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Abstract

Machine learning scoring functions for protein-ligand binding affinity have been

found to consistently outperform classical scoring functions when trained and tested

on crystal structures of bound protein-ligand complexes. However, it is less clear how

these methods perform when applied to docked poses of complexes.

We explore how the use of docked, rather than crystallographic, poses for both

training and testing affects the performance of machine learning scoring functions.

Using the PDBbind Core Sets as benchmarks, we show that the performance of a

structure-based machine learning scoring function trained and tested on docked poses

is lower than that of the same scoring function trained and tested on crystallographic

poses. We construct a hybrid scoring function by combining both structure-based and

ligand-based features, and show that its ability to predict binding affinity using docked

poses is comparable to that of purely structure-based scoring functions trained and

tested on crystal poses. Despite strong performance on docked poses of the PDBbind

Core Sets, we find that our hybrid scoring function fails to generalise to anew data

set, demonstrating the need for improved scoring functions and additional validation

benchmarks.
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Code and data to reproduce our results are available from https://github.com/oxpig/learning-

from-docked-poses.

Introduction

Rapidly prioritising which compounds to make is a key question in early-stage drug dis-

covery1. When the structure of the target is known, one commonly-used approach is high-

throughput protein-ligand docking,2,3 which uses scoring functions to rank compounds by

their predicted affinity for the target protein. Such scoring functions must make several

assumptions that trade biophysical accuracy for speed, and rely predominantly on structure-

based features to quantify the various protein-ligand interactions. It is common practice to

use X-ray crystallographic structures of bound protein-ligand complexes when training and

testing these models to predict protein-ligand binding affinity. This is reasonable, as it iso-

lates the task of binding affinity prediction from structural errors that might be introduced

as a result of inaccurate or incorrect ligand pose prediction, or due to the rigid receptor as-

sumption that is often used in docking.4–6 However, in a real-world drug discovery scenario,

it is highly unlikely that a crystal structure of the bound protein-ligand complex will be

available for every ligand or class of ligands of interest. Instead, protein-ligand docking is

often used to predict the binding mode of each ligand within the binding pocket of a protein

target. Thus, for scoring functions to be relied upon in prospective screens, they will need

to show good predictive performance not only on experimentally-determined binding poses,

but also on docked poses.

Although less common than the use of crystal structures, there are a few reported studies

of the effect of using docked poses in training and testing scoring functions. Durrant and

McCammon7 used both crystallographic and docked poses in the development and evaluation

of their scoring function, NNScore 2.0, and noted that the optimal choice of docking protocol

was highly system-dependent, but did not examine the difference in performance between
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training using only crystallographic or only docked poses of the same complexes. Zilian

and Sotriffer8 trained SFCScoreRF using crystal poses from the PDBbind database,9,10 and

validated on a combination of crystal poses from the PDBbind database and docked poses

from the CSAR–NRC HiQ11 and the CSAR 2012 benchmarks.12 SFCScoreRF demonstrated

strong performance on crystallographic poses of the PDBbind 2007 Core Set, with a Pearson

correlation coefficient between the predicted and experimental binding affinity of 0.779; and

on docked poses of the CSAR–NRC HiQ test set, with a Pearson correlation coefficient

between predicted and experimental binding affinity of 0.730. Performance on the CSAR

2012 benchmark was highly target-dependent, with the authors attributing poor performance

on the kinase targets CHK1 and ERK2 to the poor quality of docked poses. More recently,

Jimenez et al.13 validated KDEEP using both crystal poses and docked poses but, as in

the earlier studies, used docked poses only when crystal structures were unavailable, so the

impact of the use of docked poses in place of crystal structures was not determined. Li et al.14

investigated how the use of docked poses in place of crystal poses affected the performance

of the AutoDock Vina scoring function, RF-Score, and RF-Score v3. They reported that,

contrary to what might be expected, using docked poses in place of crystal poses had only a

small effect on the accuracy of their binding affinity predictions; for example, the Spearman

rank correlation coefficient between predicted and experimental binding affinity attained by

RF-Score v3 on the PDBbind 2013 Core Set dropped from 0.662 (crystal poses) to 0.633

(docked poses). The authors also reported that this drop in performance was reduced by

training RF-Score v3 on docked poses instead of crystal poses, resulting in a Spearman

rank correlation coefficient between predicted and experimental binding affinity of 0.643 on

the PDBbind 2013 Core Set, suggesting that training on docked poses can make a scoring

function less susceptible to errors when subsequently tested on docked poses.

Here, we describe a new approach to compensate for potential errors introduced into

protein-ligand binding affinity prediction through the use of docked (instead of crystallo-

graphic) poses. Previously,15 we reported that the inclusion of pose-independent ligand-
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based features improved the performance of several machine-learning scoring functions in

predicting protein-ligand binding affinity when trained on crystallographic binding modes of

the PDBbind database,9 and tested on the Comparative Assessment of Scoring Functions

(CASF) benchmarks.4–6 We also found that ligand-based features are predictive of the av-

erage binding affinity of a ligand for its protein targets in PDBbind15. Motivated by this,

and the fact that ligand-based features are not affected by errors introduced by the use of

docked poses, we investigated how the inclusion of a rich set of ligand-based features as in-

puts to a machine learning scoring function affects its performance when trained and tested

on docked poses. Firstly, we investigated the effect of training and testing scoring functions

using only docked poses generated by Smina,16 a fork of AutoDock Vina,17 as opposed to

X-ray crystallographic poses, on the resulting scoring functions. We found that pose pre-

diction errors are common when re-docking the ligands in the PDBbind database into their

corresponding protein co-crystal structures, and that even when accurate poses were gen-

erated, the Smina scoring function often failed to rank these native-like poses higher than

non-native ones. We also found that training and testing machine learning scoring functions

on docked poses degrades scoring function performance relative to those trained and tested

on crystallographic poses even when there is a high level of similarity between proteins in the

training and test sets. Augmenting the input features with rapidly computed ligand-based

molecular descriptors results in a greater gain in performance when using docked poses, than

when using crystal poses for training and testing.

