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Abstract  

Although ceramic-metal composite materials prepared by a metal infiltration process have spurred a 
a great deal of recent research, the calculation of the metal infiltration rate and infiltration depth has not been 
as intensely studied. This article is the first to conduct calculations and research on the metal infiltration of 
BN-Al composites. When the metal infiltration temperature is 1100 °C and the infiltration time is 7200 s, the 
final infiltration depth can reach 0.21 m. When the time is increased, the rate gradually decreases. When the 
metal infiltration was first started, the maximum infiltration rate was 0.65 cm·min-1, and when the metal 
infiltration was completed, the infiltration rate had dropped to 0.18 cm·min-1. 
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Introduction 

Boride ceramic is a new type of material with many important properties (1-4). These include 

a high melting point, great hardness, high chemical stability, high wear resistance, and corrosion 

resistance (5-8). As a result of these characteristics, it can be used as a refractory material and in 

the production of engineering ceramics and has many applications in areas such as aerospace and 

the nuclear industry (9-14).  

Its great weakness, however, is its brittleness. Under stress, cracks can occur, and worse, 

fractures can lead to material failure (15-18). The use of high-strength, high-purity metal and 

matrix composites is an effective method of improving ceramic insulation and reliability (18-20).  

Ceramic-metal composite material, also known as cermet, is a new type of material that can 

enhance transportation capacity and energy conversion (21-23). Cermet combines the main 

advantages of ceramics and metals, including the high temperature stability of ceramics, and the 

workability and ductility of metals (24-27).     
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The use of metal infiltration (Melt Infiltration) is the first step in the preform phase (28-30). 

Melted metal is poured into the preform, and through a combination of capillary action and the 

application of a certain amount of pressure, the molten metal is impregnated into the gap of the 

preform, creating the composite material which combines metal with ceramic (Figure 1).  

  

Figure 1 Schematic diagram of melt infiltration 

Principle of metal infiltration 

The principle of metal infiltration is based on the knowledge that preform is a porous 

medium, and the flow of liquid metal in this porous medium can be compared to the flow in a 

capillary bundle with a certain equivalent diameter. Capillary pressure ( cP ) is the additional 

pressure caused by the surface tension between the front part of the liquid flow and the gas. From 

the perspective of statics, the additional pressure caused by capillary action determines whether 

the seepage process is automatically carried out (31). The capillary pressure is determined by the 

Laplace equation: 

                         2 cos /cP r =                                                                          (1)                        

in which,  is liquid-gas surface tension,   is wetting angle between liquid metal and particles, 
r  is hydraulic radius. 

                       / 6(1 )pr d  = −                                                                        (2)     

in which, pd is the particle radius,   is the apparent porosity of the preform. 

                                       

                        (3)    

in which, 1V is the interstitial volume of preform, and 2V  is the total volume occupied by preforms. 

Regarding equation (1): When 90  and 0cP  , metal infiltration can be carried out 

automatically. When 90  and 0cP  , metal infiltration cannot be performed automatically. In 

addition, for the molten metal to penetrate forward through the gap of the preform, the molten 

metal should have the wetting property of the particle surface. 
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Calculation of metal infiltration 

In performing metal infiltration, time, pore size, pore shape, apparent porosity, metal 

viscosity and surface tension of the molten metal have a great impact on the kinetics of metal 

infiltration. Consequently, metal infiltration is calculated based on these factors. The depth of 

penetration into the preform is of great importance in judging whether the metal infiltration has 

been successfully completed.  

The formula for calculating the depth of metal infiltration is: 
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in which h  is the depth of infiltration, r  is the particle radius (5 μm is applied in this calculation), 

  is the pore shape factor (in this calculation, 0.75),   is the surface tension,   is the metal 

viscosity,   is the porosity of the preform (using the average value of apparent porosity of 0.375 

in this calculation),   is the wetting angle, t  is the metal infiltration time. 

Fujii studied the wettability of hexagonal BN and Al, and the results showed that 1373 K 

(1100 °C) is the best temperature for Al infiltration of BN (32).  

