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Abstract 

With the intent to search for new unexplored potential inhibitors – a series of newly synthesized 

NanoCars possessing a permanent dipole moment that makes them able for a controlled surface 

movements (by electric field gradient from a scanning probe microscopy tip) areis ab initio 

explored as corrosion inhibitors. The adsorption of the NanoCars onto Fe (1 1 0) surface was 

assessed using Density Functional Theory (DFT), Monte Carlo simulation (MC), Molecular 

Dynamics simulation (MD). The acquired results offered molecular level details in relation to the 

adsorption ability, adsorption centers, geometry and adsorption energetics of NanoCars onto the 

Fe(1 1 0) interface.   
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Introduction 

The interaction of industrial metals such as iron with aggressive environment in the presence of 

corrosive species like chloride ions and oxygen forms the corrosion products, thereby decreasing 

the life span of the materials.  Corrosion process imposes heavy losses to a number of vital 

industries [automotive, structural engineering, aerospace, oil and gas (energy), etc.] [1–5]. In order 

to limit the magnitude of this process the use of corrosion inhibitors remains the simplest and the 

most efficient approach [1–9]. In this sense a huge portfolio of different molecules are exploited 

to decrease the corrosion rate of materials.  This portfolio includes molecules and materials such 

as: amino acids[10], triazoles [11], ionic liquids[12], triazines[13], green inhibitor molecules 

[6][14],  polymeric materials [2], purine derivatives[15], quinoxaline derivatives[15], imidazoles 

[16], quinoline and its derivatives [17], functional and smart coatings [18][19], natural products-

plant extracts [20,21], expired drugs[22], nanomaterials [23,24], etc.   

To our knowledge there is a lack of studies vis-à-vis the possible exploitation of NanoCars for 

corrosion protection purposes [25–28]. These mesmerizing molecules were used to organize in 

2017  the Nanocar Race [29] - a vastly attention-grabbing scientific event that attracted massive 

public curiosity [30]. NanoCars are molecular machines capable to transfer efficiently with some 

kind of control and directionality at the nanoscale level onto metal surface by using an advanced 

scanning tunnelling microscope [31][30]. In a recently published study by the group of Prof. Tour 

they reported the synthesis of 4 different newly synthesized NanoCars that own a permanent dipole 

moment (caused by an N,N-dimethyl amino- moiety on one end of the car fixed with a nitro group 

on the other end) [28]. These NanoCars movement onto surface can be stimulated by the electric 

field gradient from a scanning probe microscopy tip. In their new design, the NanoCar have the 

following structural features: tert-butyl wheels, short alkyne chassis, and combination sets of 

wheels including one set of tert-butyl wheels and another set of larger adamantane wheels on the 

same car [28]. These molecules are planned to be used in the upcoming second International 

Nanocar Race (in 2022).  

The routine experimental assessments of corrosion using vast number of different techniques: 

Tafel slope, Electrochemical Impedance Spectroscopy (EIS), Weight loss measurements, 

Scanning Electron Microscope (SEM), Atomic Force Microscopy (AFM), Scanning 

ElectroChemical Microscopy (SECM) [2,32–37] . . . had given insights regarding the 



electrochemical behavior and kinetics of corrosion process arising at the interface of 

materials||corrosive solution and evaluation of the inhibition performance of particular inhibitors 

and the corrosion rate of materials. Nevertheless, although great details are acquired from such 

studies, many molecular level insights are only able to be answered through the use of sophisticated 

and efficient computational simulations based on the use of quantum (Density Functional Theory 

- DFT) and molecular mechanics (Molecular Dynamics – MD  and Monte Carlo - MC). DFT 

derived parameters such as:  molecule polarizability, electron donating energy difference between 

HOMO and LUMO levels, the fraction of transferred electrons (∆N), dipole moment of  molecule, 

energy from inhibitor to metal ∆E back-donation have already proven as vital parameters for 

understanding how and why inhibitors interact with the metal surface in order to exert their 

corrosion protection ability [38–47]. Moreover, Monte Carlo calculations cooperatively with 

Molecular Dynamic simulatios  are proficient to offer details apropos the adsorption geometry and 

the adsorption energetics of the molecules onto material surfaces [35–37,48–50]. 

