative models have
emerged as an immensely powerful tool to explore chem-
ical space9. These models leverage deep neural networks
to learn the chemistries implicitly embedded within a train-
ing set of molecules. Once trained, deep generative mod-
els are capable of stochastically sampling unseen molecules
from the target chemical space. Many of the most successful
approaches to generative modeling have exploited the analo-
gies between chemistry and human language10 by learning
to generate textual representations of molecules, commonly
in the SMILES (Simplified Molecular Input Line Entry Sys-
tem) format11 (Fig. 1a). This strategy allows practitioners
to borrow powerful neural network architectures from the
field of natural language processing, known as recurrent neu-

ral networks (Fig. 1b)12–19. Although a plethora of alterna-
tive approaches have been proposed, such as learning to gen-
erate two-dimensional chemical graphs20,21 or to assemble
molecules from smaller substructures22, systematic bench-
marks have not shown these to outperform recurrent neural
network-based models of SMILES strings23,24.

Deep generative models have attracted intense interest for
their potential to generate molecules with arbitrary physic-
ochemical, structural, or biological properties on demand,
and thereby solve what has been termed the ‘inverse design’
problem25. A major outstanding challenge, however, is that
these models are typically seen to require very large amounts
of training data—on the order of hundreds of thousands to
millions of molecules9. It is very often the case that the
chemical space targeted for exploration is simply not pop-
ulated by a commensurate number of known molecules. For
instance, investigators wishing to design novel molecules ac-
tive against a particular receptor are unlikely to have knowl-
edge of more than a few hundred existing agonists. Simi-
larly, entire categories of naturally occurring molecules—for
instance, bacterial terpenoids26—may have only a thousand
or so representatives. Accordingly, bespoke methods based
on reinforcement learning (RL)14,16,27–29 or transfer learn-
ing (TL)13,15,30–32 have been developed to enable generative
modelling in low-data regimes. In these paradigms, mod-
els are first ‘pre-trained’ on a large and generic database of
chemical structures, and thereafter undergo a second round
of ‘fine-tuning’ meant to gradually guide them into a more
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Fig. 1 | Learning generative models of molecules from limited training examples.
a, Molecular structures and canonical SMILES representations of two exemplary molecules, aspirin (top) and caffeine (bottom).
b, Architecture of a three-layer recurrent neural network (RNN) trained to generate SMILES strings.
c, Overview of the experimental design. d, Proportion of valid SMILES generated by chemical language models trained on one of varying numbers of
molecules sampled from the ZINC database. The mean and standard deviation of ten independent replicates are shown.
e, Spearman correlations between training dataset size (number of molecules) and each of 23 proposed metrics for the evaluation of chemical generative
models trained on the ZINC database. Shaded area highlights metrics with a rank correlation ≥ 0.8 to training dataset size.
f, Matrix of Spearman correlations between the values of the five top-performing metrics across n = 110 chemical language models.
g, PCA of top-performing metrics for molecules generated by n = 110 chemical language models trained on varying numbers of molecules sampled
from ZINC, colored by the size of the training dataset.
h, PC1 scores for n = 110 chemical language models trained on varying numbers of molecules sampled from ZINC. Inset text shows the Spearman
correlation.

restricted chemical space. These approaches, however, have
a number of shortcomings. Both RL- and TL-based ap-
proaches may suffer from mode collapse, whereby the fine-
tuned model loses the ability to generate diverse molecules,
or catastrophic forgetting, whereby the general principles of
molecule generation learned from the large dataset are for-
gotten during fine-tuning. In RL-based approaches, the more

powerful generative model may learn to exploit unforeseen
deficiencies in the reward function, leading to the genera-
tion of unrealistically simple but high-scoring molecules14,33.
Finally, both strategies yield results that vary depending
on the duration of the fine-tuning step, and despite some
investigation32, there is no obvious a priori basis to infer an
optimal duration.
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Ideally, it would be possible to directly learn a gener-
ative model of a restricted chemical space from a limited
number of training examples and bypass the need for RL-
or TL-based approaches. At present, however, it is unclear
what the lower bound might be on the number of molecules
needed to learn a robust generative model, or whether this
lower bound might vary as a function of the target chemical
space. Moreover, despite some pioneering efforts18,34, it re-
mains largely unclear whether specific strategies could help
optimize generative models for the low-data regime. Such
strategies might include varying the textual representation of
the input molecules, the architecture or hyperparameters of
the recurrent neural network, the process by which the net-
work is trained, or strategies for augmentation.

Here, we systematically evaluate the ability of deep gen-
erative models to learn from limited training data. We train
generative models on varying numbers of molecules sampled
at random from four large chemical databases, allowing us to
quantitatively dissect the relationship between the size of the
training dataset and the quality of the generative model for
the first time. We demonstrate that remarkably robust gener-
ative models can be learned from a small number of exam-
ples. However, this number varies with the structural com-
plexity of the target chemical space, with fewer examples
needed to learn models of simpler molecules. We identify
strategies that reduce the minimum amount of training data
required to learn a generative model of equivalent quality,
most notably including data augmentation by non-canonical
SMILES enumeration35. Conversely, our systematic bench-
marks indicate that many of the strategies that have been pro-
posed in the literature for this purpose are largely ineffective.
We demonstrate the application of the principles that emerge
from our analysis by training generative models of bacterial,
plant, and fungal metabolites that learn to faithfully repro-
duce highly complex chemical spaces from only thousands
of input molecules.

A secondary outcome of our work is that the structure
of our experiments provides an opportunity to compare the
metrics that are currently used to evaluate generative models
themselves. Specifically, in the absence of any other pertur-
bation, we expect that a model trained on 100,000 molecules
should essentially always outperform a model trained on only
10,000, which should in turn outperform one trained on only
1,000. We leverage this expectation by comparing 23 metrics
proposed for the evaluation of generative models against the
experimental ground truth (that is, the number of molecules
in the training dataset). Surprisingly, we find that many of the
most widely used metrics in the field entirely fail to capture
model quality. This observation raises the alarming possibil-
ity that relying on these metrics to evaluate generative models
has hindered progress. We identify a small subset of met-
rics that are robustly correlated with the size of the training
dataset. However, we also show that relying on any individ-
ual metric can lead to problematic conclusions. We develop
a holistic framework to integrate multiple orthogonal lines of
evidence about model quality, thus providing a sound founda-
tion for model development. Collectively, our analyses chart

a path toward directly learning generative models of sparsely
populated areas of chemical space.

Results
Deep generative models learn from limited training data.
Chemical language models are powerful tools for exploring
chemical space, but are generally thought to require very
large training datasets—on the order of hundreds of thou-
sands, if not millions of molecules. However, the degree to
which this perception is true has not been empirically inves-
tigated. We therefore initially set out to determine the mini-
mum number of molecules required to train a robust genera-
tive model capable of generating valid and unseen molecules
from a target chemical space.

To address this question, we drew random samples of
1,000 to 500,000 molecules from the ZINC database of com-
mercially available compounds36 (Fig. 1c). We then trained
a chemical language model on these molecules, as repre-
sented by their SMILES strings. After the model had finished
training, a total of 500,000 SMILES were sampled from the
trained model. To quantify variability in model performance,
we repeated this process ten times for each sample size.

As an initial check on the quality of the trained models,
we calculated the proportion of valid SMILES strings gen-
erated by each model (“% valid”), a metric that has been
widely used to evaluate the performance of chemical genera-
tive models. To appreciate the relationship between the size
of the training dataset and model quality, we plotted this pro-
portion against the number of SMILES strings used to train
each model. The proportion of valid molecules increased
rapidly as the size of the training dataset increased: from
only 6.7% when learning from a dataset of 1,000 molecules,
to 69.1% when trained on 25,000 molecules (Fig. 1d). Re-
markably, we found that trained models were able to generate
valid molecules at a rate above 50% with a training dataset of
only 5,000 SMILES strings. On the other hand, performance
saturated rapidly after approximately 50,000 molecules had
been added to the training set. As the size of the training
dataset grew from 50,000 to 500,000 molecules, the propor-
tion of valid molecules generated by the models increased by
only 5.1%, from 89.5% to 94.6%.

Widely used metrics fail to capture the performance of
generative models. Together, these observations suggested
that robust generative models of molecules can be learned
from surprisingly small training datasets. However, the
proportion of valid SMILES captures only one aspect of
model performance. If a model has learned to generate valid
SMILES strings, but the generated molecules bear little re-
semblance to those in the training set, then clearly the model
has not learned a useful generalization of the target chemical
space. We therefore sought to achieve a more holistic evalu-
ation of model performance.

To accomplish this goal, we calculated a suite of 23 dif-
ferent metrics that have previously been proposed for the
evaluation of generative models of molecules18,23,24,34,37–39.
In addition to the proportion of valid SMILES strings, we
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also computed the proportions of unique and novel molecules
generated by the model (Supplementary Fig. 1a). We addi-
tionally computed 17 different structural or physicochemical
properties for each generated molecule, including properties
such as the molecular weight, topological complexity40, or
natural product-likeness score41 (see the Methods for a com-
plete description). We then quantified the similarity of the
distributions observed for generated molecules and the train-
ing set using the Jensen-Shannon divergence. To specifically
assess the diversity of the generated molecules, we calculated
the mean Tanimoto coefficient between random pairs of gen-
erated molecules, or random pairs of generated and training
set molecules, to obtain the internal and external diversities,
respectively37. Finally, we computed the Fréchet ChemNet
distance38, a metric based on the predicted biological activ-
ities of the generated molecules that was developed specifi-
cally for the evaluation of chemical generative models.

