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Abstract

In silico analysis of biological activity data has become an essential technique in

pharmaceutical development. Specifically, the so-called proteochemometric models aim

to share information between targets in machine learning ligand-target activity predic-

tion models. However, bioactivity datasets used in proteochemometrics modeling are

usually imbalanced, which could potentially affect the performance of the models. In

this work, we explored the effect of different balancing strategies in deep learning pro-

teochemometric target-compound activity classification models while controlling for the

compound series bias through clustering. These strategies were: (1) no_resampling, (2)

resampling_after_clustering, (3) resampling_before_clustering and (4) semi_resampling.

These schemas were evaluated in kinases and GPCRs from BindingDB. We observed

that the predicted proportion of positives was driven by the actual data balance in the

test set. Additionally, it was confirmed that data balance had an impact on the per-

formance estimates of the proteochemometrics model. We recommend a combination

of data augmentation and clustering in the training set (semi_resampling) in order to
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mitigate the data imbalance effect in a realistic scenario. The code of this analysis is

publicly available at https://github.com/b2slab/imbalance_pcm_benchmark.

Introduction

The discovery, design and bring-to-market of a novel small-molecule drug is a very challenging

process, and very expensive in terms of money, time and effort.1 Computer-Assisted Drug

Design (CADD) methods can help to improve and refine the identification of hits in the

first steps of drug development, thus having a huge positive impact on the costs of the

whole process.2 Traditionally, interactions between ligands and targets have been predicted

in CADD through a Quantitative Structure-Activity Relationship (QSAR) approach.3 In

QSAR, a target is fixed and only information from compounds is used for modeling and

predicting binding for said target. However, the compartmentalized nature of QSAR does not

allow for discovering new cross-interactions between ligand and targets for which no training

data is available.2 Proteochemometrics modeling (PCM) is an extension of QSAR which

overcomes this drawback by combining information of both ligand and protein descriptors

on a supervised prediction model. PCM allows for the integration of different sources of data

in one model and for the general prediction of which ligands will bind to which targets.4

Both PCM and QSAR usally apply machine learning (ML) techniques such as random

forests, support vector machine, logistic regression or partial least squares.2,4 Following the

trends in other fields and the growing availability of data, deep learning (DL) has also

been increasingly and succesfully applied on bioactivity prediction,5 specially on QSAR

modeling.6 The application of DL to PCM followed, taking advantage of public databases7–9

and improving the descriptor representation.10,11

However, an important issue for PCM and QSAR DL models is the amount and quality

of data when compared to other fields of application, since increasing the number of data

samples in drug discovery is expensive and thus, often infeasible.12 This poses a problem,
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since neural networks require a large quantity of training data in order to actually learn.

While in other fields this problem is alleviated through data augmentation, i.e. an artificial

increase of the number of observations of the training set to help the model generalize, this

regularization technique is not yet commonly used in CADD. Some studies have considered

different variants of the SMILES of each molecule as a way of data augmentation,13,14 but

despite its proven benefits, its use is not widespread yet. This is partly due to the lack of

consensus in the input representations, where alternatives to SMILES are often used.

Another factor highly affecting QSAR and PCM models is data imbalance, since the class

definitions based on bioactivity data can result in highly skewed labels. In this regard, Za-

kharov et al15 explored how data balancing affected self-consistent regression QSAR models

using highly imbalanced PubChem bioassays. The study proposed a method including cost-

sensitive learning and under-sampling approaches to obtain more accurate predictions. Using

the same data, Korkmaz explored how data balancing affected DL-based QSAR models.16

The study concluded that imbalance has indeed a negative impact on the performance of

the models, but that this impact could be alleviated by applying oversampling methods like

SMOTE (Synthetic Minority Oversampling Technique)17 on the fingeprint representations

of the molecules. Besides, oversampling methods could also serve the purpose of augmenting

the original dataset.

While the effect of data imbalance on model performance has been studied for shallow

ML and DL QSAR, up to our knowledge, there are not analogous studies yet for PCM.

In PCM, modeling information between targets is shared, which may compensate those for

which activity data is very imbalanced. However, it is still to be proved if this compensation

does happen or if the results are actually dominated by the original imbalance of each target.

Recently it has been shown that for the validation of PCM models, it is important to

control the chemical series bias through clustering techniques in order to get more reliable

performance estimates.8,18 This adds a complexity layer to the imbalance handling, since

clustering can affect the data balance in PCM. Since Korkmaz and Zakharov et al did
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not consider the potential similarity between different compounds when validating their

results,15,16 its impact on data balancing is yet to be tested.