 

Calculation details 

DFT calculations 

DFT calculations were realized using the Dmol3 software [51,52]. The geometry optimization 

(spin unrestricted) using the double numerical plus polarization basis set (DND, Basis file: 3.5) 

[51] in association with the M-11L [53] functional within m-GGA approximation is used [54]. 

COSMO approach is used to take in the effect  of the water as solvent in the calculations [55,56] . 

Self-consistent-field (SCF) convergence criterion was fixed to be less than 1*10-5 Ha. The energy 

minima were assured by performing a vibrational analysis to test for the nonexistence of imaginary 

frequencies [57][58] . 

Monte Carlo and Molecular Dynamic simulation details  

The interaction involving the Fe(110) surface and the Nanocar structures (Figure1) for the Monte 

Carlo (MC) and Molecular dynamic (MD) simulation, was done using the Fe(110) (under Periodic 

Boundary Condition) with cell size of: 34.753  Å  x 34.753 Å x 10.369 Å  with the inclusion of a  

40 Å vacuum layer at C axis containing inside 1500 water molecules/1 NanoCar molecule / 25 

hydronium + 25 chloride ions.  



The MD is fulfilled under NVT ensemble [59]  at 25 ͦ C via 1 fs time step and a total  simulation 

time of 0.3 ns [33,36,42,49,60]. The temperature control is realized using the Berendsen thermostat 

MD [5]. The previously prominent  COMPASSII force forcefield is used for the simulations MC 

and MD [61][33,39,40,42,49,62][63]. The whole 300 ps of the MD trajectory is used for the 

computation of the Radial Distribution Function (RDF) [42,60,62].  

 

Figure 1. Steps used for the calculation of inhibitor film density, fractional free volume (FFV), 

and self-diffusion coefficients for the studied NanoCar 3A. 

The use of the MD calculations remains as an important path to estimate the diffusion of the 

corroding species into the formed organic film at the interface of the metal-solution, 

experimentally this is difficult and yet remains a task to be solved [64][38]. The calculations steps 

used for the determination of the calculation of the: film density, fractional free volume (FFV), 

and self-diffusion coefficient of hydronium ion for the NanoCar 3A inhibitor (as a representative 

structure) film are presented in the Figure 1.  



The Fractional free volume (FFV) of the inhibitor films and the occupied volumes of Connolly 

surface using the following equation [38]: 

𝐹𝐹𝑉 =
𝑉𝑓𝑟𝑒𝑒

𝑉𝑓𝑟𝑒𝑒+𝑉𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑
          .  .  .   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

where Vfree is the free volume and Voccupied is the occupied volume of the PBC box containing the 

inhibitor film. 

The determination of the self-diffusion coefficient (SDC) is calculated by [65] : 

𝐷 =
1

6
lim
𝑡→∞

𝑑

𝑑𝑡
∑〈(𝑟𝑖(𝑡) − 𝑟𝑖(0))2〉        .  .  .   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2

𝑁𝛼
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where the 〈[ (r_i (t)-r_i (0))]^2 〉 is the mean squared displacement values obtained from MD 

trajectory. 

Results 

DFT calculations 

The HOMO and LUMO overall spreading and it’s symmetry devise as prominent parameters for 

arbitrating the activity of a molecule and fathoming the development of chemical reactions 

[38,50,66].  

The HOMO focuses on the parts of the molecule that have a predilection to provide electrons to 

electrophilic species while the LUMO point to the zones of the molecule with a high susceptibility 

to accept electrons from nucleophilic species.  The frontier MO's shows that in the NanoCar 

inhibitors [ (Figure 2 vacuum) and (Figure 3 in water)] HOMO is mainly distributed over the 

entire central part (chassis) of the Nanocar with some minor contributions at the alkynic  bonds 

that link the chassis of the NanoCars with their  wheels. 