Finally, we construct a new data set consisting of six of the eight protein targets from

the DUD-E Diverse Subset,18 for which ligand binding affinity data were available in the

ChEMBL database, version 25,19. We find that our models perform well when trained and

tested on docked poses of ligands for a single target; but poorly when trained and tested on

docked poses for different targets. While there is clearly some way to go in order to create

truly generalised machine learning scoring functions, our results suggest that the inclusion

of additional ligand-based input features in a scoring function helps to correct for potential
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errors introduced by docking. This thus greatly expands the set of targets and ligands that

can be used to train new scoring functions, and will help to generate better predictions of

protein-ligand binding affinities.

Methods

Data

PDBbind Training Set

We used the PDBbind 2018 Refined Set10 of high-quality protein-ligand structures and

binding affinities as our source of training data. This consists of 4,463 crystal structures of

protein-ligand complexes from the PDB20 with experimentally-determined binding affinity

values. For our training set we selected all the structures in the PDBbind 2018 Refined

Set, but excluded 481 structures for which either the docking failed or features could not

be computed; we also excluded any structures that were also present in the PDBbind Test

Set (described below). This resulted in a training set of 3,752 high quality protein-ligand

complexes with corresponding binding affinity data, which we refer to as the “PDBbind

Training Set”.

We used the PDBbind 2018 Refined Set rather than the larger PDBbind 2018 General

Set10 for two reasons. Firstly, structures in the Refined Set are subject to strict quality

controls, including a resolution of 2.5Å or better and no missing side chains, reducing the

risk of errors in the docking results that might be introduced by the use of inaccurate crystal

structures. Secondly, while several authors have reported improved performance on the

PDBbind Core Sets when training on the larger General Set instead of the Refined Set,21,22

we observed previously15 that this can be attributed to increased representation of the Core

Set proteins in the training set: when proteins with high sequence identity to those in the test

set were excluded from the training set, there was little difference in performance between
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training on the General Set and training on the Refined Set.15

PDBbind Test Set

To evaluate the performance of our scoring functions, we constructed a test set by combining

the structures in the PDBbind 2007, 2013, and 2016 Core Sets, which correspond to the test

sets used in the Comparative Assessment of Scoring Functions (CASF) 2009, 2013, and 2016,

respectively.4–6 Combining these three PDBbind Core Sets, and removing 30 structures for

which features could not be computed due to RDKit version 2019.09.123 failing to sanitise

the ligand, resulted in a test set of 525 protein-ligand complexes, which we refer to as

the “PDBbind Test Set”. Previously, we found that using this combined test set of unique

protein-ligand complexes in place of the smaller Core Sets resulted in a better (i.e. narrower)

confidence interval for the performance metric.15

Updated DUD-E Diverse Subset

We constructed an Updated DUD-E18 Diverse Subset for six of the eight diverse protein

targets for which K i binding affinity data could be found in version 25 of the ChEMBL

database.19. These targets were: (1) serine/threonine-protein kinase AKT (AKT1); (2)

cytochrome P450 3A4 (CP3A4); (3) glucocorticoid receptor (GCR); (4) HIV-1 protease

(HIVPR); (5) HIV-1 reverse transcriptase (HIVRT); and (6) kinesin-like protein 1 (KIF11).

Two of the eight targets in the DUD-E Diverse Set, β-lactamase (AMPC) and C-X-C

chemokine receptor type 4 (CXCR4), which were the smallest sets in the original DUD-

E Diverse Subset, did not have any ligands with recorded K i measurements in ChEMBL at

the time of writing, and so were excluded.

For each target, we queried ChEMBL version 25 for ligands that bind to that target and

which had one or more measurement of K i. We used only K i data and excluded measure-

ments such as IC50 so as not to conflate different types of data. We trained our models using

the corresponding pChEMBL value, which is the negative base-10 logarithm of the binding
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constant reported by ChEMBL, equivalent to the pK value.24 Duplicate pChEMBL values

for a protein-ligand pair were removed; for ligands with different pChEMBL values for the

same target, we used the arithmetic mean of the pChEMBL value. The DUD-E abbrevia-

tions for the names of the six targets for which K i data were available in ChEMBL, together

with the PDB code of the structure provided by DUD-E and the number of ligands for each

target, are shown in Supporting Information Table 1.

The majority of the data for HIVRT and CP3A4 span only four orders of magnitude,

with pChEMBL values ranging from 4 to 8. The data for GCR cover a slightly larger range,

with pChEMBL values ranging from 4.7 to 10, while the data for AKT1, HIVPT, and KIF11

span at least six orders of magnitude. The binding affinities all lie within the range of values

represented in the PDBbind 2018 Refined Set, so a Random Forest (RF) model trained

on PDBbind data could be expected to interpolate successfully. The distributions of the

pChEMBL values for the six targets are shown in Supporting Information Figure 1. We

performed three different validation experiments using the Updated DUD-E Diverse Subset.