In this paper, we study the effect of different balancing strategies in DL-based PCM

target-compound activity classification models. While handling data imbalance, we also

study how to integrate the compounds clustering in this process. We describe the behavior

of model predictions and performance according to imbalance handling.

Materials and methods

Data

We evaluated the different balancing models on the benchmark dataset used in DeepAffin-

ity.19 The original dataset contains binding data from BindingDB,20 merged with the amino

acid sequence information from UniRef21 and the SMILES representation of compounds from

STITCH.22 The original dataset consisted on IC50, Ki or Kd values from 829,033 compound-

protein pairs. We classified the dataset proteins into the main protein families according to

the release 2018_09 from Uniprot23 and restricted our study to proteins of the kinase and G

protein-coupled receptors families (separately). Binding activities were in logarithm form, so

a threshold of 6 was applied in order to have binary labels for classification (active/inactive).

Table 1 summarizes the final dataset we used in our analysis. The same descriptive table,

but for GPCR family, can be seen in Table S1 of the Supporting Information.

Table 1: Summary of the kinases subdataset.

Entity Number

Compounds 84,643
Targets 490
Ligand-target pairs 129,997

Actives 99,158
Inactives 30,839

In Figures S1-S4 from the Supporting Information, the proportion of actives/inactives
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for each protein of the kinase and GPCRs protein families is represented in more detail.

Descriptors

We represented compounds by their molecular fingerprints, in which structural information

is represented by bits in a bit string. We used the fingerprints from PubChem24 provided

in DeepAffinity.19 In these, basic substructures of compounds are encoded in a 1D binary

vector with a length of 881 bits.

We represented proteins by raw amino acid sequences transformed to one-hot encoding.

Each amino acid was represented by a binary vector of length 26. Protein sequences were

then normalized to the maximum length of 1499. Those sequences shorter than 1499 were

zero-padded. According to the recommendation of our previous work,25 we tuned the padding

type and obtained the best results with pre-padding (adding zeros to the beginning of the

sequence).

Validation strategy

A splitting strategy based on compound clustering (both of actives and inactives) was applied

to the bioactivity data, omitting target information. Clustering-based validation strategies

have been used to avoid the compound series bias, making sure that there are no similar

molecules both in training, validation and test sets.18,26,27 We followed the implementation of

our previous study on cross-validation strategies in PCM,8 where K-means clustering with

k = 100 was applied to the fingerprint description of the compounds. Data was divided

in training, validation and test sets with a proportion of 80/10/10%. This splitting was

randomly performed 10 times (folds) in order to test the consistency of the results, thus

training and testing each model in 10 different data partitions. As further explained in

the next subsection, for some balancing strategies the clustering was applied before the

resampling and for others it was applied afterwards.
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Balancing strategies

We chose an oversampling method to balance data since oversampling was shown to improve

performance in the Korkmaz study of data imbalance in DL-based QSAR16 and in a system-

atic study of data imbalance with CNNs.28 Oversampling methods increase the number of

samples in the minority class to create a balanced data set. Specifically, we used the SMOTE

oversampling technique,17 which creates synthetic data points of the minority class similar

to those available. Resampling with SMOTE was done in a per protein basis, so that each

protein would be balanced. Some proteins had to be discarded in certain strategies, since

there were either only active or inactive ligands, or the number of samples in the minority

class was smaller than the number of neighbors used for constructing the synthetic samples

(k = 5) and SMOTE was not applicable.

Unlike Korkmaz, that applied data balancing methods to each training set,16 we tested

four different combinations of balancing, data clustering and splitting (see Figure 1): no_resampling,

in which bioactivity data for each protein was taken as it was, and clustering was ap-

plied in order to perform the splitting; resampling_after_clustering, in which after

clustering data and splitting it into training, validation and test, each protein activity

data in each set was resampled and attained a 50% actives/inactives proportion; resam-

pling_before_clustering, in which, opposite to the previous strategy, resampling was

applied prior to clustering and splitting, so while the global protein-wise proportion of ac-

tives/inactives was 50%, it did not have to be 50% within each splitting set; and semi_resampling,

in which the splitting performed in the no_resampling strategy was reused, the test set was

kept without resampling but the training+validation set was resampled, re-clustered and

re-splitted into train and validation.

Prediction Models

We built a DL model for studying the impact of different data balancing strategies in state-of-

the-art PCM. A random prediction was generated to have an absolute, input-naïve baseline
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to compare our results with.

Random baseline

A random baseline was computed according to the actives/inactives ratio of the training set

for each strategy and each fold. Let f be the fraction of actives in the training samples

involving a protein, and n the number of samples to be predicted in the test set for that

protein. The random baseline is obtained by first sampling bfn+0.5c values from a uniform

distribution in [0.5, 1] (actives) and n−bfn+0.5c values from a uniform distribution in [0, 0.5]

(inactives), then concatenating both and shuffling. This procedure keeps the active/inactive

balance by design while producing random activity predictions.