Collectively, this suite of metrics allowed us to compre-
hensively survey the methods that have been proposed to
evaluate generative models of molecules. In the absence of a
‘ground truth’, however, it has been unclear which of these
metrics most faithfully capture the quality of the underly-
ing generative model. We reasoned that the structure of our
experiment imposed a strong expectation on the anticipated
outcomes that could be used to ascertain the most useful met-
rics. Specifically, we reasoned that as the size of the training
set increased, so too should measures of model performance.
In other words, a model trained on 500,000 molecules should
outperform a model trained on only 5,000 molecules, and this
difference should be reflected quantitatively in the value of
the performance measure. To formalize this notion, we cal-
culated the Spearman rank correlation between the number
of SMILES strings in the training dataset and the value of
each metric. We then compared the 23 metrics based on their
correlations to the size of the training dataset.

Surprisingly, we observed enormous variation in the per-
formance of the 23 previously proposed metrics (Fig. 1e). A
handful of metrics were strongly correlated to the number of
molecules in the training dataset, including the proportion of
valid molecules, the Fréchet ChemNet distance, the propor-
tion of stereocenters, and the Murcko scaffolds of the gen-
erated molecules (Supplementary Fig. 1b). However, the
majority were at best moderately correlated to this experi-
mental ‘ground truth,’ with little guarantee that an increase
in the size of the training dataset would produce a consis-
tent change in the value of a given metric (Supplementary
Fig. 1c). Worryingly, a subset of metrics exhibited no sta-
tistically significant correlation at all to the size of the train-
ing dataset (Supplementary Fig. 1d). Among these were
two of the most widely used metrics in the field: the pro-
portion of unique molecules (adjusted p-value = 0.20) and
the computed logP of generated molecules (adjusted p-value
> 0.99). Our observation that these metrics entirely failed
to capture an intervention that dramatically impacted model
performance suggests they are ill-suited for the evaluation of
chemical generative models. More broadly, the observation
that many of the most widely used metrics are at best weakly

correlated with model performance raises the possibility that
existing models have been optimized to maximize unsound
measures of model quality.

Holistic evaluation of chemical generative models. We
sought to integrate information from several of the top-
performing metrics in order to arrive at a single, holis-
tic measure of model performance. However, the opti-
mal manner by which to accomplish this was initially not
clear. Metrics such as the proportion of valid molecules, the
Fréchet ChemNet distance, and the Jensen-Shannon diver-
gence of Murcko scaffolds are measured on very different
scales (Supplementary Fig. 1b), and had a complex corre-
lation structure (Fig. 1f). Both of these factors precluded
simple approaches, such as simply taking the mean across
top-performing metrics.

We reasoned that in the context of this experiment, the
size of the training dataset would represent the primary
source of variation in the values of these metrics. Conse-
quently, we hypothesized that in a principal component anal-
ysis (PCA) of the top-performing metrics, trained models
would naturally segregate along the first principal component
(PC1) according to the size of the training dataset. This hy-
pothesis was borne out by a PCA of the 110 models trained
on samples from the ZINC database. We found these models
clearly segregated by the number of molecules in the training
dataset along PC1, which explained 89.8% of the variance
(Fig. 1g). Plotting PC1 against the size of the training dataset
recapitulated the expected rapid increase in performance, fol-
lowed by a plateau (Fig. 1h). However, integrating informa-
tion from multiple metrics revealed that model performance
continued to improve above the plateau suggested by the pro-
portion of valid molecules. Instead, PC1 scores continued to
increase until approximately ~250,000 molecules had been
added to the training dataset. These observations suggest
that as the size of the training set increases, chemical lan-
guage models first learn to produce valid SMILES, and only
later learn to match the structural and physicochemical prop-
erties of the target molecules. Consequently, integrating mul-
tiple distinct sources of information is necessary in order to
achieve a holistic evaluation of these generative models.

Taken together, these experiments leverage an experimen-
tal ‘ground truth’ setting to compare metrics that have been
proposed for the evaluation of chemical generative models.
We found that many of these, including some of the most
widely used metrics in the field, are uncorrelated with the
ground truth. However, PCA provides a framework to holis-
tically capture model performance by integrating evidence
from multiple orthogonal top-performing metrics.

Learning generative models of distinct chemical spaces.
Our results thus far have focused on learning generative mod-
els of molecules from the ZINC database. We next asked
whether the number of molecules required to train a robust
generative model would vary as a function of the target chem-
ical space. In particular, we hypothesized that fewer exam-
ples would be needed to learn models of simple chemical
structures, compared to structurally complex molecules such
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as natural products.
To test this hypothesis, we repeated our initial experiment,

but with molecules sampled from three additional databases
of chemical structures: the GDB-13 database, which enu-
merates all possible small organic molecules containing up
to 13 atoms4; the ChEMBL database, which contains bioac-
tive small molecules with drug-like properties42; and the
COCONUT database of natural products43 (Fig. 2a). The
molecules contained in each of these databases have distinct
structural and physicochemical properties, with molecules
from COCONUT generally being the most complex, fol-
lowed by ChEMBL, ZINC, and GDB (Fig. 2b).

We began by comparing the proportion of valid molecules
generated by models trained on each of the four databases.
This comparison strongly supported our hypothesis that the
complexity of the target chemical space determines the min-
imum number of examples required to learn a robust model
(Fig. 2c). Models trained on small organic compounds from
GDB, for instance, always produced a higher proportion of
valid SMILES strings than models trained on an equivalent
number of molecules from ZINC. In contrast, even when
trained on more than 250,000 molecules, generative models
of the COCONUT database never produced valid SMILES at
a rate exceeding 82%.

We next asked whether our holistic evaluation framework
based on PCA could be applied to models trained on di-
vergent chemical spaces. To evaluate this, we first asked
whether each of the 23 metrics exhibited the same relation-
ship to model performance as observed in ZINC. We con-
firmed that these relationships were highly concordant across
chemical spaces (Fig. 2d). Remarkably, the same five met-
rics achieved a rank correlation ≥ 0.8 in all four databases
(Supplementary Fig. 2a). Conversely, we confirmed that the
majority of previously proposed metrics were weakly, incon-
sistently, or non-significantly correlated to the experimental
ground truth (Supplementary Fig. 2b-c).

Having established that the same five metrics were
strongly associated with the number of training examples in
four distinct areas of chemical space, we then performed a
combined PCA of all n = 440 generative models based on
these metrics. Again, we observed a strong tendency for
models to separate along PC1 based on the size of the train-
ing dataset (Fig. 2d). Interestingly, models also separated
by their target chemical space along PC2 (Fig. 2e). How-
ever, this did not compromise the correlation between PC1
scores and the number of training examples, with a mean
rank correlation of 0.97 across the four databases (Fig. 2f
and Supplementary Fig. 2d). We obtained similar results
when performing PCA within each database separately, sup-
porting the robustness of the approach (Supplementary Fig.
3a). Moreover, we obtained similar results when withholding
one database at a time from the PCA, and then projecting the
withheld models onto the coordinate basis of the PCA space
of the other three databases (Supplementary Fig. 3b). This
latter finding indicates the loadings learned from a PCA of
a diverse set of generative models can be applied to unseen
models, and thus supports the notion that the PC1 scores pro-

vide a generically applicable measure of model performance.
Last, we sought to leverage the results of our PCA anal-

ysis to directly compare data requirements across different
chemical spaces. We performed statistical comparisons of
PC1 scores for models trained on between 1,000 and 500,000
molecules in each pair of databases. These comparisons al-
lowed us to estimate the number of training examples re-
quired to learn a generative model of equivalent quality in a
second chemical space. This analysis revealed unexpectedly
large differences in ‘data hungriness’ across chemical spaces
(Supplementary Fig. 4). For instance, a training dataset of
500,000 molecules was required to learn a generative model
of ChEMBL that was statistically indistinguishable from a
model of the GDB learned from only 25,000 examples (Fig.
2h). This observation raises the possibility that results ob-
tained from the analysis of the GDB database may not be
generally applicable to learning generative models of more
complex molecules17,46. More broadly, these results strongly
suggest that generative models should be evaluated in more
than one chemical space, particularly when they seek to opti-
mize learning from limited training examples.

Evaluating molecular representations for low-data genera-
tive modelling. Our results thus far have shown that the
minimum number of molecules required to learn a robust
generative model depends strongly on the target chemical
space. Specifically, as the target chemical space grows more
structurally complex, the minimum number of required train-
ing examples increases. We next asked if we could identify
strategies to reduce this minimum, and thus learn more accu-
rate generative models from fewer examples.

As a first step, we asked if alternative molecular repre-
sentations could help a chemical language model learn from
limited training data. To date, the SMILES format has been
the most common textual representation used to train RNNs.
However, this approach forces generative models to learn the
syntax of the SMILES format, in addition to the properties
of the target chemical space. As a result, generative mod-
els trained on SMILES strings often generate a large propor-
tion of invalid molecules, particularly when trained on small
datasets (Fig. 1d), which some have identified as a key limi-
tation of this format47–50.

Two prominent alternatives to the SMILES format have
been proposed. The DeepSMILES variant introduces two
modifications to the SMILES syntax to remove long-term de-
pendencies associated with the representation of rings and
branches47. These modifications are designed to make the
DeepSMILES syntax easier to learn than that of conven-
tional SMILES, and thereby increase the proportion of valid
molecules generated. Self-referencing embedded strings
(SELFIES) are an entirely different molecular representation
based on a Chomsky type-2 grammar, in which every SELF-
IES string specifies a valid chemical graph48. The impact of
either representation on generative modelling in the low-data
regime is not well-understood, and to date, the arguments
supporting either representation have primarily been theoret-
ical rather than empirical.