First, to explore the effect of using docked poses in place of crystallographic poses, we trained

on docked poses (see “Docking Protocol”) of the PDBbind Training Set and tested on docked

poses of all of the ligands obtained from ChEMBL for each target. Second, we investigated

whether our models could learn from docked poses obtained by docking ligands taken from

ChEMBL into a single structure of a protein target, rather than using the co-crystal cognate

structure of the protein each ligand. To do this, for each target we randomly selected 80%

of the ligands obtained from ChEMBL for that target to use as a training set. The resulting

model was then tested on the remaining 20% of the ligands for that target (so-called “Intra-

target training”). Third, we investigated whether our models could generalise to ligands for

a previously-unseen target when trained upon data other than the PDBbind Refined Set.

For each target we trained on all ligands known to bind to the other five targets, and tested

on the held-out target’s set of ligands (so-called “Inter-target training”).
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Docking Protocol

All docking calculations were performed using Smina16 (version November 9 2017), a fork

of AutoDock Vina.17 Protein and ligand structures were prepared for docking using the

following protocol. For each ligand, an initial conformer was generated using the ETKDG

method25 implemented in RDKit version 2019.09.1.23 For the PDBbind data, this ensures

the docking could not be biased by starting with the crystallographic bond lengths, bond an-

gles, and torsions of the ligand. PDBQT files for both the receptor and ligand were generated

using OpenBabel.26 We used the default parameters of Smina, with the following exceptions:

autobox add=8; exhaustiveness=20; and num modes=20. For each protein-ligand complex

from PDBbind, the centre of search space was defined by passing the crystallographic bind-

ing mode of the ligand using the autobox ligand parameter. For each ligand, up to 20 diverse

docked poses were generated by Smina. In addition to docking, we also performed a local

AutoDock Vina energy minimisation of the crystallographic binding mode of the ligand pro-

vided by PDBbind using Smina to generate a single near-native docked pose. To perform the

minimisation, we used Smina’s minimize option with default parameters. For the Updated

DUD-E Diverse Subset, we docked the ligands into the PDB structure provided by DUD-E

for each target, using the crystallographic ligand binding pose provided by DUD-E to define

the centre of the search space.

The quality of a docked pose was assessed by computing the root-mean-squared devia-

tion (RMSD) of the coordinates of the atoms of the ligand’s docked pose with respect to

the coordinates of the ligand’s atoms in the crystallographic pose. To ensure we correctly

accounted for symmetry when computing the RMSD between two conformers, we identified

symmetrically equivalent permutations of the atomic indices of a molecule by performing a

substructure match of the molecule against itself using RDKit version 2019.09.1. We then

applied these permutations to the indices of the atoms and re-computed the RMSD of the

docked and crystallographic structures for each permutation. The lowest computed RMSD

value was then taken as the RMSD of that docked pose.
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Scoring Function Construction

We used the Random Forest (RF)27 as implemented in Scikit-Learn version 0.22.028 as our

learning algorithm, as our previous results demonstrated that it consistently outperformed

other tested machine learning methods.15 We built three models to predict the binding

affinity of a protein-ligand complex that differed in the types of input features used: a

purely ligand-based (LB) model; a traditional structure-based (SB) model using protein-

ligand intermolecular features; and a hybrid (HB) model consisting of both ligand-based and

structure-based features.

For the input features of the ligand-based (LB) model, we used a set of pose-independent

molecular descriptors computed for each ligand using RDKit version 2019.09.1. These de-

scriptors are conformation-independent and may be categorised as either (computed) experi-

mental bulk properties (such as molar refractivity or logP) or theoretical descriptors derived

from a symbolic representation of the molecule. The theoretical descriptors may be fur-

ther categorised according to the dimensionality of the representation of the molecule from

which they are derived. The conformer-independent descriptors we consider are either 1-D

compositional properties (such as heavy atom counts, bonds counts, and molecular weight)

or 2-D topological properties (such as fragment counts, topological polar surface area, and

connectivity index). Any features with zero variance across the training data set, or that

were null-valued (i.e. infinite or not computable) were excluded. We removed the Ipc in-

dex29 as it produced extreme numerical values for larger molecules that were too large to be

represented as 32-bit floats. This resulted in 185 ligand-based features, and the full list of

features is given in the Supporting Information, under “RDKit Features”.

Our structure-based (SB) model uses the features of the Random Forest-based scoring

function RF-Score v330. Six of these features are the same six terms used by the AutoDock

Vina scoring function (five empirical force-field-like potentials derived from the interactions

between protein and ligand atoms, and the number of rotatable bonds in the ligand). The

remaining 36 features are the counts of pairwise interactions between protein and ligand
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atoms within 12Å of each other, for example, the number of protein carbon-ligand nitrogen

pairs. Four elements (C, N, O, and S) are considered in the protein and nine elements (C,

N, O, F, P, S, Cl, Br, and I) in the ligand. These features were calculated using the Open

Drug Discovery Toolkit version 0.6.31

For the hybrid (HB) model, we used the features of both the ligand-based and structure-

based models as inputs and again trained Random Forest models using the training set

described above.

Model Training and Testing

PDBbind Validation

To investigate the effect of using docked or crystallographic ligand binding modes on binding

affinity prediction, we performed a five-fold cross-validation on the PDBbind Training Set.

