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Abstract

We propose a fully automated composite scheme for the calculation of molecu-

lar entropies efficiently, accurately and numerically stable by a combination of DFT,

semiempirical quantum chemical (SQM) and force-field (FF) levels. A modified rigid-

rotor-harmonic-oscillator (msRRHO) approximation and the Gibbs-Shannon formula

for extensive conformer ensembles (CEs) are applied and efficiently account for effects

of anharmonicity. CEs of systematically increasing quality are generated by a modified

metadynamics search algorithm and extrapolated to completeness. Variations of the ro-

vibrational entropy over the CE are accounted for by a Boltzmann population average

for the first time consistently. The proposed procedure was extensively tested with two

standard DFT methods (B97-3c and B3LYP) and at GFN-SQM/FF levels for the con-

formation term in comparison with experimental gas phase entropies and heat capaci-

ties. Excellent performance is observed with mean deviations <1 cal mol−1 K−1(about

<1-2%) for the total molecular entropy. Even for extremely flexible linear alkanes

(C14H30–C16H34), unprecedentedly small errors of about 3 cal mol−1 K−1 are obtained.

For 25 typical drug molecules, the conformational entropy depends weakly to strongly

on the underlying theory level revealing the complex potential energy surfaces as main

source of error. The approach is systematically expandable and moreover can be ap-

plied straightforward together with continuum solvation models.
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1 Introduction

A main goal of computational chemistry is to realistically model various chemical reactions

and predict their products. While those reactions are usually carried out at room tempera-

ture in solution, quantum mechanical (QM) calculations are primarily conducted for isolated

molecules at absolute temperature zero. In order to compare theory with experiment, ad-

ditional corrections and computational steps are required. Calculations of thermodynamic

properties at finite temperatures are essential and if we neglect here the issue of solvation,

the basic problem is an efficient computation of the molecular entropy.1,2

As for most other thermodynamic properties, QM computations of the entropy are commonly

based on frequency calculations in the harmonic oscillator (HO) approximation. This is then

usually extended by the rigid-rotor model, giving rise to the rigid-rotor-harmonic-oscillator

(RRHO) approach. A comparison of entropies calculated in this way to experimental val-

ues for small molecules reveals an insufficient accuracy already for relatively rigid molecules

mainly due to anharmonicity effects.3–6 Because RRHO errors are often systematic, a com-

mon strategy is linear or multi-parametric scaling of the HO vibrational frequencies to mimic

the effect of anharmonicity.7–13 However, even frequency scaling is unable to account for all

of the missing contributions to the entropy.

Approaches that compute the absolute entropy can be roughly categorized into two major

classes. The first go beyond the HO approximation and explicitly account for anharmonicities

in the description mainly for low-frequency, torsional normal modes. For example, this can

be done by construction of one-dimensional (1D) potential energy surfaces (PES) along

the respective normal modes, as in the uncoupled normal mode approach of Sauer and

coworkers.14–16 This scheme was later adapted by Head-Gordon et al.6 to include a separate

treatment of vibrational and torsional modes (UM-VT). Advances have also been made for

approaches that investigate coupled torsional motions.17–19 Another method that includes

the torsional anharmonicity via 1D-PES and takes multiple structures into account is the

MS-T approach (and its variants), developed by Truhlar and coworkers.20–22 Good results can
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be achieved with all of the above schemes, but in practice the construction of the PES and

the relevant modes is technically involved, often only possible for relatively small molecules

and unfeasible for routine computational chemistry workflows.