 

 



 

Figure 2. HOMO, LUMO surfaces, and MEP of  the NanoCars (in vacuum). 

The  LUMO density is evenly spread over the chasis structure at the vicinity of the ring containing 

the N-dimethyl group.. The reasonably significant value of HOMO for NanoCars indicates their 

aptitude for the interaction with the Fe surface by electron-donation and acceptation as well 

[39,45,48,67,68]. 



 

Figure 3. HOMO, LUMO surfaces, and MEP of  the NanoCars (in water). 

This is reactivity is also evident by inspecting their moderately low electron affinity and high 

ionization potential values, showing an equal propensity in their electron exchange capacity. 

Moderately high value of chemical softness (Table 1) and low value of hardness are also expected 

values that support these inhibitors as relatively high reactive entities with the adsorptive aptitude 

when they are in the vicinity of the metal surface.  

Table 1. Calculated theoretical descriptors for NanoCars inhibitors in vacuum and water. 

 Vacuum Water 

 3A 3B 3C 3D 3A 3B 3C 3D 
HOMO -5.050 -5.072 -4.962 -5.171 -5.326 -5.187 -5.154 -5.214 
LUMO -3.062 -3.111 -3.024 -3.159 -3.706 -3.684 -3.664 -3.680 

∆E(HOMO-LUMO) 1.988 1.961 1.938 2.012 1.620 1.503 1.490 1.534 



Ionization energy (I) 5.050 5.072 4.962 5.171 5.326 5.187 5.154 5.214 
Electron affinity A) 3.062 3.111 3.024 3.159 3.706 3.684 3.664 3.680 

Electronegativity (Χ) 4.056 4.092 3.993 4.165 4.516 4.436 4.409 4.447 
Global hardness (η) 0.994 0.981 0.969 1.006 0.810 0.752 0.745 0.767 

Chemical potential (π) -4.056 -4.092 -3.993 -4.165 -4.516 -4.436 -4.409 -4.447 
Global softness (σ) 1.006 1.020 1.032 0.994 1.235 1.331 1.342 1.304 

Global electrophilicity (ω) 8.275 8.537 8.227 8.622 12.589 13.090 13.046 12.892 
Electrodonating (ω-) power 10.427 10.705 10.345 10.830 14.948 15.401 15.344 15.211 

Electroappcepting  (ω+) power 6.371 6.613 6.352 6.665 10.432 10.966 10.935 10.764 
Net electrophilicity (∆ω+-) 6.276 6.520 6.255 6.573 10.365 10.901 10.870 10.698 

Fraction of transferred 
electrons (∆N) 

-0.415 -0.439 -0.394 -0.465 -0.794 -0.802 -0.791 -0.793 

Energy from Inhb to Metals 
(∆N) 

0.172 0.189 0.150 0.217 0.510 0.483 0.466 0.483 

∆E back-donation  -0.249 -0.245 -0.242 -0.252 -0.203 -0.188 -0.186 -0.192 
Dipole moment 8.77 8.95 8.87 8.01 12.75 15.31 15.09 14.65 

Polarizability (α) (a.u) 746.357 623.2294 864.8586 734.8923 1046.45 884.43 1222.60 1031.46 

 

Polarizability is a quantum descriptor related to the distribution and distortion of electron density 

[69,70]. A larger value indicates easiness distribution of the electron density to a metal surface. In 

our case the polarizability values are relatively high with the maximum value found for the 

NanoCar 3C structure. 



 

Figure 4. Optimized structures of the NanoCar molecules and their Mulliken atomic charges 

(MAC). 