To explore the impact of alternative textual repre-
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sentations, we trained generative models on SMILES,
DeepSMILES, and SELFIES representations of identical
samples from the ChEMBL, COCONUT, GDB, and ZINC

databases (Fig. 3a). Inspecting the proportion of valid
molecules confirmed that models trained on SELFIES strings
did indeed produce valid chemical graphs at a much higher
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Fig. 2 | Low-data generative models of distinct chemical spaces.
a, Overview of the experimental design.
b, Structural and physicochemical properties of molecules from the four chemical databases analyzed in this study. Top left, number of rings per
molecule. Top right, molecular weight spectrum of molecules from each database. Center left, octanol-water partition coefficients (logP)44. Center right,
Bertz topological complexities40 of each molecule. Bottom left, quantitative estimate of drug-likeness (QED) scores45. Bottom right, natural product
(NP)-likeness scores41.
c, Proportion of valid SMILES generated by chemical language models trained on one of varying numbers of molecules sampled from one of four
chemical databases. The mean and standard deviation of ten independent replicates are shown.
d, Spearman correlations between training dataset size (number of molecules) and each of 23 proposed metrics for the evaluation of chemical generative
models in four chemical databases. Text shows the mean Spearman correlation. e, PCA of top-performing metrics for molecules generated by n = 440
chemical language models, trained on molecules sampled from four different databases, colored by the size of the training dataset.
f, As in e, but colored by the chemical database on which the generative models were trained.
g, PC1 scores for chemical language models trained on varying numbers of molecules sampled from one of four chemical databases. The mean and
standard deviation of ten independent replicates are shown.
h, Mean difference in PC1 scores (∆PC1 = PC1GDB – PC1ChEMBL) between chemical language models trained on varying numbers of molecules
sampled from GDB, x-axis, or ChEMBL, y-axis. Dark squares indicate pairs without statistically significant differences (uncorrected p > 0.05, two-sided
t-test).

rate than the other two representations (>99.9%; Fig. 3a and
Supplementary Fig. 5a). Surprisingly, models trained on
DeepSMILES did not produce valid molecules at a substan-
tially higher rate than ones trained on canonical SMILES.
Thus, the proposed modifications to the SMILES syntax,
though theoretically grounded, do not appear to empirically
improve the robustness of chemical generative models.

To investigate how well models trained on each tex-
tual representation learned the structural and physicochem-
ical properties of the target chemical space, and not
just their respective syntaxes, we again performed PCA
(Supplementary Fig. 5b). Surprisingly, we found that
models trained to generate SELFIES strings consistently
achieved lower PC1 scores than models trained on SMILES
or DeepSMILES representations of the same molecules (Fig.
5c and Supplementary Fig. 5c). Inspecting individual met-
rics corroborated this trend; for instance, models trained on
SELFIES also had a higher Fréchet ChemNet distance to the
training set (Fig. 5d and Supplementary Fig. 5d). For
some very small sample sizes (n ≥ 5,000), models trained on
SELFIES or DeepSMILES did occasionally achieve higher
PC1 scores (Fig. 5e), but these differences were mod-
est, marginally significant, and not consistent across chem-
ical spaces. The net result was that substantially more
DeepSMILES or SELFIES were required to learn a model
of equivalent quality to one trained on SMILES strings (Fig.
5f-g and Supplementary Fig. 5e).

Although the tendency of generative molecules trained on
SMILES strings to produce invalid outputs has been seen as a
central limitation of these models, our results suggest that this
may actually represent an unrecognized strength. After filter-
ing out these invalid molecules with a simple and fast post-
processing step, generative models trained on SMILES more
closely mimicked the structural and physicochemical proper-
ties of the target chemical space than models trained on alter-
native representations. Our results thus suggest that recently
proposed representations are not more conducive to learn-
ing generative models of molecules than the longstanding
SMILES representation, and therefore that SMILES strings
should remain the representation of choice for chemical lan-
guage models.

Paradoxical effects of data augmentation on chemical gen-
erative models. Our experiments demonstrated that alter-
natives to the SMILES representation did not improve the
robustness of generative models trained on small datasets.
A related concept is to perform data augmentation by vary-
ing the SMILES representation itself35. By convention,
each chemical structure possesses a unique SMILES rep-
resentation that is typically referred to as its ‘canonical’
SMILES. However, depending on the order in which the
atoms in the molecule are traversed, hundreds or thousands
of ‘non-canonical’ SMILES representations are also possi-
ble (Fig. 3h). Enumeration of non-canonical SMILES has
been employed to learn continuous representations of chemi-
cal structures, by training sequence-to-sequence models51,52,
and emerging evidence suggests that SMILES enumeration
can improve the quality of generative models18,34. We tested
whether SMILES enumeration could decrease the number of
training examples needed to learn a robust generative model
of molecules.

We trained chemical language models on canonical
SMILES representations or on non-canonical SMILES after
varying degrees of enumeration (Fig. 3h). Models trained on
enumerated SMILES generated valid molecules at a dramat-
ically higher rate, especially in the smallest training datasets
(Fig. 3i). For example, when training models on just 1,000
molecules from the ZINC database, the proportion of valid
SMILES improved from 22.2% to 78.4% after enumerating
30 non-canonical SMILES for each canonical SMILES in
the training set. We observed consistent patterns across dif-
ferent chemical spaces, with SMILES enumeration consis-
tently lowering the number of examples required to achieve a
given proportion of valid SMILES strings (Supplementary
Fig. 6a-c). The lone exception was for the most structurally
complex databases, in which very high degrees of data aug-
mentation sometimes appeared to degrade the quality of mod-
els learned from large training datasets (Supplementary Fig.
6b).

To corroborate these trends, we again performed PCA us-
ing multiple top-performing metrics (Supplementary Fig.
6d). This analysis highlighted the context-specific effects of
SMILES enumeration (Fig. 3j and Supplementary Fig. 6e).
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In general, data augmentation had by far the largest effect
on models learned from very small training datasets. When
the training dataset comprised at least ~50,000 molecules,
the effects of SMILES enumeration were much more sub-
tle. Moreover, in the largest training datasets, we occasion-
ally observed a negative effect of SMILES enumeration (Fig.
3k). Together, these findings suggest that data augmentation
is best reserved for the low-data regime, particularly when
modelling structurally complex molecules.

To quantify the improvement in performance attributable
to SMILES enumeration, we compared models trained on
augmented datasets to non-augmented datasets of varying
sizes (Fig. 3l-m). For very small training datasets, data aug-
mentation by a factor of ten yielded a performance increase
on par with quadrupling the number of unique molecules in
the training set (Fig. 3l and Supplementary Fig. 6f). For
instance, after data augmentation, models trained on 2,500
molecules from the ZINC database achieved PC1 scores that
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Fig. 3 | Alternative molecular representations for low-data generative models.
a, Left, three string-based molecular representations of an example molecule, the thyroperoxidase inhibitor methimazole. Right, overview of the experi-
mental design.
b, Proportion of valid SMILES generated by chemical language models trained on one of three string representations of molecules from the ZINC
database.
c, PC1 scores of chemical language models trained on one of three string representations of molecules from the ZINC database.
d, Fréchet ChemNet distances of chemical language models trained on one of three string representations of molecules from the ZINC database.
e, Mean difference in PC1 scores (∆PC1) between chemical language models trained on matching numbers of SELFIES or DeepSMILES, as compared
to SMILES, from one of four chemical databases. Asterisks indicate statistically significant differences (uncorrected p < 0.05, two-sided t-test).
f, Mean difference in PC1 scores between chemical language models trained on varying numbers of molecules sampled from ZINC, represented either
as DeepSMILES, y-axis, or SMILES, x-axis. Dark squares indicate pairs without statistically significant differences (uncorrected p > 0.05, two-sided
t-test).
g, As in f, but with models trained on SELFIES on the y-axis.
h, Left, canonical SMILES and seven enumerated non-canonical SMILES for an example molecule, the nutrient and cholesterol-lowering agent niacin.
Right, overview of the experimental design.
i, Proportion of valid SMILES generated by chemical language models trained on molecules sampled from the ZINC database after varying degrees of
non-canonical SMILES enumeration.
j, PC1 scores of chemical language models trained on molecules sampled from the ZINC database after varying degrees of non-canonical SMILES
enumeration.
k, Mean ∆PC1 between chemical language models trained on non-canonical SMILES with varying degrees of data augmentation from one of four
chemical databases, as compared to canonical SMILES. Asterisks indicate statistically significant differences (uncorrected p < 0.05, two-sided t-test).
l, Mean ∆PC1 between chemical language models trained on molecules from the ZINC database represented as canonical SMILES, x-axis, or non-
canonical SMILES after 10x augmentation, y-axis. Dark squares indicate pairs without statistically significant differences (uncorrected p > 0.05, two-sided
t-test).
m, As in l, but with an augmentation factor of 30x.

were statistically indistinguishable from a model trained on
10,000 molecules without enumeration. Augmentation by a
factor of 30 had even more drastic effects, allowing a model
trained on only 5,000 molecules to achieve PC1 scores com-
parable to one trained on 50,000 SMILES without enumera-
tion (Fig. 3m). Conversely, we confirmed quantitatively that
the improvement in performance afforded by data augmenta-
tion diminished as the size of the training dataset increased,
and was attenuated completely when training on a dataset of
500,000 molecules.