Four approaches to training our scoring functions were compared, training on structure-based

features derived from: (i) the crystallographic pose of the ligand; (ii) a single docked pose

obtained by performing local minimisation of the ligand using Smina; (iii) a single docked

pose, ranked highest by Smina; and (iv) multiple docked poses for each ligand, in this case

up to 20 diverse poses per ligand generated by Smina. In case (iv), each pose was labelled

with the same experimental binding affinity value during training.

We tested three strategies for predicting the binding affinity of a ligand using its docked

poses: (i) predicting the binding affinity using the pose ranked highest by Smina; (ii) pre-

dicting the binding affinity for each docked pose and taking the highest; and (iii) predicting

the binding affinity for each docked pose and taking the arithmetic mean.

Updated DUD-E Diverse Subset

Using the six targets of the Updated DUD-E Diverse Subset, we applied three different

approaches to training and validation. First, models were trained on docked poses of the

PDBbind Training Set and tested on docked poses of the Updated DUD-E Diverse Subset.
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Second, we performed an “inter-target” validation in which each of the six targets in turn

was held out as a test set with the remaining five targets forming the training set. Third,

we performed an “intra-target” validation in which we randomly selected 20% of the ligands

for each target to be a validation set, and trained on the remaining 80% of the ligands for

that target. We then repeated both the inter-target and intra-target validation experiments

by combining the DUD-E/ChEMBL data with the PDBbind Training Set.

The performance of each scoring function was evaluated by computing the Pearson corre-

lation coefficient between the predicted and experimentally-determined values of the protein-

ligand binding affinity, expressed as pK i values.

Results and Discussion

Accuracy of docked poses

We first evaluated the quality of the predicted binding poses generated by Smina for the

4,277 ligands in the PDBbind Training Set (3,752) and PDBbind Test Set (525). For each

ligand, up to 20 diverse poses were generated. Only 1,357 (≈ 32%) of the ligands re-docked

by Smina had at least one pose with with an RMSD less than 2Å with respect to the

crystallographic coordinates. For 1,003 ligands (≈ 23%), every pose generated by Smina

had an RMSD greater than 4Å. The distribution of the lowest RMSD docked pose for each

complex is shown in Supporting Information Figure 2. The AutoDock Vina scoring function

used by Smina often failed to rank a near-native (“good”) pose first even when one was

generated by Smina: of the 1,357 complexes with at least one pose with an RMSD below

2Å, about half (691) of the top-ranked poses returned for Smina had an RMSD greater than

2Å, and about a quarter (371) of these had an RMSD of greater than 4Å. This agrees with

previous results that have shown that docking scoring functions are not always a reliable

way of selecting the best pose from a set of putative binding poses.32 One well documented

source of error in docking is the difficulty of sampling the conformational space of large,
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highly flexible molecules. However, we found little correlation between either the size or

the flexibility of the ligand and the RMSD of the best docked pose (Supporting Information

Figure 3).

Effect of the quality of the docked poses on model training and

testing

As there was considerable variation in the accuracy of the docked poses generated by Smina,

we investigated how the quality of the docked pose, or poses, used to train and test our models

affected binding affinity prediction. For this, we trained and tested each model using five-fold

cross-validation of the PDBbind Training Set. In our first set of experiments, to determine

the influence of the ligand’s pose on model performance, we trained the models using a single

minimised pose (obtained by minimising the crystallographic binding pose using Smina) of

each ligand in the training folds and tested on all of the (up to) 20 docked poses of each ligand

in the test fold. We performed three experiments investigating strategies for making a single

prediction of binding affinity using multiple docked poses of the test ligand. These involved

using our models to predict the binding affinity for: (1.1) the pose ranked first by Smina;

(1.2) all (up to) 20 docked poses, taking the highest value as the predicted affinity; (1.3) all

(up to) 20 poses and taking the mean score as the predicted affinity; and (1.4) training and

testing using the crystallographic coordinates of each ligand, as a control. Minimised crystal

poses were used during training for experiments (1.1)-(1.3) to control for possible errors due

to poor docking while ensuring that, like the docked poses for the test set, the training poses

were optimised with respect to the Smina scoring function.

Table 1 compares the average Pearson correlation coefficient achieved in each experiment

under five-fold cross validation using the three docking-based scoring strategies (experiments

1.1-1.3) with training and testing on crystal poses (experiment 1.4). The performance of the

ligand-based (LB) model is shown for comparison; its performance is necessarily the same

regardless of scoring strategy, as the ligand-based features are pose-independent. Both the
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structure-based (SB) model and hybrid (HB) model (combination of LB and DB features)

perform worse when trained and tested on docked ligand poses instead of the experimentally-

determined crystallographic poses, regardless of the scoring strategy. Using the mean pre-

dicted affinity across a set of docked poses yields particularly poor results when compared

to training and testing on crystal poses, with the Pearson correlation coefficient between

predicted and experimentally-determined binding affinity dropping from 0.746 to 0.604 for

the SB model, and from 0.768 to 0.676 for the HB model. Testing on the pose ranked best

by Smina results in a smaller drop in Pearson correlation coefficient than when taking the

mean of the predicted affinities across multiple poses: to 0.659 for the SB model and to 0.714

for the HB model. The large drop in performance of the SB model is in contrast with the

results of Li et al., who found that training and testing on docked poses resulted in only

a small difference in performance14. One possible explanation for this difference is that by

training only on minimised poses the models only see docked poses that are very close to the

crystal pose, and so may not be capable of extrapolating to the less accurate docked poses

used for testing.