MAC are trustworthy parameters for indicating the responsible sites (atoms) of the inhibitors that 

are accountable for the adsorption onto the metals. The interaction between iron surface and the 

NanoCar molecules is usually well-thought-out to fruitfully take place on the atom with the highest 

negative charge [33,45,71].  The MAC are presented in Figure 4. The maximum negative charges 

are located on N and O atoms, indicating that these centers posses highest electron density and 



interact specifically with the iron surface.  This is evident also from Figure 2 and Figure 3 were 

the molecular electrostatic potential (MEP) for the inhibitors are shown (area in red).  

Monte Carlo and Molecular dynamic simulations 

In the Figure 5 are presented the lowest energy configurations for the NanoCar molecules on the 

metal surface in the used simulated corrosion media (as chosen above).  The adsorption geometries 

of the inhibitor (as supported by Mulliken charges) indicate that this process is due to the presence 

of the nitrogen and oxygen atoms. This adsorption conduct is accountable for the foundation of 

anti-corrosion layer onto the metal surface that protects the material.   

 

Figure 5.  MC poses of the lowest adsorption configurations for the NanoCar inhibitors in the: 

vacuum and the simulated corrosion media on the iron surface PBC model. 



A way to quantify the extent of the interaction among inhibitor molecules (NanoCar structures) 

with the iron surface, is fulfilled over the calculation of the adsorption energies using the following 

equation: 

𝐸𝑎𝑑𝑠 = 𝐸𝑡𝑜𝑡𝑎𝑙 − [𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝐸𝑁𝑎𝑛𝑜𝐶𝑎𝑟𝑠 ]     (In vacuum) 

𝐸𝑎𝑑𝑠 = 𝐸𝑡𝑜𝑡𝑎𝑙 − [𝐸𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝑤𝑎𝑡𝑒𝑟 + 𝐸𝑁𝑎𝑛𝑜𝐶𝑎𝑟𝑠 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑒] + 𝐸𝑤𝑎𝑡𝑒𝑟   (In the corrosion media) 

where: Etotal is the total energy of the system as a result of inhibitor-metal interaction; Esurface + water 

and ENanoCar +  water is system energy in the absence and presence of NanoCar molecules.  

The dispersion of the adsorption energies for the enormous amount of adsorptive configurations 

produced and calculated by the Monte Carlo method for the NanoCar inhibitors is shown in Figure 

6.  

 

Figure 6. Distribution of adsorption energies for NanoCar inhibitors onto the Fe(110) surface in 

vacuum. 

The Adsorption Energy (Eads) onto Fe(110) surface values for the adsorption of the inhibitors are 

presented in the Table 2. 

Table 2. The distribution adsorption energy values for NanoCars onto the iron surface. 



Inhibitor 

Vacuum Corrosion media 

Min. Max. 
Max. 

probability 
Min. Max. 

Max. 

probability 

NanoCar 3A -37.82 -386.20 -365.41 -171.05 -206.95 -192.25 

NanoCar 3B -39.94 -344.02 -336.31 -199.85 -258.27 -206.55 

NanoCar 3C -35.07 -417.88 -407.43 -340.56 -416.18 -374..95 

NanoCar 3D -37.48 -381.33 -381.31 -201.25 -243.55 -220.15 

 

These relatively high adsorption energies (both in vacuum and in simulated corrosion media) point 

toward a strong interaction of the inhibitors onto the MS surface, leading to an efficient corrosion 

protection of iron. 

 



Figure 7. Distribution of adsorption energies for NanoCar inhibitors onto the Fe(110) surface in 

the presence of the simulated corrosion media. 

Both MC and MD calculations show that NanoCars are flat adsorbed onto the iron surface. As 

seen from Monte Carlo calculations (Figure 7 and Figure 6) the obtained  negative values of the 

adsorption are suggestive of  the spontaneity of the adsorption process [33,40,42,45].  MD 

simulations are important as they offer a relatively simple way to trail and capture the dynamics 

of the adsorption of the studied inhibitors on the metal surface. In the Figure 7 are illustrated the 

last configurations of inhibitors on iron surface.  