Taken together, these analyses highlight the potentially
dramatic impacts of data augmentation by SMILES enumer-
ation. When learning generative models from very small
training datasets, data augmentation by a factor of 10 can
improve performance to a degree equivalent to quadrupling
the amount of training data. On the other hand, our exper-
iments expose a previously overlooked potential for ‘over-
enumeration’ when learning models of structurally com-
plex molecules from very large training datasets, whereby
even relatively low levels of data augmentation can decrease
model performance. Notwithstanding this issue, which to the
best of our knowledge has not been previously reported, we
suggest that for datasets with less than ~50,000 molecules,
SMILES enumeration by a factor of ten can significantly im-
prove the performance of generative models at essentially no
cost.

Data, not architecture, dictates model performance in the
low-data regime. Our experiments to this point have fo-
cused on varying the data provided as input to generative
models, including the number of molecules in the training
dataset, the chemical space from which those molecules were
sampled, and how the molecules are represented in textual
form. We next asked whether we could optimize the model
itself for the low-data regime. Specifically, we hypothesized

that decreasing the total number of neurons in the model, or
adding dropout layers53, could both prevent the model from
overfitting to a small number of training examples.

To test this hypothesis, we systematically varied each of
six hyperparameters in turn, and evaluated the quality of the
resulting models (Fig. 4a). These hyperparameters included
the sizes of both the embedding and hidden layers, as well
as the total number of hidden layers. We also compared
different architectures of RNNs altogether, including gated
recurrent units (GRU), long short-term memory (LSTM),
and ‘vanilla’ RNNs with two different activation functions
(tanh and ReLU). In addition, we experimented with adding
varying amounts of dropout between each layer. Finally, to
gauge whether the manner by which the models were trained
could also affect performance, we varied the size of the mini-
batches used to train the networks54. In order to explore this
larger parameter space, we limited our analysis to two of the
four chemical databases, ZINC and ChEMBL, and analyzed
only five replicates per hyperparameter combination instead
of ten.

We performed PCA on a total of 1,210 models trained
on the ZINC database (Fig. 4b), and observed that models
appeared to segregate along PC1 by the size of the training
dataset. This observation suggested that the impact of hy-
perparameter tuning was small, in comparison to the size of
the training dataset. To more formally quantify this notion,
we plotted the mean PC1 score against the size of the train-
ing dataset for each hyperparameter in turn (Fig. 4c). For
the parameters that controlled the capacity of the neural net-
work (including hidden layer size, embedding layer size, and
the number of hidden layers), intermediate values typically
yielded the best performance. However, comparing the mean
PC1 score to the total number of neurons in the model empha-
sized that even for very small or very large models, the dif-
ference was small in comparison to the number of molecules
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Fig. 4 | Data, not architecture, dictates the performance of low-data generative models.
a, Overview of the experimental design.
b, PCA of top-performing metrics for molecules generated by n = 1,210 chemical language models, trained on varying numbers of molecules from the
ZINC database with varying model hyperparameters, colored by the size of the training dataset.
c, Mean PC1 scores for molecules trained on the ZINC database, as a function of both the number of molecules in the training dataset, x-axis, and
varying hyperparameters, y-axis. The mean of five independent replicates is shown.
d, Mean PC1 scores of chemical language models as a function of the total number of neurons in the network. Solid lines show local polynomial
regression.
e, Proportion of n = 110 chemical language models with varying hyperparameters, trained on the number of molecules shown on the y-axis, that
outperformed a model without any hyperparameter tuning trained on the number of molecules shown on the x-axis.

in the training dataset (Fig. 4d). The architecture of the
RNN had a somewhat greater effect, with GRUs and LSTMs
achieving roughly identical performance, but ‘vanilla’ RNNs
performing substantially worse. Neither dropout nor batch
size markedly affected on model performance.

Taken together, these results emphasize the primacy of
the training dataset on the performance of chemical genera-
tive models. We explored a large grid of hyperparameters,
but found that in the low-data regime, hyperparameter tuning
almost never affected performance to a comparable degree as
increasing the size of the training dataset (Fig. 4e). Con-
versely, in larger datasets, hyperparameter tuning appeared
to have a correspondingly larger effect. Finally, we observed
highly concordant results in a second database, ChEMBL
(Supplementary Fig. 7). Collectively, these results suggest

that optimization of hyperparameters, architecture, or train-
ing strategies for generative models is unlikely to provide a
fruitful approach to learning generative models of molecules
from few examples.

Case study: learning low-data generative models of bac-
terial, fungal, and plant metabolomes. Our experiments
systematically elucidated principles for learning generative
models of molecules from limited training data. We sought to
exemplify these principles through an illustrative case study.
To this end, we aimed to learn generative models of bac-
terial, fungal, and plant metabolomes. Previous work has
shown that manual or semi-automated enumeration of hy-
pothetical metabolites, using rule-based systems, enabled
the discovery of novel, bioactive natural molecules using
mass spectrometry55,56. Generative models of metabolomes
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could be used to more efficiently traverse metabolite chem-
ical space57, and thereby facilitate the targeted elucidation
of unknown metabolites. However, even for the compara-
tively well-studied human metabolome, only 100,000 unique
molecules are known58.

We assembled databases of bacterial, fungal, and plant
metabolites (Methods), but these comprised only 15,000-
22,000 molecules each (Fig. 5a). These databases are
thus far smaller than those typically used to train genera-
tive models of much less structurally complex molecules.
With this challenge in mind, we asked whether applying the
principles we had elucidated for low-data generative models
could allow us to directly model bacterial, fungal, and plant
metabolomes, without relying on RL or TL strategies.

We trained chemical language models on bacterial, fun-
gal, and plant metabolites. After experimenting with different
molecular representations, data augmentation strategies, and
RNN architectures, we selected a LSTM architecture with a
high degree of SMILES enumeration as the optimal strategy
(Fig. 5b and Supplementary Fig. 8). We then compared
the physicochemical properties of real and generated metabo-
lites. Strikingly, despite the limited amount of training data
available, the optimized models generated molecules whose
property distributions closely matched those of the three tar-
get metabolomes (Supplementary Fig. 9a-d). One notable
exception concerned the number of rings in the generated
molecules (Supplementary Fig. 9e). This disparity likely
reflects the challenge inherent in learning the SMILES syn-
tax for molecules with many rings, which are denoted by in-
creasingly rare tokens as the number of rings increases17.

Finally, we sought to visualize and compare the chemi-
cal space occupied by real and generated metabolites from
each taxonomic group. To achieve this, we first embedded
the real and generated metabolites into a continuous space
using CDDD (Continuous and Data-Driven Descriptors)52,
then visualized this space in two dimensions using UMAP
(Uniform Manifold Approximation and Projection)59. To
compare the chemical spaces occupied by real and gener-
ated metabolites, we visualized the UMAP embeddings with
either known metabolites, or a random sample of generated
metabolites of equal size, overlaid on top of one another (Fig.
5c). The resulting plot demonstrated that the generative mod-
els almost perfectly reproduced the chemical space of the
three target metabolomes, with very few regions of chem-
ical space occupied exclusively by either real or generated
metabolites.

Thus, taken together, these experiments demonstrate that,
with optimized strategies, generative models can directly
learn to reproduce even very complex chemical spaces from
a small number of training examples. The hypothetical
metabolites generated by these models may be candidates for
targeted identification by mass spectrometry, or even number
among the ‘dark matter’ of observed but unidentified metabo-
lites in high-throughput metabolomics60.

Discussion

Deep generative models have emerged as immensely pow-
erful tools for exploring chemical space. However, these
models are widely perceived to require very large training
datasets. This perception has prompted the development of
bespoke strategies, based on reinforcement learning or trans-
fer learning, to explore chemical spaces populated by few
known examples. Here, we set out to quantify the mini-
mum number of molecules required to learn a robust genera-
tive model of molecules, and identify strategies to reduce this
lower bound. To achieve these goals, we devised a series of
systematic benchmarks. In total, we trained over 5,100 gener-
ative models, and evaluated more than 2.6 billion molecules
sampled from the trained models. The scale of this effort
allowed us to comprehensively survey strategies for training
and evaluating generative models in the low-data regime. Be-
low, we discuss some of our key findings and their implica-
tions for the field.

We initially set out to determine the minimum number of
molecules required to train a robust generative model. To an-
swer this question empirically, we trained generative models
on varying numbers of molecules sampled from four chem-
ical databases. Although many published models have been
trained on millions of molecules, we found that performance
began to saturate with as little as ~50,000 examples in the
training set. This suggests that it is possible to learn ro-
bust generative models from far less training data than has
previously been appreciated, without requiring any bespoke
strategies. However, we also found model performance to
be directly contingent on the chemical space being mod-
elled. Specifically, a larger number of training examples were
needed to learn models of structurally complex metabolites.
Our observations raise the possibility that results obtained
from analysis of the structurally simple GDB database may
not generalize to more complex molecules, and, in turn, im-
ply that generative models should be evaluated in more than
one chemical space.