Deep Learning Model

We studied the impact of data balancing strategies on a DL model. We followed the Ko-

rkmaz strategy of selecting a simple, well-established architecture whose complexity issues

would not be a confounder of the factor under study.16 We refrained from using Long Short-

Term Memory networks since they have convergence issues when training sequences longer

than 1000 elements.29 Model hyperparameters were tuned using the validation set, choosing

the simplest working architecture. As in our previous work,8 the DL PCM model consisted

of two analysis blocks. The amino acid sequence analysis block was a 1D convolutional

neural network. The fingerprints analysis block consisted of a feed-forward neural network.

Dropout was used in both branches to prevent overfitting.30 The representations built by

the compound and target analysis blocks were then merged and the information was passed

through a softmax activation unit, which quantified the ligand-target pair activity probabil-

ity. A schematic representation of the DL-based PCM model can be found in Figure S5 of

the Supporting Information, along with further details on the optimised hyperparameters.
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Implementation

We trained every model with an Adam optimizer31 (learning rate= 5 × 10−4, β1 = 0.1,

β2 = 0.001, ε = 1 × 10−8 and decay rate defined as the learning rate/number of epochs)

for 100 epochs, with a batch size of 128 both for training and validation. Models were

implemented in Python 3.6.9 (Keras32 2.3.1 using Tensorflow33 2.1.0 as backend) and run

on two NVIDIA GeForce GTX 1070 GPUs. SMOTE data balancing was applied using the

imbalanced-learn Python package.34 The statistical processing of results was performed in

R software (3.6.3).35

Characterization of data balance

The data balancing strategy had an impact on the actual data balance, defined as the

proportion of active molecules for a protein.

Data balance (protein) = Proportion of actives (protein) = n_active_compounds

n_total_compounds

Thus, a comprehensive analysis of data balance was carried to better understand and

interpret performance results. For each of the balancing strategies, the original distribution

of active ratios per protein was characterized. We also compared the original imbalance of

the training and test sets for each strategy to explore possible trends, and studied the effect

that other covariates (the protein length and the number of interactions of each protein in

its corresponding set and fold) might have on the original test set imbalance.

The next key question was to narrow down the factor driving the proportion of actives in

the predicted data (as opposed to the original data). The main options under consideration

were: (1) a constant, global imbalance that the model would learn from the whole dataset;

(2) the protein-wise imbalance that the model would learn in the training set and (3) a test

set-driven imbalance, based on its actual imbalance.

In the training process, the weights of the selected model were those from the epoch

with the maximum accuracy (proportion of correct predictions) on the validation set. This

process was run for each strategy and fold. Then, each selected model was used to predict
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on their corresponding test set. After the binarization of the test set predictions (probability

threshold of 0.5), the proportion of predicted actives was computed by protein and also

compared to the ratios of the original test and training sets.

Performance Metrics

The resampling strategies were assessed with various performance metrics for binary clas-

sifiers and prioritisers. The selection was based on those used by Korkmaz:16 balanced

accuracy, F1 score, Matthews correlation coefficient (MCC) and area under the ROC curve

(AUROC). All of them are insensitive to class imbalance. In the case of F1-score, we used

the macro-average, which is computed by averaging the F1-score for the active and inactive

labels. Further details on the definition of these metrics can be found in the Supporting

Information.

The performance metrics were computed on the predictions of each selected model in its

corresponding test set. AUROC was computed from raw predicted probabilities, while F1-

score, balanced accuracy and MCC were derived from the binarized predictions. We tested

the significance of the differences between strategies by means of nonparametric two-sided

Wilcoxon test for paired samples.36

Explanatory Models

Performance metrics and predicted ratios were further described through linear models built

upon the different combination of variables considered in this analysis. Our prior work in

similar scopes had found them insightful, since they allow for a statistical analysis of the

contribution of each factor under study.8,25,37 Each of the data points used for fitting a

explanatory linear model corresponded to a different protein. Simpler claims were investi-

gated with Pearson’s r for linear correlation, using confidence intervals (CI) and p-values for

significance.

On the one hand, the predicted ratio of actives (rpred) was modelled through the quasib-
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inomial logistic model38 in equation 2, stratified by strategy, in order to quantify the effect

of different variables of interest.

rpred ∼ rtraining + rtest + log10(nint) + log10(nseq) + kfold (1)

Specifically, the main variables of interest in this model were the actual ratios in the

training (rtraining) and in the test (rtest) sets, both numeric between 0 and 1. As additional

covariates, the number of interactions (nint) and the sequence length (nseq) (both numerical)

and the fold number (kfold, categorical) were also included. This model was not computed

for the resampling_after_clustering strategy, since the data balance (and thus, the predicted

active ratio) is enforced.