A stronger focus on multiple minima (molecular configurations/conformers) leads to the

second class of approaches. Here, thermodynamic properties are approximated only by

considering the unique minima on the PES, which in the molecular case are the different

conformations. In the context of the mode following (MF) approaches discussed above,

this can be understood because anharmonic torsional modes describe the transition between

low-lying conformations.23,24 Although entropies and heat capacities are thermodynamic fea-

tures encoded rather globally in the shape of the PES25,26, conformations can be used to

map the problem to well-defined points on the PES. More specifically, part of the absolute

entropy is computed by an informational thermostatistic partition function (Gibbs-Shannon

entropy27,28) that only depends on a given Boltzmann probability distribution of the con-

formers. This idea was pursued in the so-called ”minima mining” approaches,29–32 where

effects of anharmonicities are partially absorbed into the conformational entropy. As for

the MF methods, a wide variety of different schemes exist,33–36 such as the so-called mutual

information expansion (MIE)37,38, or the maximum information spanning tree (MIST)39,40

procedures. More recent developments were introduced by Suárez and coworkers.41–43 In

their approach, the thermodynamic quantities are obtained from snapshots along an ex-

tended molecular dynamics (MD) trajectory, which are associated with unique molecular

conformations. The vibrational contributions are averaged over all snapshots, while the con-

figurational entropy is calculated via an MIE. This is doable at a force-field (FF) level, but

will become cumbersome for medium sized drug-like molecules at higher theoretical levels.

Note that essential parts of these schemes depend solely on structure based descriptors (di-

hedral angles). Other studies in the literature,44 employ some kind of flexibility measure

to empirically derive molecular entropies and even more recently Hutchison et al. have used

structural descriptors to develop a promising machine learned estimation of conformational
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entropy.45

In this study, we introduce an improved scheme that is developed from the minima mining

approach and is designed to work in an almost ”black box” fashion in combination with

modified RRHO calculations. Herein, for the calculation of conformational entropies the

recently developed GFN2-xTB46,47 tight-binding MO and GFN-FF48 force-field methods are

employed to keep computational cost under control and improve the PES description in

comparison to many standard FFs. Both methods are consistently available for all elements

in the periodic table up to radon (Z=86). Below, we will first start with a general overview

of the partitioning of entropies and heat capacities, followed by a description of technical

novelties and the automated procedure used for the conformational part. After discussing

general observations with regard to entropy calculations, benchmark results for entropies

and heat capacities are presented in comparison with experimental gas phase values. In the

last section we apply our scheme to some biochemically relevant systems (drug molecules)

and discuss a few prototypical chemical applications.

2 Theory

The absolute molecular entropy in the Born-Oppenheimer approximation consists of trans-

lational (trans), rotational (rot), and vibrational (vib, also termed internal) parts

S = Strans + Srot + Svib . (1)

The most complicated vibrational contribution can be further decomposed according to

Svib = SHO + Sanharm + Sconf , (2)

where HO denotes the harmonic oscillator value, Sanharm its anharmonic correction and Sconf

is the conformational entropy arising from the population of different conformational minima.
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This last term is relevant for many chemically important and often non-rigid molecules like

alkanes or typical drugs. Its efficient computation is the main point of this work. The

corresponding partitioning and formulas can be derived analogously for the heat capacity Cp

for which only the finally used equation is reported below (see Eq. 13).

If Sanharm is neglected or as usually absorbed into a scaled SHO term or partially accounted

for by Sconf (see below), Eq. 1 can be rewritten as

S = SRRHO + Sconf , (3)

where SRRHO refers to the usual rigid-rotor-harmonic-oscillator approximation for the ro-

tational/translational and internal parts, respectively. In the following, in order to avoid

terminology problems,33 we denote all parts of the entropy that are not included in SRRHO

(or SmsRRHO, see below) of a given reference structure as conformational or configurational

entropy and will use the terms interchangeably. The decomposition used above is physically

motivated by the fact that some vibrational anharmonicity effects, at least for not too large

distortions, maintain the equilibrium structure (bond stretching and many angle bendings),

while many torsion motions lead to new (conformational) minima with low barriers. This

partitioning of the entropy into vibrational and conformational parts was first introduced by