We then asked whether we could identify strategies to re-
duce the amount of training data required to learn a model of
equivalent quality. To this end, we first explored the effects
of varying the textual format used to represent molecules.
Much of the research in the field to date has made use of the
SMILES representation to learn language models of chem-
ical structures. However, several perceived shortcomings
of the SMILES format have been noted. Foremost among
these is the fact that even the best chemical language mod-
els typically produce some non-zero proportion of invalid
SMILES strings. A second issue is that molecules with many
rings are under-represented in model output, a phenomenon
that has been attributed to their representation within the
SMILES syntax17. We evaluated two alternative representa-
tions, DeepSMILES and SELFIES, that have been proposed
specifically for the setting of chemical language models. Im-
plicit in the design of these representations is the notion that a
model’s ability to produce valid molecules is a critical indica-
tor of its quality. However, surprisingly, we found that while
models trained on SELFIES strings produced valid molecules
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Fig. 5 | Low-data generative models of bacterial, fungal, and plant metabolomes.
a, Number of bacterial, fungal, and plant metabolites used to train chemical language models.
b, PC1 scores of generative models of metabolomes trained with different molecular representations (SMILES, DeepSMILES, or SELFIES), data
augmentation strategies (non-canonical SMILES enumeration with an augmentation factor of between 2x and 30x), and RNN architectures (GRU or
LSTM).
c, UMAP visualization of the known bacterial, fungal, and plant metabolomes, and an equal number of hypothetical metabolites sampled at random
from generative models. Top, real metabolites superimposed over generated metabolites. Bottom, generated metabolites superimposed over real
metabolites.

at a near-perfect rate, these molecules failed to match the tar-
get chemical space as those generated by a model trained on
SMILES. This finding suggests an alternative perspective of
the generation of invalid SMILES. In practice, if a model is
able to generate many valid molecules that accurately match
the target chemical space, then the appearance of invalid
SMILES strings is little more than a minor inconvenience,
since these can be filtered from model output using a simple
post-processing step. On the other hand, while the propor-
tion of valid molecules can be a useful measure of model
performance, focusing solely on the validity of the generated
molecules (and ignoring their chemical properties) can yield
misleading conclusions. Surprisingly, models trained on the
DeepSMILES format failed to produce valid molecules at a
rate exceeding those trained on SMILES. While the modifica-
tions to the SMILES syntax embodied in the DeepSMILES
format are theoretically grounded, this finding underscores
the primary of empirical evaluation.

By far the most successful strategy we identified to
improve generative modelling in the low-data regime in-
volved enumerating multiple non-canonical SMILES for
each molecule in the training set. That this form of data aug-
mentation can improve the quality of generative models has
previously been noted18,34, but predominantly in data-rich
settings. Our results extend these observations in several im-
portant ways. First, the structure of our experiments allows us
to precisely quantify the improvement afforded by data aug-
mentation, particularly in comparison to increasing the size
of the training dataset. In the low-data setting, for instance,

we find that data augmentation by a factor of ten improves
model performance to an extent comparable to quadrupling
the number of unique molecules. Second, we identify a pro-
found interaction between the effects of data augmentation
and the size of the training dataset. We find that data augmen-
tation has the most dramatic effects in the smallest training
datasets evaluated here, comprising only 1,000 molecules.
Conversely, these effects are greatly attenuated, or even en-
tirely ablated, when training on hundreds of thousands of ex-
amples. Third, we expose a risk of ‘over-augmentation,’ par-
ticularly in more structurally complex datasets, that to our
knowledge has not previously been noted. This paradoxical
effect was discovered only by exploring model performance
across multiple distinct regions of chemical space, underscor-
ing the value in this mode of analysis. Notably, in stark con-
trast to interventions that affected the input data itself, we
found that modifying the architecture, hyperparameters, or
training strategy of the generative models had little effect.
This observation suggests that developing new strategies for
molecular representation and data augmentation is likely to
present a more fruitful direction for future research than al-
tering the structure of the neural network itself.

The structure of our experiments also allowed us to
benchmark the metrics themselves that are used to evaluate
generative models. That there is little agreement within the
field on how generative models of molecules ought to be eval-
uated has been noted by several commentators33,61,62. The
lack of an ‘even playing field’ for model evaluation hinders
comparisons of published models, making it difficult to dis-

12 Skinnider et al. | Deep generative models enable navigation in sparsely populated chemical space



cern which computational strategies have been successful and
which have not. Alarmingly, we found that many of the most
widely used metrics in the field were weakly correlated, or
even entirely uncorrelated, to our experimental ground truth
(that is, the size of the training dataset). This calls into ques-
tion their use for model evaluation, and raises the worrying
possibility that published models have been tuned to opti-
mize dubious measures of performance. However, we iden-
tified a smaller subset of metrics that consistently exhibited
strong correlations to this ground truth across four distinct
chemical spaces. These included both the proportion of valid
molecules generated by the model, as well as a series of met-
rics designed to evaluate the chemical similarity of real and
generated molecules. We developed a framework to integrate
these metrics using PCA, and showed the resulting metric
captured multiple orthogonal sources of information about
model performance. The top-performing metrics identified
here, and our proposed framework for their integration, col-
lectively provide a sound foundation for model development
and evaluation. More broadly, we propose that our experi-
mental design provides a powerful benchmark for the evalua-
tion of generative models, as well as newly proposed metrics
themselves.

Collectively, our findings delineate general principles for
learning low-data generative models of molecules from a lim-
ited number of examples, and develop a rigorous framework
for the evaluation of these models. We have made all of the
code and data generated in this study publicly available to
support future work.
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Methods
Input data. Our experiments focused on learning generative
models of molecules from four databases of chemical structures:
ChEMBL42, COCONUT43, GDB4, and ZINC36. Molecules
from the ChEMBL database (version 24.1) were obtained from
http://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/releases/
chembl_24_1/chembl_24_1_chemreps.txt.gz. Molecules
from the COCONUT database were obtained from the
Zenodo upload accompanying the original publication at
http://zenodo.org/record/3778405/files/COCONUTapril.zip. A
random sample of 1 million molecules from the GDB-13
database17 was obtained from the Reymond group website at
http://gdbtools.unibe.ch:8080/cdn/gdb13.1M.freq.ll.smi.gz. A
random sample of 1 million molecules was constructed from the
ZINC database by first downloading each tranche separately from
the ZINC website, then concatenating all 1,669 tranches into a
single file and sampling from that file.

For each database, duplicate SMILES and SMILES strings that
could not be parsed by the RDKit were removed. Salts or sol-
vents were removed by splitting molecules into fragments and re-
taining only the heaviest fragment containing at least three heavy
atoms, using code adapted from the Mol2vec package63. Charged
molecules were neutralized using a list of neutralization reac-
tions provided in the RDKit Cookbook. Molecules with atoms
other than Br, C, Cl, F, H, I, N, O, P, or S were removed, and
molecules were converted to their canonical SMILES representa-
tions using the RDKit. Finally, SMILES strings were tokenized,
and molecules containing extremely rare tokens (present in less
than 0.01% of molecules in the database), as well as SMILES
strings longer than 250 characters, were removed. Samples of
between 1,000 and 500,000 SMILES were then drawn from the
preprocessed databases. SMILES strings were subsequently con-
verted to DeepSMILES47 or SELFIES48 using versions 1.0.1 and
1.0.2 of the deepsmiles (http://github.com/baoilleach/deepsmiles)
and selfies (http://github.com/aspuru-guzik-group/selfies) pack-
ages, respectively. Enumeration of non-canonical SMILES
was performed using the SmilesEnumerator class available from
http://github.com/EBjerrum/SMILES-enumeration, with augmenta-
tion factors of 3, 10, or 30. All of the datasets used in this work are
available from Zenodo at http://doi.org/10.5281/zenodo.4419886.

Chemical language models. Recurrent neural networks were
trained on samples of 1,000–500,000 molecules from the four chem-
ical structure databases, using code adapted from the REINVENT
package (http://github.com/MarcusOlivecrona/REINVENT).
SMILES were tokenized by considering individual characters
as tokens, except atomic symbols with more than one character
(Br, Cl) and environments within square brackets, such as [nH].
SELFIES were tokenized using the split_selfies function from the
selfies package. The vocabulary of the RNN then consisted of all
unique tokens detected in the training data, as well as start-of-string
and end-of-string characters and a padding token. Except where
otherwise noted, the architecture of the language models consisted
of a three-layer GRU with a hidden layer of 512 dimensions,
an embedding layer of 128 dimensions, and no dropout layers.
Models were trained using the Adam optimizer with β1 = 0.9
and β1 = 0.999, with a batch size of 128 (except where otherwise
noted) and a learning rate of 0.001, using teacher forcing. 10%
of the molecules in the training set were reserved as a validation
set and used to perform early stopping with a patience of 50,000
minibatches. After completion of model training, a total of 500,000
strings were sampled from each trained model. All of the code
used to train chemical language models is available from GitHub at

http://github.com/skinnider/low-data-generative-models.

Evaluating model performance. To quantify the performance
of the trained models, we implemented Python source code to calcu-
late a suite of 23 metrics that have previously been proposed for the
evaluation of generative models of molecules. These metrics were
as follows:

• The proportion of valid molecules generated by the model,
where “valid” molecules are those that can be parsed by the
RDKit (“% valid”).

• The proportion of novel molecules (that is, molecules not
found in the training set) generated by the model (“%
novel”).

• The proportion of unique molecules generated by the model
(“% unique”).

• The internal diversity37, defined as the mean Tanimoto co-
efficient between all pairs of molecules generated by the
model. Extended connectivity fingerprints64 with a diame-
ter of 3 and a length of 1,024 bits were used as input to the
calculation of the Tanimoto coefficient. Because calculating
the entire matrix of Tanimoto coefficients is prohibitive for
very large numbers of molecules, a random sample of 10,000
pairs of molecules was analyzed.