Table 1: Pearson correlation coefficient between predicted and experimental binding affinity
under five-fold cross-validation on the PDBbind Training Set. Random Forest models were
trained using ligand-based (LB) features, structure-based (SB) features derived from a single
minimised pose, or using both LB and SB features (HB), and tested on up to 20 docked poses,
or the crystallographic pose of each ligand. The Pearson correlation coefficient was computed
between the experimental and predicted binding affinity values obtained in four experiments:
(1.1) scoring the pose ranked best by Smina, (1.2) scoring all poses and taking the maximum
score, (1.3) scoring all poses and taking the mean score, and (1.4) training and testing using
the experimentally-determined binding pose. As expected, the LB model is insensitive to
the docked ligand pose(s). The best performance for each scoring strategy is underlined.

Experiment Train Pose(s) Test Pose(s) LB Model SB Model HB Model
1.1 Minimised Top 0.719 0.659 0.714
1.2 Minimised All (max) 0.719 0.682 0.732
1.3 Minimised All (mean) 0.719 0.604 0.676
1.4 Crystal Crystal 0.719 0.746 0.768

Having found that for models that used structure-based features, testing on minimised

crystallographic poses and testing on docked poses results in lower performance than when
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training and testing on crystal poses, we next investigated whether training on docked poses

instead of minimised crystal poses would enable the models to better generalise to docked

poses. We thus repeated experiments 1.1, 1.2, and 1.3, but this time trained on the pose

ranked best by Smina, rather than the minimised crystallographic pose. The results are

shown in Table 2. In all cases, our models perform better when trained on docked poses

rather than minimised crystallographic poses. This difference is marginal when taking the

highest predicted affinity of the docked poses of the test ligands (2.2), but noticeable when

using just the docked pose ranked best by Smina (2.1), or when taking the mean predicted of

the poses (2.3). This suggests that training on docked poses helps our models to generalise

to docked poses of varying accuracy, and that when presented with multiple docked poses,

the highest score assigned by our models is likely the most accurate, reflective of the actual

protein-ligand binding affinity.

Regardless of the types of ligand poses used for training and testing, the LB model

consistently outperformed the SB model under cross-validation. Even better performance

was obtained using the HB model when trained on the docked pose ranked highest by Smina,

and using this to predict the affinities across all poses and taking the best binding affinity;

indeed, this performance (2.2; ρP = 0.744) was comparable to our SB model when trained

and tested on crystal poses (1.4; ρP = 0.746), suggesting that augmenting structure-based

features with ligand-based features in a machine learning-based scoring function can help to

correct for errors that might be introduced by the use of docked poses.
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Table 2: Pearson correlation coefficient between predicted and experimental binding affinity
under five-fold cross-validation on the PDBbind Training Set. Random Forest models were
trained using the docked pose ranked highest by Smina and tested on up to 20 docked poses
for each ligand. The Pearson correlation coefficient was computed using affinity predictions
obtained in four ways: (2.1) scoring the pose ranked best by Smina (top pose); (2.2) scoring
all poses and taking the maximum (all poses (max score)); (2.3) scoring all poses and taking
the mean (all poses (mean score)); and (1.4) training and testing on the crystal pose of each
ligand (crystal pose). As expected, the LB model is insensitive to the docked ligand pose(s).
The best performance for each scoring strategy is underlined.

Experiment Train Pose(s) Test Pose(s) LB Model SB Model HB Model
2.1 Top Top 0.719 0.676 0.738
2.2 Top All (max) 0.719 0.687 0.744
2.3 Top All (mean) 0.719 0.643 0.725
1.4 Crystal Crystal 0.719 0.746 0.768

Effect of training using multiple poses

As training on a single docked pose for each ligand was more effective than training on

minimised crystal poses, we next investigated how training on multiple docked poses for each

ligand affected model performance. To do this, we repeated the cross-validation experiment

described above, this time in experiments 3.1, 3.2, and 3.3 training on all docked poses

for each ligand, using the same binding affinity value for each pose of a ligand. We used

our ML models to score all poses of the ligands in the test fold and took the maximum

predicted binding affinity as the predicted value for that ligand. To control for the effect of

substantially increasing the size of the training set, we repeated this cross-validation, but

for each training ligand used the same number of copies of the pose ranked top by Smina

as the number of diverse docked poses output for that ligand by Smina (up to 20). Table 3

shows the mean Pearson correlation coefficient achieved by each model over the five cross-

validation folds, when trained on multiple diverse or redundant poses. Overall, there is little

difference between training on a single pose and training on multiple poses or redundant

poses, with the SB model performing slightly better when trained on all poses instead of one

pose (ρP = 0.699 vs ρP = 0.676), and the HB model performing slightly worse (ρP = 0.723 vs.

ρP = 0.738). Similarly, training on multiple copies of the pose ranked highest by Smina does
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not significantly affect performance, indicating that the models are not adversely affected by

redundancy in the training data. These results, together with those in Table 1 and Table

2, suggest that when using Random Forest for protein-ligand binding affinity prediction, it

is important for the model to see examples of docked poses of varying quality, but using a

variety of example poses for each complex is not necessary.

Table 3: Mean Pearson correlation coefficients between predicted and experimental binding
affinity under five-fold cross-validation on the PDBbind Training Set. For each ligand, models
were trained using either the pose ranked highest by Smina (top pose), all diverse poses, or
redundant copies of the pose ranked highest by Smina. Predictions were made for the test
fold by scoring all docked poses of each ligand and taking the highest score. The best
performance for each experiment is underlined.