On the other hand, each performance metric was explained through the linear model

described by the Equation 2.

metric ∼ strategy + log10(nint) + log10(nseq) + kfold (2)

The response was the quantitative metric of interest in each case (one model per met-

ric), while strategy was categorical (no_resampling, resampling_after_clustering, resam-

pling_before_clustering, semi_resampling). The same covariates as in Equation 1 were

added.

However, before evaluating the DL model, the performance metrics of the baseline were

characterised: the strategy variable was tested with a type 3 analysis of variance (ANOVA)39

in order to pinpoint the imbalance-sensitive and insensitive metrics. Metrics were called

imbalance-sensitive if the imbalance-aware random baseline exhibited different performances

between resampling strategies.

The imbalance insensitive metric models were fitted analogously to the baseline perfor-

mance models (with Equation 2). However, to address the pitfalls of the direct comparison of

metrics whose baselines might differ, imbalance sensitive performance metrics were defined
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and modelled as follows:

adj_metric = metric− baseline (3)

And thus, adjusted performance metrics were also described with the Equation 2 but

changing the response to adj_metric of Equation 3:

adj_metric ∼ strategy + log10(nint) + log10(nseq) + kfold (4)

Note that while all the metrics but MCC were non-negative, the adjusted metrics could

show negative values when the performance of the DL model was lower than that of the

baseline.

Reference categories for categorical variables were no_resampling for strategy and 0 for

fold. Each term of the fitted model represents the difference between its specified category

and the reference category of that variable.

Results

Characterization of the original data balance

Distribution of the actives ratio

Figure 3 displays the original distribution of the actives ratio in the training and test sets.

Test sets tended to magnify data imbalance, creating around 24% of the times extreme cases,

i.e. all actives or all inactives, not present in the training set. Strategy-wise, no_resampling

kept similar data distributions in training and test; resampling_before_clustering and semi_resampling

led to a more balanced training set, but an imbalanced test set, and resampling_after_clustering

only kept totally balanced proteins in both training and test sets.
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Training and test imbalance comparison

Figure 2 revealed both positive, negative and null trends between the training and test

protein balances, and Table S3 of the Supporting Information quantifies these correla-

tions. No_resampling showed a positive correlation between both (Pearson’s r 95% CI:

[0.338, 0.400], p < 10−16), i.e. proteins were prone to keep their (im)balance in training

and test sets. Resampling_before_clustering showed an inverse relationship (Pearson’s r

95% CI: [−0.457,−0.398], p < 10−16), which was expected since this strategy started from

globally balanced proteins and after the clustering, an imbalance in one direction in the

training set entailed an inverse imbalance in the test set. Semi_resampling led to uncor-

related train and test balances (Pearson’s r 95% CI: [−0.024, 0.051], p = 0.48), expected

since the training set was resampled, breaking any correlation with the test set balance.

Resampling_after_clustering always kept balanced proteins, by design.

Other covariates

The effect that the number of interactions for each protein in its corresponding set and fold,

and the protein length (i.e. number of amino acids) had on the test set imbalance was in-

vestigated (Figures S7-S8 and Tables S4-S5 of the Supporting Information). Proteins with

greatest imbalance tended to be among those with the least interactions (Table S4: Pear-

son’s r 95% CI [−0.097,−0.026], p = 8.01 · 10−4 for no_resampling and semi_resampling;

[−0.307,−0.240], p < 10−16 for resampling_before_clustering). The sequence length had

no consistent effect on the protein imbalance (Table S5: Pearson’s r 95% CI [−0.052, 0.020],

p = 0.37 for no_resampling and semi_resampling; [−0.082,−0.009], p = 0.014 for resam-

pling_before_clustering).

Analysis of the predicted proportions

Figure 3 represents the ratio of predicted actives by protein and Table S6 of the Support-

ing Information summarizes the percentage of proteins with all actives or inactives (ex-
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treme cases). They show that no_resampling strategy was inclined to predict everything

as positives (71.6% of the time, compared to 3.5% for predicting all negatives). Resam-

pling_before_clustering and semi_resampling alleviated the imbalance in the predictions,

but still retained a spike of proteins where all the compounds were predicted as positives

(23.4% and 29.1%) and negatives (5.5% and 4%). Resampling_after_clustering kept a wide

and symmetric distribution of predicted actives, with only 1.2% predicted as all actives and

0% as all inactives.