The viscosity of metallic aluminum at 1100 °C can be calculated using the equation (2), and 

the calculation result is  =0.903 mPa·s; 

            
0.1492exp(1984.5 / ) ·[ ]T mPa s =

                                  
(2) 

The surface tension of metallic aluminum at 1100 °C can be obtained using equation (3), 

where T is the metal infiltration temperature of 1100 °C, the melting temperature of metallic 

aluminum is 660 °C, and the calculated result is:   =0.80 J·m-2; 

              
3 20.868 0.152( ) 10 [ / ]mT T J m −= − − 

                           
(3)

 

Fujii also measured and drew the wetting angle curve between BN and Al (Figure 2). When 

the temperature is 1173K (900 °C) and the wetting time is 3500 seconds (s), the wetting angle is 

greater than 120 °C. When the temperature is 1273K (1000 °C), and the wetting time is 7000~7500 

seconds (s), the wetting angle will decrease to 0°. When the temperature is 1373K (1100 °C) and 

the wetting time is 2000~2500 seconds (s), the wetting angle will decrease to 0°. Fujii's research 

has shown that 1373K (1100 °C) is the best temperature for Al infiltration of BN. 

The wetting angle at 1100 °C is calculated in Figure 2:                    

                   29.14 0.01 (500 2500 )t s t s = −                                                (4) 

                         0( 2500 )t s =                                                                 (5) 
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Figure 2 Contact angle curves between Al and BN (32) 

Based on the above calculation, the relationship between metal infiltration depth and the 

time of the BN-based boron-containing composite material is obtained using the following 

equation: 

0.0000064 cos(29.14 0.01 )(500 2500 )[ ]h t t s t s m= −             (6) 

        0.0000064 ( 2500 )[ ]h t t s m=                                                 (7) 

According to the above calculation of the infiltration depth, time is the abscissa, and the 

depth is the ordinate. Figure 3 shows the relationship between metal infiltration depth and time of 

the BN-based, boron-containing composite materials. It can be seen from the figures that as time 

increases, the infiltration depth gradually increases. When the infiltration time is 7200 s, the final 

infiltration depth can reach 0.21 m. This outcome indicates that the sample thickness of the preform 

prepared in the laboratory must be less than 0.21 m to ensure final completion of the metal 

infiltration. 

Determining the data of infiltration depth h and time t: 

         
5 9 2 20.0384 2.93 10 2.12 10 ( 0.99642)h t t R− −= +  −  =                            (8) 

The metal infiltration rate v  is calculated by equations (7) and (8), and demonstrate the 

relationship between the infiltration rate v  and time t : 

 

                                                                  (9) 
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Figure 3 The relationship between depth and time of infiltration 

Based on the above calculation of the infiltration rate, the time is the abscissa, and the 

velocity is the ordinate for drawing. Figure 4 shows the relationship between the metal infiltration 

rate and time of TiB2-based composites. It can be seen from the figure that as time increases, the 

metal infiltration rate gradually decreases. When the metal infiltration is just beginning, the 

maximum infiltration rate is 0.65cm·min-1. When the metal infiltration is over, the infiltration rate 

has dropped to 0.18cm·min-1. This outcome indicates that the rate of metal infiltration has not been 

consistent during the infiltration process. The reason for the gradual decrease is probably because 

the pores of the preform have been gradually filled with aluminum infiltration from top to bottom, 

decreasing the capillary force, and the decrease, in turn, causes a decrease in the infiltration rate. 

Determining the infiltration rate and time data: 

                                                             (11) 

2( 0.99621)R =  
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Figure 4 The relationship between speed and time of infiltration 

Summary  

For the first time, the metal infiltration depth and infiltration rate of the BN-Al composite 

prepared by metal infiltration have been calculated and studied. The calculation results show that 

the infiltration depth gradually increases with the increase of time, and the final infiltration depth 

can reach 0.21 m. As time increases and voids decrease, the infiltration rate gradually decreases. 

The maximum impregnation rate is 0.65cm·min-1. This calculation and research provide a positive 

idea for the calculation and prediction of metal infiltration in void media in future studies. 
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