Experiment Train Pose(s) Test Pose(s) LB Model SB Model HB Model
3.1 Top All (max) 0.719 0.676 0.738
3.2 Diverse All (max) 0.713 0.699 0.723
3.3 Redundant All (max) 0.713 0.689 0.745

Validation on PDBbind Test Set

We next validated our LB, SB, and HB models on the PDBbind Test Set. Each model was

trained on the PDBbind Training Set. We used the docked pose ranked highest by Smina

for each ligand in the training set and scored all poses for each complex in the PDBbind Test

Set, taking the highest predicted affinity as the value for that complex, as this was found to

be the most effective strategy under cross-validation (Experiments 1.2 and 2.2).

We examined the influence of protein similarity between the training and test sets by

excluding from the training set any structure with a protein whose sequence identity was

above a given threshold to any protein in the test set. Similarly, we examined the influence

of ligand similarity between the training and test sets by excluding from the training set any

structure with a ligand whose 2048-bit ECFP4 fingerprint Tanimoto similarity was above a

given threshold to any ligand in the test set.
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Effect of training and testing using docked poses

Figure 1 shows the Pearson correlation coefficient between the predicted and experimental

binding affinity achieved by the LB, SB, and HB models on the PDBbind Test Set, when

trained and tested using either crystallographic binding poses or docked poses. Figure 1A

shows how their performance varies with the maximum permitted protein sequence identity

between the training and test sets, and Figure 1B shows how performance varies with the

maximum permitted ligand Tanimoto similarity between the training and test sets.

Regardless of the maximum level of protein or ligand similarity permitted between the

training and test sets, both the SB and HB models perform worse when trained and tested

on docked poses (dotted lines) than when trained and tested on crystallographic poses (solid

lines; in Figure 1, the dotted lines are always below the corresponding solid lines for the SB

and HB models). The LB model performs identically when using docked and crystallographic

poses: the RDKit molecular descriptors used by the model are independent of the pose of

the ligand, so the model is unaffected by the use of different poses. The LB model actually

performs better than the SB model using docked poses when no data are excluded from the

training set. The LB model’s performance drops below that of the SB model when complexes

with 100% protein sequence identity to those in the test set (Figure 1A), or with a ligand

whose Tanimoto similarity was greater than 0.6 to those in the test set (Figure 1B), are

excluded from the training set. Regardless of the level of similarity between the complexes

in the training and test sets, the LB model always achieves a Pearson correlation coefficient

greater than 0.55, comparable to the performance of many classical scoring functions,4–6

indicating that these ligand-based features capture useful information for affinity prediction.

The HB model, which combines structure-based and ligand-based features, consistently

outperforms the SB and LB models when using docked poses (in Figure 1A and 1B, the

dotted yellow line is always above the dotted red line and blue line). Furthermore, the HB

model trained and tested on docked poses has comparable performance to the SB model

when trained and tested on crystal poses (in Figure 1A, the dotted yellow line is above
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the solid red line; in Figure 1B, the dotted yellow line is nearly identical to the solid red

line for a Tanimoto similarity threshold greater than 0.5). Furthermore, the HB model is

less deleteriously affected by the use of docked poses in place of crystal poses than the SB

model (see, in Figure 1, the dotted yellow line much closer to the solid yellow line than

the dotted red line is to the solid red line). This suggests not only that combining ligand-

based and structure-based features leads to more accurate binding affinity predictions, but

that the addition of ligand-based features to a structure-based scoring function can help to

compensate for the errors in affinity prediction that may result from the use of potentially

inaccurate docked poses.

All three models (LB, SB, and HB) are strongly affected by the similarity between the

training and test sets, with the exclusion of training set complexes with similar proteins

or ligands to those in the test set significantly reducing performance. These results echo

our earlier results15 and those of Su et al.33, indicating that even when potentially less-

accurate binding poses are used, it is necessary to consider the effect of biases in the available

structural data when training and evaluating models. The inclusion of ligand-based features

in structure-based models always improves performance when using docked poses, and only

ceases to improve performance when using crystal poses if the maximum fingerprint Tanimoto

similarity between ligands in the training and test set is less than or equal to 0.5. This

suggests that the inclusion of ligand-based features is a robust method of enhancing scoring

function performance, particularly when using docked poses in both training and testing.

Effect of training using multiple docked poses

We also checked whether training on multiple docked poses for each ligand affected perfor-

mance on the PDBbind Test Set. For this we focused on the HB model as it consistently

outperformed the LB and SB models in our previous experiments. We repeated the above

experiment for the HB model, this time using all of the docked poses we generated for

each ligand in the PDBbind Training Set, as described earlier. In contrast with the cross-
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Figure 1: Pearson correlation coefficient between predicted and experimental pK values on
the PDBbind Test Set, for varying levels of protein sequence identity or ligand fingerprint
similarity permitted between the training and test set. Solid lines show performance when
trained and tested using crystallographic binding poses; dotted lined show performance when
trained and tested using docked poses. The maximum permitted level of protein sequence
identity (A) or ligand fingerprint Tanimoto similarity (B) between the training and test set
is shown along the horizontal axis. Note: both (A) and (B) have the same vertical axis.
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validation experiment, training on multiple docked poses for each ligand significantly reduced

the performance of the HB model on the PDBbind Test Set (Supporting Information Figure

4). To understand how training on multiple poses for each ligand affects the HB model,

we examined the relative importance of the features used by the RF. We found that when

multiple poses for each ligand are used for training, ligand-based features become more im-

portant than when only a single pose is used in training (Supporting Information Figure

5), suggesting that using multiple poses for each ligand introduces additional noise into the

structure-based features that causes the RF to rely more on ligand-based features.