Figure 3 also puts the ratio of predicted actives in context with the original training and

test ratios: the distribution was most similar to that of the test proportions to that of the

training ones (except resampling_after_clustering, since those proportions were constant).

Figure 4 puts the predicted ratios in context of the training ratios and Table S7 of

the Supporting Information quantifies their correlations, elucidating a variety of trends: (1)

no_resampling shows a positive trend between the training and the predicted ratio (Pearson’s

r 95% CI: [0.440, 0.496], p < 10−16), but since the training and the test ratio are also positively

correlated (Figure 2), the latter could be the one driving the predicted ratio of positives;

(2) resampling_after_clustering had a constant training ratio, meaning that the predicted

ratio was not explainable by differences in training ratios; (3) resampling_before_clustering

showed instead a negative relation between the training and the predicted ratio (Pearson’s

r 95% CI: [−0.130,−0.058], p = 3.77 · 10−7), but since the former and the test ratio also

anticorrelated (Figure 2), the simplest explanation was that the test ratio drove the predicted

test ratio; (4) semi_resampling showed no apparent correlation between the predicted ratio

and the training ratio (Pearson’s r 95% CI: [−0.029, 0.045], p = 0.68).

The models in Equation 1 that describe the predicted ratio of actives for each balancing

strategy are summarized in Tables S8-S9 of the Supporting Information. For semi_resampling

and resampling_before_clustering (Table S8), the original actives ratio in the test set had

a positive, significant effect on the predicted actives ratio (β = 0.945 and 0.784, both

p < 10−16). However, the original actives ratio of the training set showed no evidence
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of affecting the predicted ratio (β = 0.197 and −0.446, p = 0.73 and 0.31). Conversely, for

the no_resampling strategy (Table S9), both the original training (β = 8.312, p < 10−16)

and test ratios (β = 1.102, p = 2.6 · 10−9) had positive, significant effects on the predicted

actives ratio. In the three models, the number of interactions per protein had a significant,

negative effect (β = −0.391, −0.396 and −1.24, all p < 10−16), and some of the folds entailed

significant variations of the predicted ratio.

Performance metrics

Baseline performance

Figure 5 shows a fold-averaged picture of the metrics by protein and by model type (DL or

input-naïve baseline). Visual inspection suggested that the F1-score, accuracy, and possibly

balanced accuracy were affected by the baseline data imbalance. To quantify this finding, the

model in Equation 2 was fitted to the baseline performance metrics. According to Table S10

of the Supporting Information, the strategy term was significant (type 3 ANOVA, p < 10−16,

p < 10−16 and 5.61 ·10−11) for those three metrics, and non-significant in AUROC and MCC

(p = 0.91 and 0.82). Based on this, metrics were divided in two types: (1) imbalance-

sensitive, if the baseline was different between strategies, and (2) imbalance-insensitive, if

the baseline was constant.

Deep Learning model

Figure 5 displays an overview of fold-averaged performances, where strategies are paired with

their baselines. Undefined metrics in edge cases were excluded. This mainly affected AU-

ROC, where the number of proteins with metrics dropped around 25% for semi_resampling,

resampling_before_clustering and no_resampling (Table S12 of the Supporting Informa-

tion). Figure 5 brought the dilemma of direct strategy comparison with imbalance-sensitive

metrics, which was especially apparent for the F1-score and its high baseline in no_resampling
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(quartiles: Q1 = 0.428, median of 0.611, Q3 = 0.756, Table S10 of the Supporting Informa-

tion).

Absolute, baseline-naïve performance Absolute metric models (not accounting for

baselines) were fitted following Equation 2, analogously to the baseline performance models.

The strategy term would always explain variance (type 3 ANOVA, p-values ranged between

2.89·10−15 and p < 10−16, see Table S13 in the Supporting Information). The models showed

different behaviour in imbalance-sensitive and insensitive metrics (Table S14 of the Sup-

porting Information). Pairwise comparisons of the strategy term coefficients using Tukey’s

method would point to two apparently conflicting scenarios (Figure S12 of the Supporting

Information), further confirmed when prioritizing the strategies according to their expected

performance through the linear models (Figure 7 and Table S15 of the Supporting Informa-

tion): (a) no_resampling was suggested the best strategy by accuracy and F1-score (95%

CI of expected performances: [0.701, 0.723] and [0.754, 0.779]), but this was confounded by

the fact that it also held the highest baselines, and (b) resampling_before_clustering and

resampling_after_clustering kept the highest performance estimates in AUROC (95% CI

[0.699, 0.724] and [0.670, 0.708]), MCC (95% CI [0.244, 0.268] and [0.296, 0.337]) and bal-

anced accuracy (95% CI [0.619, 0.640] and [0.634, 0.670]).