• The external diversity37, defined as the mean Tanimoto coef-
ficient between all pairs comprising one molecule generated
by the model and one molecule from the training set. Again,
a random sample of 10,000 pairs of molecules was analyzed
rather than computing the entire matrix of Tanimoto coeffi-
cients.

• The Fréchet ChemNet distance38 between the training and
generated molecules (“FCD”). The PyTorch implementation
available from http://github.com/insilicomedicine/fcd_torch
was used to calculate the FCD.

• The Jensen-Shannon divergences between the distributions
of 17 structural or physicochemical properties, comparing
molecules generated by the chemical language model to the
molecules comprising the training dataset. These properties,
and their abbreviations used in the figures, were as follows:

– The number of aliphatic rings in each molecule (“# of
aliphatic rings”)

– The number of aromatic rings in each molecule (“# of
aromatic rings”)

– The total number of rings in each molecule (“# of
rings”)

– The proportion of rotatable bonds in each molecule
(“% rotatable bonds”)

– The proportion of carbon atoms in each molecule that
are sp3 hybridized (“% sp3 carbons”)

– The proportion of atoms in each molecule that were
stereocenters (“% stereocenters”)

– The total proportions of each heavy atom across all
molecules in the dataset (“atoms”)

– The topological complexity40 of each molecule
(“Bertz TC”)

– The number of hydrogen acceptors in each molecule
(“# of hydrogen acceptors”)

– The number of hydrogen donors in each molecule (“#
of hydrogen donors”)
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– The calculated partition coefficient44 of each molecule
(“logP”)

– The frequencies of Murcko scaffolds65 of all
molecules in the dataset (“Murcko scaffolds”)

– The molecular weight of each molecule (“MWs”)

– The natural product-likeness score41 for each molecule
(“NP score”)

– The quantitative estimate of drug-likeness (QED)
score45 for each molecule (“QED”)

– The synthetic accessibility (SA) score66 (“SA score”)

– The topological polar surface area67 of each molecule.

In addition to the Jensen-Shannon distance, we also bench-
marked two other measures of differences between property
distributions, the Wasserstein distance and Kullback-Leibler
divergence, but found JSD was most strongly correlated to
experimental ground truth (that is, the size of the training
dataset) (Supplementary Fig. 10).

Code used to compute all 23 metrics is available from GitHub
at http://github.com/skinnider/low-data-generative-models.

Despite the large number of metrics that have been proposed for
the evaluation of generative models of molecules, there is little con-
sensus on which should be used to gauge model quality. We initially
evaluated the utility of these metrics themselves by correlating the
values of each of the 23 metrics to the size of the training dataset,
using the Spearman rank correlation to allow for non-linear relation-
ships. We reasoned that because increasing the size of the training
dataset from 1,000 to 500,000 molecules would be expected a pri-
ori to have a dramatic effect on the performance of a generative
model, this analysis could allow us to benchmark the metrics them-
selves that have been proposed for model evaluation. Five metrics
consistently achieved a Spearman correlation ≥ 0.80 to the size of
the training dataset in four different chemical databases (% valid,
FCD, % stereocenters, Murcko, and NP score). To combine infor-
mation from all five top-performing metrics, while accounting for
the covariance between metrics, we performed PCA on the centered
and scaled matrix using the R function ‘princomp’. The loadings
of each model on the first principal component, PC1, were used for
model evaluation. To ensure that these scores accurately captured
model performance, we additionally inspected and visualized the
proportion of valid molecules generated by each model. Pairwise
comparisons of models trained with different input data or differ-
ent hyperparameters were performed using a two-tailed t-test. The
complete set of outcomes calculated for all 5,108 chemical language
models analyzed in this study is provided as Supplementary Table
1.

Generative models of metabolomes. To train generative
models of bacterial, fungal, and plant metabolomes, we compiled
databases of known metabolites from the following sources. Bac-
terial metabolites were assembled from the E. coli Metabolome
Database (ECMDB)68, the P. aeruginosa Metabolome Database
(PAMDB)69, StreptomeDB70, NPASS71, and BioCyc72; for the lat-
ter two databases, only molecules linked to a bacterial producing
organism were retained. Plant metabolites were assembled from the
Phenol-Explorer73, PhytoHub (http://phytohub.eu/), NPASS, and
BioCyc databases (keeping only metabolites linked to a plant pro-
ducing organism in the latter two cases). Fungal metabolites were
obtained from the Yeast Metabolome Database (YMDB)74. We
then trained a total of 48 chemical generative models on the three
metabolomes. In addition to the input metabolome, we varied the

RNN model (comparing LSTM and GRU architectures), the repre-
sentation (comparing SMILES, DeepSMILES, and SELFIES), and
performed varying degrees of non-canonical SMILES enumeration
(with augmentation factors of 2x, 3x, 10x, 20x, or 30x). After
inspecting the PC1 scores of all 48 models, as well as the val-
ues of individual metrics, we selected the three LSTM networks
trained on non-canonical SMILES with the highest augmentation
factor for further analysis. To visualize the global chemical space
of the real and generated molecules, we computed a continuous,
512-dimensional representation of each molecule using the CDDD
package52 (available from http://github.com/jrwnter/cddd). We then
sampled a matching number of real and generated metabolites, and
embedded real and generated molecules from all three metabolomes
into two dimensions using UMAP59 (as implemented in the R pack-
age ‘uwot’), with the following parameters: n_neighbors = 50, alpha
= 2, and beta = 1.

Data availability. Input datasets used to train chem-
ical language models are available from Zenodo at
http://doi.org/10.5281/zenodo.4419886. Calculated metrics
for all 5,108 models discussed in this study are provided as
Supplementary Table 1.

Code availability. Code used to train and evaluate
chemical language models is available from GitHub at
http://github.com/skinnider/low-data-generative-models.

Acknowledgements. This work was supported by funding
from Genome Canada, Genome British Columbia, and Genome Al-
berta (projects 284MBO and 214PRO), and computational resources
provided by WestGrid, Compute Canada, and Advanced Research
Computing at the University of British Columbia. M.A.S. acknowl-
edges support from a CIHR Vanier Canada Graduate Scholarship,
a Roman M. Babicki Fellowship in Medical Research, a Borealis
AI Graduate Fellowship, a Walter C. Sumner Memorial Fellow-
ship, and a Vancouver Coastal Health–CIHR–UBC MD/PhD Stu-
dentship. The authors thank J. Liigand and F. Wang for helpful dis-
cussions.

Competing interests. The authors declare no competing inter-
ests.

Skinnider et al. | Deep generative models enable navigation in sparsely populated chemical space 15



References

1. Bohacek, R. S., McMartin, C. & Guida, W. C. The art and
practice of structure-based drug design: a molecular modeling
perspective. Med. Res. Rev. 16, 3–50 (1996).

2. Pollock, S. N., Coutsias, E. A., Wester, M. J. & Oprea, T. I.
Scaffold topologies. 1. Exhaustive enumeration up to eight
rings. J. Chem. Inf. Model. 48, 1304–1310 (2008).

3. Fink, T. & Reymond, J.-L. Virtual exploration of the chemi-
cal universe up to 11 atoms of C, N, O, F: assembly of 26.4
million structures (110.9 million stereoisomers) and analysis
for new ring systems, stereochemistry, physicochemical prop-
erties, compound classes, and drug discovery. J. Chem. Inf.
Model. 47, 342–353 (2007).

4. Blum, L. C. & Reymond, J.-L. 970 million druglike small
molecules for virtual screening in the chemical universe
database GDB-13. J. Am. Chem. Soc. 131, 8732–8733 (2009).

5. Ruddigkeit, L., van Deursen, R., Blum, L. C. & Reymond,
J.-L. Enumeration of 166 billion organic small molecules in
the chemical universe database GDB-17. J. Chem. Inf. Model.
52, 2864–2875 (2012).

6. Lameijer, E.-W., Kok, J. N., Bäck, T. & Ijzerman, A. P. The
molecule evoluator. An interactive evolutionary algorithm for
the design of drug-like molecules. J. Chem. Inf. Model. 46,
545–552 (2006).

7. Van Deursen, R. & Reymond, J.-L. Chemical space travel.
ChemMedChem 2, 636–640 (2007).

8. Virshup, A. M., Contreras-García, J., Wipf, P., Yang, W. &
Beratan, D. N. Stochastic voyages into uncharted chemical
space produce a representative library of all possible drug-like
compounds. J. Am. Chem. Soc. 135, 7296–7303 (2013).

9. Elton, D. C., Boukouvalas, Z., Fuge, M. D. & Chung, P. W.
Deep learning for molecular design—a review of the state of
the art. Mol. Syst. Des. Eng. 4, 828–849 (2019).

10. Cadeddu, A., Wylie, E. K., Jurczak, J., Wampler-Doty, M.
& Grzybowski, B. A. Organic chemistry as a language and
the implications of chemical linguistics for structural and ret-
rosynthetic analyses. Angew. Chem. Int. Ed. 53, 8108–8112
(2014).

11. Weininger, D. SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding rules. J.
Chem. Inf. Model. 28, 31–36 (1988).

12. Gómez-Bombarelli, R. et al. Automatic chemical design us-
ing a data-driven continuous representation of molecules.
ACS Cent. Sci. 4, 268–276 (2018).

13. Segler, M. H. S., Kogej, T., Tyrchan, C. & Waller, M. P. Gen-
erating focused molecule libraries for drug discovery with re-
current neural networks. ACS Cent. Sci. 4, 120–131 (2018).