 

Figure 7.  Final MD poses of the lowest adsorption configurations for the NanoCar inhibitors in 

the: vacuum and the simulated corrosion media on the iron surface PBC model. 



 

Figure 8.   RDF of nitrogen, hydrogen and oxygen atoms of the: NanoCar 3A-3D\ onto the iron 

surface obtained via MD. 

It is accepted that the peak presence in the RDF graph at the distance from 1 and 3.5 Å from the 

surface plane of the metal and the atom of the inhibitor represents a firm confirmation that 

chemisorption takes place, while for the  physisorption process the RDF peaks estimated at larger 

distances (usually greater than 3.5 Å) [36,40,42,67,71–73][59]. The RDF of the nitrogen and 

oxygen atoms (Figure 8) for the NanoCars is under 3.4 Å approving a chemisorption of these 

molecules on the metal surface. The results from MD and corresponding RDF analysis validate  

the strong inclination of that these inhibitors adsorb and protect the metal, as they possess 

exceptional attraction to share/accept electrons with the metal surface [36,37,62].   

 



The self-diffusion coefficient of the NanoCar 3A film is determined from the slope of the Mean 

Square Displacement (MSD) (region from 200 – 450 ps) of 5 molecules obtained from MD 

trajectory (Figure 9) using the Equation 2. 

 

 

Figure 9.   MSD for the NanoCar 3A molecule. 

At the frontier of the formed inhibitor film, a factor that impacts the mobility of corrosive ions 

(hydronium ion) is the mobility of the inhibitor molecules. The film-forming molecules act 

together and are moved in the corrosive media through the van der Waals force and Coulomb force 

-  in so doing they alter the volume and the shape of the film cavities [38][74][75]. This influences 

the mobility of corrosive ions into the film. A high mobility film designates a superior diffusion 

coefficient for the corrosive species. The SDC was foreseen as a measure of the inhibitor film 

mobility. The inhibitor film composed of the NanoCar 3A has a considerable lower value than 

well-known inhibitor molecules.  This predicts a significant ability of this film to limit the diffusion 

of the corrosive ions toward the iron surface – thereby reducing the corrosion rate. 

 

Table 3. Calculated values of FFV and self-diffusion coefficient of NanoCar 3A in the 

modeled inhibitor film in the presence of hydronium ion. 



Molecule NanoCar 3A 

(Self-diffusion coefficient) × 10−8 [cm2/s] 3.315 

Free volume [Å3] 13088.43 

Occupied volume [Å3] 46511.85 

FFV 0.219 

As the inhibitor performance is a sum of multiple contributions (volume of the molecule, 

adsorption ability, adsorption energy, the FFV of the film, the mobility of the film-forming 

molecules, the interaction of the corrosive species with the film, etc.) – many parameters should 

be taken into consideration. One of such parameters is the FFV. A higher value of FFV denotes an 

inhibitor film that possesses voids which permits an enhanced mobility of the corrosive species. 

For the NanoCar 3A (Table 3), the FFV value is relatively small (0.219) with a low SDC value: 

3.315×10−8 [cm2/s] – confirming an effective diffusion slowing efficacy of the film. 

Conclusion 

This study is focused was carried out using several theoretical methods (DFT, MC and MD) based 

upon molecular and quantum mechanics. These methods permitted a molecular comprehension on 

how the NanoCar inhibitors interact with the iron surface to inhibit the corrosion. The computation 

of the DFT descriptor offered a detailed mean to evaluate why these molecules interact with the 

surface and the responsible adsorption sites (O and N atoms) responsible for the adsorption 

process.  Monte Carlo and Molecular dynamics calculations showed that these molecules flat-lay 

onto the iron surface forming spontaneously a barrier film that slows the diffusion of the corrosive 

species toward the metal surface. The large adsorption energies are supportive of a firm interaction 

of NanoCars with the iron surface. 
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