Baseline-adjusted performance A descriptive plot of the adjusted metrics (Figure 6)

pointed to a different scenario than that of the the adjusted ones (Figure 5).

Again, the strategy term was always significant (type 3 ANOVA, p-values ranged between

2.78 · 10−9 and p < 10−16, Table S16 of the Supporting Information). Baseline adjustment

brought a unified behaviour across the models (Table S17 of the Supporting Information),

further confirmed in pairwise coefficient comparison (Tukey’s method, Figure S13 of the

Supporting Information) and in their expected performance (Figure 7 and Table S18 of the

Supporting Information): resampling_before_clustering and resampling_after_clustering

had the highest performance estimates (expected improvements over baseline ranging from
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0.149 to 0.263 and from 0.143 to 0.315 in all metrics), followed by semi_resampling (0.086

to 0.146) and finally by no_resampling (0.057 to 0.127).

GPCRs

We repeated all the previous analysis on the GPCR family to confirm whether the claims

obtained for the kinases protein family could be generalized to other families. While their

active proportion distributions were not too different, GPCR proteins were more imbalanced

towards the actives than kinases (Figure S3 of the Supporting Information).

The main results obtained in kinases also apply to GPCRs. The distribution of ac-

tives and the comparison between training and test set imbalances in kinases also applies

to GPCRs, except for semi_resampling, where GPCRs exhibit a certain degree of positive

correlation (Pearson’s r 95% CI [0.029, 0.105], p = 5.91 · 10−4) between training and test

balances (see Table S19 of the Supporting Information). The effect of the number of inter-

actions and the sequence length on the protein imbalance were replicated on the GPCRs.

Kinases and GPCRs essentially agreed on the predicted actives proportions analyses, the

only exception being the n_interactions coefficient, non-significant in the semi_resampling

strategy (β = −0.011, p = 0.3, Table S20 of the Supporting Information). Regarding perfor-

mance, the explanatory linear models on GPCRs led to facts equivalent to those of kinases in

baseline metrics, in absolute and in baseline-adjusted performance. Regarding adjusted per-

formances, semi_resampling significantly outperformed no_resampling in 3 metrics instead

of 4 (Table S21 of the Supporting Information), which still made it preferable. Supplement

3 gathers with detail all the results obtained in the analysis of the GPCR family.

16



Discussion

The impact of clustering in final imbalance was strategy-dependent

This study is focused on the characterization of the data imbalance present in bioactivity

datasets, as well as how to address it. Bioactivity data also poses the problem of chemical

series, i.e. sets of similar molecules with similar activities, that result in inflated performance

metrics when split between training and test sets. We addressed those via a clustering prior

to the splitting, ensuring that similar molecules would belong to the same set.

The first observation was that clustering modified data imbalance in a strategy-dependent

way. When the starting set was perfectly balanced (strategy resampling_before_clustering),

clustering and splitting induced a degree of imbalance, particularly visible in the heavier tails

of the active ratios distributions in the test set. Compared to training, the lower sample sizes

in the test set may also cause extreme imbalances more often. On the other end, this effect

was only moderate in no_resampling, where the distribution of actives ratio was similar

in train and test, but that of test had more extreme proteins with either all actives or all

inactives.

Besides the overall changes in data imbalance, strategies differed in how the imbalance

of a certain protein in the training set would translate to the test set. The positive trend in

no_resampling suggests that existing data imbalances tended to persist after the clustering

and splitting. The negative trend in resampling_before_clustering hints that, in the absence

of imbalance, clustering will induce it. The flat trend in semi_resampling supports that the

imbalance induced with the clustering in the training set, which was balanced with SMOTE

beforehand, is independent from the original imbalance in the dataset (present in the test

set).
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The predicted actives proportion was driven by the test set rather

than the training

The original distribution of actives ratio in each of the balancing strategies affected the pre-

dicted actives ratio by the models. Due to the lack of correlation between training and test

ratios (Figure 2), the semi_resampling strategy was the ideal scenario to disentangle their

effect on the predicted ratio of actives (see model in table S3 of the Supporting Information).

Its additive model suggested that the original ratio of actives in test explained the predicted

proportions, rather than the training ratio. We also found that the number of interactions

per protein was a relevant factor: the more interactions, the less active proportion, sug-

gesting that the extreme cases with all predicted as actives tended to be proteins with few

interactions.

Likewise, resampling_before_clustering showed negative correlation between training

and test ratios, also providing a reasonably good scenario to distinguish their effects (Table

S3 from the Supporting Information). Its explanatory model confirmed both conclusions

from the model in the semi_resampling strategy, with similar estimates (Table S8).