14. Olivecrona, M., Blaschke, T., Engkvist, O. & Chen, H. Molec-
ular de-novo design through deep reinforcement learning. J.
Cheminform. 9, 48 (2017).

15. Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo
design of bioactive small molecules by artificial intelligence.
Mol. Inform. 37, 1700153 (2018).

16. Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement
learning for de novo drug design. Sci. Adv. 4, eaap7885
(2018).

17. Arús-Pous, J. et al. Exploring the GDB-13 chemical space
using deep generative models. J. Cheminform. 11, 20 (2019).

18. Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schnei-
der, G. Generative molecular design in low data regimes. Nat.
Mach. Intell. 2, 171–180 (2020).

19. Kotsias, P.-C. et al. Direct steering of de novo molecular gen-
eration with descriptor conditional recurrent neural networks.
Nat. Mach. Intell. 2, 254–265 (2020).

20. Li, Y., Zhang, L. & Liu, Z. Multi-objective de novo drug de-
sign with conditional graph generative model. J. Cheminform.
10, 33 (2018).

21. Zhou, Z., Kearnes, S., Li, L., Zare, R. N. & Riley, P. Opti-
mization of molecules via deep reinforcement learning. Sci.
Rep. 9, 10752 (2019).

22. Jin, W., Barzilay, R. & Jaakkola, T. S. Junction tree varia-
tional autoencoder for molecular graph generation. Preprint
at http://arxiv.org/abs/1802.04364 (2018).

23. Brown, N., Fiscato, M., Segler, M. H. S. & Vaucher, A. C.
GuacaMol: benchmarking models for de novo molecular de-
sign. J. Chem. Inf. Model. 59, 1096–1108 (2019).

24. Polykovskiy, D. et al. Molecular sets (MOSES): A bench-
marking platform for molecular generation models. Front.
Pharmacol. 11, 565644 (2020).

25. Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molec-
ular design using machine learning: Generative models for
matter engineering. Science 361, 360–365 (2018).

26. Rudolf, J. D., Alsup, T. A., Xu, B. & Li, Z. Bacterial ter-
penome. Nat. Prod. Rep. doi:10 . 1039 / d0np00066c
(2020).

27. Neil, D. et al. Exploring deep recurrent models with rein-
forcement learning for molecule design (2018).

28. Ståhl, N., Falkman, G., Karlsson, A., Mathiason, G. &
Boström, J. Deep Reinforcement Learning for Multiparame-
ter Optimization in de novo Drug Design. J. Chem. Inf. Model.
59, 3166–3176 (2019).

29. Liu, X., Ye, K., van Vlijmen, H. W. T., IJzerman, A. P. & van
Westen, G. J. P. An exploration strategy improves the diver-
sity of de novo ligands using deep reinforcement learning: a
case for the adenosine A2A receptor. J. Cheminform. 11, 35
(2019).

30. Awale, M., Sirockin, F., Stiefl, N. & Reymond, J.-L. Drug
analogs from fragment-based long short-term memory gen-
erative neural networks. J. Chem. Inf. Model. 59, 1347–1356
(2019).

31. Merk, D., Grisoni, F., Friedrich, L. & Schneider, G. Tuning ar-
tificial intelligence on the de novo design of natural-product-
inspired retinoid X receptor modulators. Commun. Chem. 1,
68 (2018).

32. Amabilino, S., Pogány, P., Pickett, S. D. & Green, D. V. S.
Guidelines for recurrent neural network transfer learning-
based molecular generation of focused libraries. J. Chem. Inf.
Model. 60, 5699–5713 (2020).

33. Renz, P., Van Rompaey, D., Wegner, J. K., Hochreiter, S.
& Klambauer, G. On failure modes in molecule generation
and optimization. Drug Discov. Today Technol. 32-33, 55–63
(2019).

34. Arús-Pous, J. et al. Randomized SMILES strings improve the
quality of molecular generative models. J. Cheminform. 11,
71 (2019).

35. Bjerrum, E. J. SMILES enumeration as data augmenta-
tion for neural network modeling of molecules. Preprint at
http://arxiv.org/abs/1703.07076 (2017).

36. Irwin, J. J. & Shoichet, B. K. ZINC–a free database of com-
mercially available compounds for virtual screening. J. Chem.
Inf. Model. 45, 177–182 (2005).

37. Benhenda, M. Can AI reproduce observed chemical diver-
sity? Preprint at http://doi.org/10.1101/292177 (2018).

16 Skinnider et al. | Deep generative models enable navigation in sparsely populated chemical space

http://dx.doi.org/10.1039/d0np00066c


38. Preuer, K., Renz, P., Unterthiner, T., Hochreiter, S. & Klam-
bauer, G. Fréchet ChemNet distance: A metric for generative
models for molecules in drug discovery. J. Chem. Inf. Model.
58, 1736–1741 (2018).

39. Van Deursen, R., Ertl, P., Tetko, I. V. & Godin, G. GEN:
highly efficient SMILES explorer using autodidactic gener-
ative examination networks. J. Cheminform. 12, 22 (2020).

40. Bertz, S. H. The first general index of molecular complexity.
J. Am. Chem. Soc. 103, 3599–3601 (1981).

41. Ertl, P., Roggo, S. & Schuffenhauer, A. Natural product-
likeness score and its application for prioritization of com-
pound libraries. J. Chem. Inf. Model. 48, 68–74 (2008).

42. Mendez, D. et al. ChEMBL: towards direct deposition of
bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).

43. Sorokina, M. & Steinbeck, C. Review on natural products
databases: where to find data in 2020. J. Cheminform. 12, 20
(2020).

44. Wildman, S. A. & Crippen, G. M. Prediction of physicochem-
ical parameters by atomic contributions. J. Chem. Inf. Com-
put. Sci. 39, 868–873 (1999).

45. Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S. &
Hopkins, A. L. Quantifying the chemical beauty of drugs.
Nat. Chem. 4, 90–98 (2012).

46. Sanchez-Lengeling, B., Outeiral, C., Guimaraes, G. L. &
Aspuru-Guzik, A. Optimizing distributions over molecular
space. An Objective-Reinforced Generative Adversarial Net-
work for Inverse-design Chemistry (ORGANIC). Preprint at
http://doi.org/10.26434/chemrxiv.5309668.v3 (2017).

47. O’Boyle, N. & Dalke, A. DeepSMILES: An adaptation of
SMILES for use in machine-learning of chemical structures.
Preprint at http://doi.org/10.26434/chemrxiv.7097960.v1
(2018).

48. Krenn, M., Häse, F., Nigam, A., Friederich, P. & Aspuru-
Guzik, A. Self-referencing embedded strings (SELFIES): A
100% robust molecular string representation. Mach. Learn.:
Sci. Technol. 1, 045024 (2020).

49. Kusner, M. J., Paige, B. & Hernandez-Lobato,
J. M. Grammar variational autoencoder. Preprint at
http://arxiv.org/abs/1703.01925 (2017).

50. Dai, H., Tian, Y., Dai, B., Skiena, S. & Song, L. Syntax-
directed variational autoencoder for structured data. Preprint
at http://arxiv.org/abs/1802.08786 (2018).

51. Bjerrum, E. J. & Sattarov, B. Improving chemical autoen-
coder latent space and molecular de novo generation diversity
with heteroencoders. Biomolecules 8, 131 (2018).

52. Winter, R., Montanari, F., Noé, F. & Clevert, D.-A. Learning
continuous and data-driven molecular descriptors by translat-
ing equivalent chemical representations. Chem. Sci. 10, 1692–
1701 (2019).

53. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. &
Salakhutdinov, R. Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15, 1929–
1958 (2014).

54. Smith, S. L., Kindermans, P.-J. & Le, Q. V. Don’t de-
cay the learning rate, increase the batch size. Preprint at
http://arxiv.org/abs/1711.00489 (2017).

55. Johnston, C. W. et al. An automated Genomes-to-Natural
Products platform (GNP) for the discovery of modular nat-
ural products. Nat. Commun. 6, 8421 (2015).

56. Zhang, Q. et al. Structural investigation of ribosomally syn-
thesized natural products by hypothetical structure enumera-

tion and evaluation using tandem MS. Proc. Natl. Acad. Sci.
U.S.A. 111, 12031–12036 (2014).

57. Zheng, S. et al. QBMG: quasi-biogenic molecule generator
with deep recurrent neural network. J. Cheminform. 11, 5
(2019).

58. Wishart, D. S. et al. HMDB 4.0: the human metabolome
database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).

59. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Man-
ifold Approximation and Projection for dimension reduction.
Preprint at http://arxiv.org/abs/1802.03426 (2018).

60. Da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating
the dark matter in metabolomics. Proc. Natl. Acad. Sci. U.S.A.
112, 12549–12550 (2015).

61. Coley, C. W., Eyke, N. S. & Jensen, K. F. Autonomous discov-
ery in the chemical sciences part II: outlook. Angew. Chem.
Int. Ed. 59, 23414–23436 (2020).

62. Vanhaelen, Q., Lin, Y.-C. & Zhavoronkov, A. The advent of
generative chemistry. ACS Med. Chem. Lett. 11, 1496–1505
(2020).

63. Jaeger, S., Fulle, S. & Turk, S. Mol2vec: Unsupervised ma-
chine learning approach with chemical intuition. J. Chem. Inf.
Model. 58, 27–35 (2018).

64. Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J.
Chem. Inf. Model. 50, 742–754 (2010).

65. Bemis, G. W. & Murcko, M. A. The properties of known
drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–
2893 (1996).