Generalising to unseen proteins remains challenging

Validation on PDBbind target clusters

To understand how the HB model might be expected to perform on an unseen target using

docked poses, we clustered the PDBbind Training Set at 90% protein sequence identity and

identified the six largest clusters. These correspond to the proteins HIV-1 protease, carbonic

anhydrase, trypsin, thrombin, heat shock protein 90α (HSP90α), and coagulation factor X.

We also identified all proteins in the PDBbind Training Set that were unique at the 90%

sequence identity threshold and grouped these into a seventh cluster of ‘singletons’, forming

a highly diverse set of proteins. For each cluster, we trained the HB model on the remaining

complexes in the PDBbind Training Set, using either the pose ranked highest by Smina.

We focused on the HB model as it consistently outperformed the LB and SB models in our

previous experiments.

The results of this experiment are shown in Table 4. Overall, performance varies greatly

across the seven clusters and, with the exception of trypsin (ρp = 0.746) and HSP90α

(ρp = 0.591), the correlation between predicted and experimental affinity achieved by each

model is poor. These results are similar to those of Kramer and Gedeck,34 who showed

that the performance of RF-Score35 varies greatly when validated on held-out clusters of

PDBbind data, with worse overall performance than when validated on the PDBbind 2007
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Core Set. This suggests that performance on diverse benchmark sets such as the CASF test

sets is not necessarily indicative of a scoring function’s ability to accurately rank ligands of

a single target within that benchmark when that target is held out of the training set.

Table 4: Pearson correlation coefficients achieved by the HB model on seven clusters of the
PDBbind Training Set when trained on the remaining structures in the PDBbind Training
Set. For the training set, the pose ranked highest by Smina was used. For the test sets, all
docked poses were scored and the highest value taken as the predicted binding affinity for
that ligand.

Cluster ρP
HIV-1 Protease 0.450
Carbonic Anhydrase 2 0.460
Trypsin 0.746
Thrombin 0.316
HSP90α 0.591
Coagualtion Factor X −0.101
Singletons 0.500

Validation on the Updated DUD-E Diverse Subset

Having found that the performance of the HB model varies greatly between different protein

targets in the PDBbind Test Set, we next investigated how well the model generalised to

novel binding data from outside the PDBbind database. To do this, we created and used

used the Updated DUD-E Diverse Subset of targets: serine/threonine-protein kinase AKT

(AKT1), cytochrome P450 3A4 (CP3A4), glucocorticoid receptor (GCR), HIV-1 protease

(HIVPR), HIV-1 reverse transcriptase (HIVRT), and kinesin-like protein 1 (KIF11).

Table 5 shows the Pearson correlation coefficients achieved by the HB model for each

target when trained on the PDBbind Training Set, and under both intra-target and inter-

target validation, as described in the Methods section. In each case, we trained on the pose

ranked top by Smina and tested by scoring all diverse docked poses and taking the highest

predicted binding affinity for each ligand.

Using the PDBbind Training Set the performance for all six targets is poor, with the HB

model achieving a Pearson correlation coefficient below 0.5 for each target. These results are

in stark contrast with the strong performance on docked poses of the PDBbind Combined

21



Core Set, indicating that even under strict training and validation conditions, the model

generalises poorly to data sourced from outside the PDBbind database. One possible source

of this difference in performance is that, as previously discussed, the docked poses for the

PDBbind data were generated by re-docking each ligand into the corresponding crystal

structure of its protein target, so any induced fit effects are already captured in the structure

of the protein. Because of this, the docked poses for the PDBbind data are likely to be more

accurate than those for the Updated DUD-E Diverse Set. In addition, any uncertainties in the

more recent ChEMBL binding affinity data could also contribute to noise and performance

degradation when training and validating the model.

Under intra-target training and validation, performance varies greatly between targets,

but overall performance is much better than when the models were trained on PDBbind

data. For each target, the HB model achieves a Pearson correlation coefficient, ρp in the

range of 0.5 to 0.8, in contrast to the weak correlations obtained when training on PDBbind

data (ρp < 0.5). This indicates that the HB model is capable of making accurate predictions

using docked poses of ligands for a protein target, provided it has previously seen examples

of ligands for that target.

In contrast with intra-target validation, under inter-target validation the HB model fails

to achieve any meaningful correlation between the predicted and experimental pK values for

any of the targets (ρp < 0.4), indicating that the model is unable to generalise to a previously-

unseen protein target. With the exception of CP3A4, the predicted pK values also span

a much narrower range of values than the experimentally-determined values (Supporting

Information Figures 10 and 11), suggesting that under this training regime, the model is

simply unable to differentiate reliably between different ligands for the unseen target. Similar

results were obtained using the LB and SB models, indicating that both structure-based and

ligand-based RF models will struggle to generalise to novel targets.

Finally, we repeated the inter-target and intra-target validation experiments, adding the

PDBbind Training Set to the Updated DUD-E Diverse Subset data, and found that there
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was no improvement in performance when combining these two sources of training data. This

indicates that a larger, more diverse training set does not necessarily translate into improved

performance; we made a similar observation in previous work15 when we showed that the

improved performance of several scoring functions on the CASF test sets when training on

the PDBbind General Set instead of the PDBbind Refined Set could be attributed not to

the increased size and diversity of the General Set, but to its increased representation of the

protein targets present in the test sets.