The explanatory model for the no_resampling strategy (Table S9 of the Supporting

Information) suffered from the positive correlation between training and test ratios, which

could be confounded. Both original training and test ratios showed a positive effect on the

predicted fraction of actives. Although the estimate was larger and more significant for

the training ratio coefficient, the confounding effect and the very skewed distribution of the

predicted ratios deemed this model inconclusive.

Imbalance-sensitive metrics required baseline adjustment

The prediction task studied here posed a particular challenge: data imbalance happened

on a protein basis, and the imbalance of certain proteins could be extreme (very low or

high), moving away from the global actives ratio. Each resampling strategy would lead
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to different protein-wise imbalance patterns. The baseline performance of some metrics

(accuracy, F1 score and balanced accuracy) was different between strategies, while it was

constant for others (AUROC and MCC). The data-driven division into imbalance-sensitive

and insensitive metrics was an important step to understand the opposite conclusions reached

within each metric type after direct performance comparison between strategies (Figure 7).

The direct comparison of resampling strategies with imbalance-sensitive metrics would

be confounded by the imbalance-induced bias in the metrics and the protein-wise imbal-

ance differences between strategies. We found that adjusting by the baseline metrics (see

Equation 4) brought an agreement in the conclusions obtained by both imbalance-sensitive

and insensitive metrics. In turn, the same conclusions were obtainable by direct compar-

ison of imbalance-insensitive metrics. Because of this, our recommendation is to include

imbalance-aware baselines and to adjust imbalance-sensitive metrics when used for model

selection.

Augmenting the test set was the largest performance drive

Our results showed that the largest impact in performance estimates was the application of

data augmentation to the test set: resampling_before_clustering and resampling_after_clustering

tended to outperform semi_resampling and no_resampling. However, augmenting the test

set might not faithfully reflect new data anymore, and could artificially inflate the perfor-

mance estimates: models may specialize in discriminating between original and resampled

data points instead of actives and inactives.

Resampling improved performance when keeping the original test

set

On the other hand, semi_resampling outperformed no_resampling in four out of five metrics

(Tukey’s method, p < 0.05, Figure S13 of the Supporting Information), which supported

19



data augmentation usefulness even if the data balance in the test set differed from that

of the training set. This was consistent with the observation that the main influence on

the predicted actives ratio in the test set were their actual ratios in the test set instead

of the original ratios in the training set. Combined with the less skewed distributions of

predicted active ratios of semi_resampling against no_resampling (Figure 3), we recommend

semi_resampling for future studies.

Using GPCRs as an external protein family dataset for validation

suggests replicability of the main guidelines

The results obtained by the kinases and the GPCR proteins, used as an external validation

set for the model fitting and evaluation, point to the same general picture with aligned

conclusions. The differences found (the effect of the sequence length on protein imbalance

and n_interactions on predicted actives proportion is different to GPCRs) could be due to

the fact that there is more imbalance of the GPCRs towards the actives. However, these

results lead us to think that the guidelines for proteochemometrics models of this study

provide sensible defaults to more protein families.

Similarities with existing literature

In this paper we have confirmed that data balance has an impact in DL proteochemometric

target-compound activity models. Zakharov et al and Korkmaz arrived to a similar con-

clusion in a QSAR setting,15,16 the latter also using DNN models for classification. More

specifically, Korkmaz stated that the higher the imbalance for a protein, the worse the model

performance (measured by F1-score and MCC).

These studies got the best performances by controlling data balance by means of un-

dersampling techniques (in the case of Zakharov) and oversampling techniques (in the case

of Korkmaz). We chose SMOTE for data balancing, an oversampling technique, since the

settings of the Korkmaz study were more aligned with ours and because DL models require
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a large quantity of training data. Specifically, in four out of five metrics, proteins with more

interactions were better predicted (table S17 of the Supporting Information) which was also

found in the Korkmaz paper.

Within our resampling strategies, semi_resampling was the most similar to the balancing

process in the Korkmaz study, in which the training and validation sets were oversampled

(per protein) while the test set was not.

Dissimilarities with existing literature

Technical differences existed in the descriptors used in the three studies. Zakharov et al used

Quantitative Neighborhood of Atoms and biological descriptors, whereas Korkmaz used the

PaDEL software. We, on the other hand, used the fingeprints from PubChem. The fact

that the overall messages are consistent suggests a degree of independence from the input

encoding.

More importantly, Zakharov and Korkmaz studies did not take into account the control

of the compound series bias. This step is necessary for obtaining realistic performance

estimates in a real-world setting.8,18 Not only we accounted for it, but we also investigated

if the stage in which the compound series control was introduced, in combination with the

data augmentation (before or after applying SMOTE), had an impact in the outcome.