66. Ertl, P. & Schuffenhauer, A. Estimation of synthetic ac-
cessibility score of drug-like molecules based on molecular
complexity and fragment contributions. J. Cheminform. 1, 8
(2009).

67. Ertl, P., Rohde, B. & Selzer, P. Fast calculation of molecular
polar surface area as a sum of fragment-based contributions
and its application to the prediction of drug transport proper-
ties. J. Med. Chem. 43, 3714–3717 (2000).

68. Sajed, T. et al. ECMDB 2.0: A richer resource for understand-
ing the biochemistry of E. coli. Nucleic Acids Res. 44, D495–
501 (2016).

69. Huang, W. et al. PAMDB: a comprehensive Pseudomonas
aeruginosa metabolome database. Nucleic Acids Res. 46,
D575–D580 (2018).

70. Moumbock, A. F. A. et al. StreptomeDB 3.0: an updated com-
pendium of streptomycetes natural products. Nucleic Acids
Res. doi:10.1093/nar/gkaa868 (2020).

71. Zeng, X. et al. NPASS: natural product activity and species
source database for natural product research, discovery and
tool development. Nucleic Acids Res. 46, D1217–D1222
(2018).

72. Karp, P. D. et al. The BioCyc collection of microbial genomes
and metabolic pathways. Brief. Bioinform. 20, 1085–1093
(2019).

73. Neveu, V. et al. Phenol-Explorer: an online comprehensive
database on polyphenol contents in foods. Database 2010,
bap024 (2010).

74. Ramirez-Gaona, M. et al. YMDB 2.0: a significantly ex-
panded version of the yeast metabolome database. Nucleic
Acids Res. 45, D440–D445 (2017).

Skinnider et al. | Deep generative models enable navigation in sparsely populated chemical space 17

http://dx.doi.org/10.1093/nar/gkaa868


Supplementary Fig. 1 | Evaluating low-data generative models of purchasable chemical space.
a, Schematic overview of the “% valid”, “% unique”, and “% novel” metrics.
b, Values of the five top-performing metrics with the strongest correlations (ρ ≥ 0.82) to training dataset size for n = 110 generative models trained on
varying numbers of molecules from the ZINC database.
c, Values of five exemplary metrics with moderate to weak correlations (0.48 ≤ ρ ≤ 0.73) to training dataset size for n = 110 generative models trained
on varying numbers of molecules from the ZINC database.
d, Values of five exemplary metrics with little or no correlation (ρ ≤ 0.36) to training dataset size for n = 110 generative models trained on varying
numbers of molecules from the ZINC database.
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Supplementary Fig. 2 | Evaluating low-data generative models of divergent chemical spaces.
a, Values of the five top-performing metrics with the strongest correlations (average rank correlation ≥ 0.80) to training dataset size for n = 440 generative
models trained on varying numbers of molecules from the ChEMBL, COCONUT, GDB, or ZINC databases. Points and error bars show the mean and
standard deviation, respectively, of ten independent replicates.
b, Values of five exemplary metrics with moderate to weak correlations to training dataset size for n = 440 generative models trained on varying numbers
of molecules from the ChEMBL, COCONUT, GDB, or ZINC databases.
c, Values of five exemplary metrics with little or no correlation to training dataset size for n = 440 generative models trained on varying numbers of
molecules from the ChEMBL, COCONUT, GDB, or ZINC databases.
d, PC1 scores for n = 440 chemical language models trained on varying numbers of molecules sampled from the ChEMBL, COCONUT, GDB, or ZINC
databases. Inset text shows the Spearman correlation.
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Supplementary Fig. 3 | Robustness of principal component analysis for the evaluation of chemical generative models.
a, PCA of top-performing metrics, top, and PC1 scores, bottom, for chemical language models trained on varying numbers of molecules sampled
from the ChEMBL, COCONUT, GDB, and ZINC database, with PCA performed separately for each database. Bottom, inset text shows the Spearman
correlation.
b, PCA of top-performing metrics for chemical language models trained on varying numbers of molecules sampled from three of four databases, colored
by the size of the training dataset, top, or the chemical database on which the generative models were trained, middle. Bottom, PC1 scores for models
trained on the withheld database, projected onto the coordinate basis of the other three databases. Inset text shows the Spearman correlation.
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Supplementary Fig. 4 | Training dataset size requirements in different chemical spaces.
Mean difference in PC1 scores between chemical language models trained on varying numbers of molecules sampled from each pair of chemical
structure databases. Dark squares indicate pairs without statistically significant differences (uncorrected p > 0.05, two-sided t-test).
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Supplementary Fig. 5 | Evaluating alternative molecular representations for low-data generative models in distinct chemical spaces.
a, Proportion of valid SMILES generated by chemical language models trained on one of three string representations of molecules from the ChEMBL,
COCONUT, and GDB databases.
b, PCA of top-performing metrics for molecules generated by n = 1,320 chemical language models trained on one of three string representations of
molecules from the ChEMBL, COCONUT, and GDB databases, colored by the size of the training dataset.
c, As in b, but colored by the chemical database on which the generative models were trained.
d, As in b, but colored by molecular representation.
e, PC1 scores of chemical language models trained on one of three string representations of molecules from the ChEMBL, COCONUT, and GDB
databases.
f, Fréchet ChemNet distances of chemical language models trained on one of three string representations of molecules from the ChEMBL, COCONUT,
and GDB databases.
g, Mean difference in PC1 scores between chemical language models trained on varying numbers of molecules sampled from the ChEMBL, COCONUT,
and GDB databases, represented either as DeepSMILES or SELFIES, y-axis, or SMILES, x-axis. Dark squares indicate pairs without statistically
significant differences (uncorrected p > 0.05, two-sided t-test).

24 Skinnider et al. | Deep generative models enable navigation in sparsely populated chemical space



Skinnider et al. | Deep generative models enable navigation in sparsely populated chemical space 25



Supplementary Fig. 6 | Data augmentation by non-canonical SMILES enumeration.
a, Proportion of valid SMILES generated by chemical language models trained on molecules from the ChEMBL, COCONUT, and GDB databases after
varying degrees of non-canonical SMILES enumeration.
b, Data as in a and Fig. 3i, but showing the relationship between the size of the training dataset and the proportion of valid SMILES generated by
models for each degree of non-canonical SMILES enumeration separately.
c, PCA of top-performing metrics for molecules generated by n = 1,760 chemical language models trained on molecules from the ChEMBL, COCONUT,
and GDB databases after varying degrees of non-canonical SMILES enumeration, colored by the size of the training dataset.
d, As in c, but colored by the chemical database on which the generative models were trained.
e, As in c, but colored by the amount of SMILES enumeration.
f, PC1 scores of chemical language models trained on molecules from the ChEMBL, COCONUT, and GDB databases after varying degrees of non-
canonical SMILES enumeration.
g, Mean difference in PC1 scores between chemical language models trained on molecules from the ChEMBL, COCONUT, and GDB databases
represented as canonical SMILES, x-axis, or non-canonical SMILES after varying degrees of data augmentation, y-axis. Dark squares indicate pairs
without statistically significant differences (uncorrected p > 0.05, two-sided t-test).
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Supplementary Fig. 7 | Hyperparameter tuning in the ChEMBL database.
a, PCA of top-performing metrics for molecules generated by n = 1,210 chemical language models, trained on varying numbers of molecules from the
ChEMBL database with varying model hyperparameters, colored by the size of the training dataset.
b, Mean PC1 scores of chemical language models as a function of the total number of neurons in the model. Solid lines show local polynomial
regression.
c, Mean PC1 scores for molecules trained on the ChEMBL database, as a function of both the number of molecules in the training dataset, x-axis, and
varying hyperparameters, y-axis. The mean of five independent replicates is shown.
d, Proportion of n = 110 chemical language models with varying hyperparameters, trained on the number of molecules shown on the y-axis, that
outperformed a model without hyperparameter tuning trained on the number of molecules shown on the x-axis.
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Supplementary Fig. 8 | Optimizing generative models of bacterial, fungal, and plant metabolomes.
a, PCA of top-performing metrics for molecules generated by n = 48 chemical language models, trained on bacterial, fungal, or plant metabolomes with
varying inputs and hyperparameters, colored by the target metabolome.
b, As in a, but colored by the molecular representation and data augmentation strategy.
c, As in a, but colored by the RNN architecture.
d, Proportion of valid molecules produced by generative models of metabolomes trained with different molecular representations (SMILES,
DeepSMILES, or SELFIES), data augmentation strategies (non-canonical SMILES enumeration with an augmentation factor of between 2x and 30x),
and RNN architectures (GRU or LSTM).
e, As in d, but showing the Fréchet ChemNet distance between generated and real metabolites.
f, As in d, but showing the Jensen-Shannon divergence of the proportion of stereocenters between generated and real metabolites.
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Supplementary Fig. 9 | Physicochemical properties of generated metabolites.
a, Atom composition of real and generated bacterial, fungal, and plant metabolites.
b, Proportion of heteroatoms in real and generated metabolites.
c, Topological polar surface area of real and generated metabolites.
d, Proportion of sp3 carbons in real and generated metabolites.
e, Number of rings found in real and generated metabolites.
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Supplementary Fig. 10 | Comparing measures of differences between property distributions.
Correlation between the Jensen-Shannon distance, Wasserstein distance, or Kullback-Leibler divergences of 17 structural or physicochemical properties
between molecules in the training set and molecules generated by chemical language models, and the size of the training dataset, for a total of 440
chemical language models trained on the ChEMBL, COCONUT, GDB, or ZINC databases.
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