One possible explanation for these results is that docking the ligands for each DUD-E

target into a single protein structure provided by DUD-E for that target does not adequately

account for induced fit effects, in contrast with docking a ligand into its cognate protein

structure and concomitant induced fit, such as when re-docking the PDBbind complexes.

This would result in the protein-ligand interaction features failing to capture important

interactions between the protein and the ligand, as an accurate docked pose with respect to

the correct conformation of the protein’s binding pocket is not available. This highlights the

need for new experiments to look at the influence of induced fit on docking and subsequent

binding affinity predictions when using machine learning models.

Table 5: Pearson correlation coefficients achieved by the HB model between predicted and
experimental pK of ligands for six protein targets in the Updated DUD-E Diverse Subset.
Three different validation regimes were used. Under ‘PDBbind Training’, each model was
trained on the PDBbind Training Set and tested on all ligands for each target. Under ‘Intra-
target validation’, for each target 80% of the ligands were randomly selected to be used as
a training set, and the model tested on the remaining 20%. Under ‘Inter-target validation’,
for each target in turn, all ligands for that target were held out as a test set, with the model
trained on all ligands for the remaining five targets. The best performance for each target
is underlined.

Target PDBbind
Training

Intra-target
Training

Inter-target
Training

AKT1 0.418 0.626 0.220
CP3A4 0.320 0.526 0.302
GCR 0.317 0.809 0.218
HIVPR 0.456 0.739 0.135
HIVRT -0.101 0.574 0.056
KIF11 -0.177 0.743 -0.038
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Conclusions

We have investigated how the use of docked poses in place of X-ray crystallographic binding

poses of ligands affects the ability of Random Forest-based scoring functions to predict

protein-ligand binding affinity; how best to make use of docked poses when multiple poses

are available; and how scoring functions trained on docked poses generalise to novel sets of

ligands.

Unlike Li et al.14, we found that the use of Smina docked poses in place of X-ray

crystallographic binding modes for training and validation reduces the performance of a

structure-based scoring function. However, a hybrid model that combines structure-based

and ligand-based features is less deleteriously affected by the use of docked poses in training

and validation than a purely structure-based model. Furthermore, hybrid models trained on

docked poses can achieve binding affinity prediction performance comparable to that of a

structure-based model that was trained and validated using crystallographic binding modes.

Excluding proteins and ligands from the training set that are similar to those in the test set

negatively affected scoring function performance, but ligand-based features still improved

binding affinity predictions when removing test-set-similar data from the training set, in

agreement with our previous work using crystallographic binding. poses15

We also investigated the effect of training on multiple diverse docked poses. Under cross-

validation on the PDBbind Refined Set, there was little difference between training on a

single pose per ligand and training on multiple poses. However, when we trained our models

using multiple poses for each ligand in the PDBbind Training Set and tested on our held-

out PDBbind Test Set, performance was substantially worse than when training using a

single docked pose for each ligand. To understand how training on multiple poses per ligand

affected the model, we examined the relative importance of the features in each model,

and found that when both structure-based and ligand-based features are used, ligand-based

features become more important when training on multiple poses, suggesting errors in the

structure-based features from the additional docked poses degrade their relative utility.
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Using binding affinity data obtained from the ChEMBL database (version 25) for six

of the eight protein targets in the DUD-E Diverse Subset, we investigated how our models

performed on unseen data. Under an intra-target validation where a random selection of 80%

of the data for a target was used to train the model and 20% of the data was held out as a

test set, our model achieved positive Pearson correlation coefficients between the predicted

and experimental binding affinites ranging from 0.541 to 0.810, indicating that our hybrid

model is capable of accurate predictions on the data obtained from ChEMBL when trained

in a target-specific manner. However, under an inter-target validation scenario, where data

for five of the six targets were used to train the model, and the remaining target’s data held

out as a test set, our hybrid model failed to achieve any meaningful correlation between

predicted and experimental binding affinity. Combining the ChEMBL data with PDBbind

data to form a larger, more diverse training set did not improve performance.

Overall, our results indicate that, on a benchmark such as the PDBbind 2007, 2013, and

2016 Core Sets, the use of docked poses for training and validation decreases the performance

of a structure-based scoring function relative to those trained and tested on X-ray crystal

structures, in contrast with the findings of Li et al..14 Similarities between proteins and

ligands in the training and test sets has a strong influence on scoring function performance,

in agreement with our previous work15 and recent work by Su et al..33 Our results once

again suggest that the inclusion of ligand-based features in the scoring function helps to

counteract this effect. However, our results also suggest that a model trained on PDBbind

data tends to generalise poorly to external data sets, indicating that additional validation and

benchmarking sets are needed for scoring function development, although this will depend

on the level of similarity between the PDBbind complexes and the unseen proteins or ligand.

Overall, our results show that, despite potential problems generalising to novel proteins

and ligands, the inclusion of ligand-based features in a structure-based scoring function can

help to compensate for errors in binding affinity prediction due to the use of docked poses.

By opening the door to the use of docked poses, our hybrid approach expands the utility
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of machine learning scoring functions for the discovery of novel small molecules for novel

targets.
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(29) Bonchev, D.; Trinajstić, N. Information theory, distance matrix, and molecular branch-

ing. The Journal of Chemical Physics 1977, 67, 4517–4533.

(30) Li, H.; Leung, K.-S.; Wong, M.-H.; Ballester, P. J. Improving AutoDock Vina Using

Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective

Exploitation of Larger Data Sets. Molecular Informatics 2015, 34, 115–126.
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