Indeed, the order had an impact in the model performance and needed careful con-

sideration. Resampling_before_clustering solved the global imbalance of the dataset, but

clustering after oversampling would lead again to a protein-wise imbalance. Analogously,

semi_resampling resampled the training and validation sets, but imbalance returned after

their clustering. On the contrary, resampling_after_clustering first corrected the problem

of similar compounds, and then augmented the data to reach a protein-wise balance.
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Limitations and future work

This study continues our incremental work on recommendations for DL models regarding

input encoding25 and control of chemical series.8 While this study was limited to one archi-

tecture and two protein families, it provides a foundation to understand the basic behaviour

of PCM models, insights on how to adjust performance metrics for a protein-wise analysis,

and a first step towards exploring more general questions. Those could include architecture-

centric analyses to confirm if the same trends are observed when changing the layers or the

model structure, or using other protein families with a different distribution of actives ratios,

which may be flat or skewed to the inactives.

Conclusion

Although the effect of data balance and resampling techniques had been analysed for QSAR

models, it had not been studied yet in the context of proteochemometrics models, even if

the bioactivity datasets used in this setting are usually imbalanced. In this paper, we have

tested four different combinations of data oversampling (through SMOTE) and clustering for

controlling compounds similarity. While the clustering avoids overly optimistic performance

estimates, it could introduce more data imbalance (in the form of splittings having proteins

with mostly active or inactive compounds). Despite this potential conflict between the

resampling and the clustering, we found that resampling was useful to improve the model

behaviour and performance.

Some common performance metrics were affected by the data imbalance and yielded

misleading trends. We included an imbalance-aware random baseline and defined baseline-

adjusted metrics to overcome this issue, especially in F1-score and accuracy. After baseline

adjustment, the metrics provided a unified picture: the largest impact in performance esti-

mates came from the application of data augmentation to the test set (resampling_before_clustering

and resampling_after_clustering outperformed semi_resampling and no_resampling). How-
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ever, augmenting the test set may not reflect a realistic scenario.

On the other hand, semi_resampling outperformed no_resampling in four out of five

adjusted metrics and provided a more equalized distribution of predicted actives ratio. This

confirmed the data augmentation usefulness even if the data balance in the test set differed

from that of the training set. This was consistent with the finding that the predicted propor-

tion of positives of the proteochemometrics model was explained by the actual data balance

in the test set, rather than that of the training set. We also found that proteins with more

interactions were better predicted.

Our recommendation is thus to use the semi_resampling strategy, i.e. clustering com-

pounds to separate training and validation from test sets, resampling training and validation

and then clustering compounds again to definitely split training and validation sets. This

was carried out on the kinases protein family and further confirmed on the GPCR family.

While we cannot extrapolate these results to all the proteins and imbalance distributions,

this sets a sensible starting point for improving proteochemometrics modelling and remains

consistent with the corresponding data imbalance studies on QSAR models.

Data and code availability

The bioactivity data used in our analysis is publicly available in the repository https:

//github.com/Shen-Lab/DeepAffinity.19 The code of this analysis is publicly available at

https://github.com/b2slab/imbalance_pcm_benchmark.
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Figure 1: Description of the four balancing strategies that were applied to the bioactivity
data. Resampling_before_clustering, where resampling per protein is applied prior to
clustering and splitting; resampling_after_clustering, where data is first clustered and
splitted and then each protein activity data in each set is resampled; semi_resampling,
in which the splitting is performed and then the test set is kept without resampling but
the training+validation set is resampled and clustered; and no_resampling, in which the
imbalance of the original data is kept and clustering is applied prior to splitting.
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Figure 2: Comparison of the training and test original active ratios, by resampling strategy.
Linear fit trends were added by strategy, and the shadowed areas indicated the 95% CI of
the expected value. Each plot combines all the folds.
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Figure 3: Histograms of the active ratios in the training set, and in the test set (both original
and predicted by the deep learning model), within each resampling strategy. Each histogram
combines all the folds.
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Figure 4: Predicted ratios, as a function of training ratios, by resampling strategy. Linear fit
trends were added by strategy, and the shadowed areas indicated the 95% CI of the expected
value. Each plot combines all the folds.
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adjusted performances (right block), estimated through the corresponding linear model of
each metric. For baseline-adjusted metrics, only the improvement over the baseline is dis-
played. The ranking, ranging from 1 (best) to 4 (worst) in each row and block, was based
on the expected performance, averaged over folds and indicated in parentheses. The colour
scale varies between the block row-wise maximum (red) and 0 (blue).
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