Karplus et al., and has since been used in many studies.31,33,35,49–51

A well-known problem of RRHO-based entropy calculations is that Svib tends to infinity for

vibrational frequencies approaching zero. In actual calculations for larger, flexible molecules,

many low-frequency vibrational modes appear which are often better characterized by inter-

nal rotations of functional groups rather than by stretching or bending vibrations. They are

in a typical range of 5–50 cm−1 and can spoil the computed entropy due to artificial numerical

errors and their strong anharmonicity components. Correction schemes exist which explic-

itly treat such modes anharmonically in a coupled or uncoupled form6,22. These methods

require the costly computation of one-dimensional (1D) PES as well as definition of special
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internal coordinates. In our opinion, while such methods can be beneficial and accurate for

small to medium sized and not too flexible molecules (≈ 20–30 atoms), they are not viable

for a robust and rather general treatment for systems with hundreds of atoms.

In 2012, one of us proposed to modify the treatment of the low-frequency part of the vibra-

tional spectrum by taking a so-called rotor-approximation and continuously interpolating

between a rigid-rotor and vibrational description for each mode.52 Herein, the vibrational

entropy of a harmonic oscillator with frequency ν at temperature T is given by

SV = R

[
hν

kT

e−hν/kT

(1− e−hν/kT )
− ln(1− e−hν/kT )

]
. (4)

The rigid-rotor entropy for a free rotor is given by

SR = R

[
1

2
+ ln

{(
8π3µ′kT

h2

)1/2
}]

, (5)

where µ′ describes the dependence on the average molecular moment of inertia Bav and the

frequency of the normal mode

µ′ =
µBav

µ+Bav

, (6)

with µ = h
8π2ν

. In Eqs. 4–6, h is Planck’s constant, R is the gas constant, and k is Boltzmann’s

constant. The final continuously interpolated SmRRHO entropy (”m” for modified) is then

given by a sum over all normal modes

SmRRHO = Strans + Srot +
modes∑
i

[
SV

1 + (τ/νi)α
+

(
1− 1

1 + (τ/νi)α

)
SR

]
, (7)

with α = 4 (introduced with the damping function in Ref. 53). This does not involve

any computational overhead compared to a standard HO calculation and involves merely

definition of a vibrational energy threshold τ below that the rotor entropy instead of the

vibrational one is continuously taken. A related (but discontinuous) treatment has been

proposed by Truhlar.54 A typical value used by us since years in standard thermochemical
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studies is τ = 50 cm−1. In this work, we consider τ for the first time as an adjustable

parameter to account for part of the non-conformational anharmonicity effects. Furthermore,

calculated harmonic frequencies are lineary scaled by a factor νscal, as is common practice7–9

to account for deficiencies of the underlying method employed for the PES calculation and

further anharmonicity effects mainly in the high-frequency part. The only two empirical

parameters included are adjusted to reproduce experimental entropies for a benchmark set

of mostly rigid molecules (see below). For better destinction this modified RRHO treatment

is in the following denoted by SmsRRHO (”s” for scaled).

The major aim of this work was to find a robust approximation to Sconf which is already

sigificant for medium flexible molecules (see section 4.4). We build upon the original idea of

Gilson and co-workers29 termed ”minima mining” or ”mixture of conformers” strategy, which

has later been applied to organic molecule entropy calculations by DeTar31 and Guthrie32.

The basic formula reads

Sconf ≈ Smix = −R
conf∑
i

pi ln pi (8)

and approximates Sconf by the conformer mixing entropy Smix summed over a conformer

ensemble. The thermal populations p at absolute temperature T are given by

pi =
gie
−Eiβ∑
gie−Eiβ

, (9)

where β = 1
kT

, Ei is the energy of the equilibrium structure of conformer i, and gi is a general

state degeneracy. The conformational entropy depends on the level of theory through the

calculated populations entering the Gibbs-Shannon entropy formulation in Eq. 8, which in

turn depend directly on the equilibrium (free) energies. But also for other configurational

entropy approaches, that are usually cited as being purely informational,33,42 there exists

a bias towards the underlying method used for the generation of molecular structures, for

example by MD simulations. This is especially problematic for very crude approximations of

the conformational entropy, e.g., based only on the number of conformers Nconf according to
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Sconf ≈ R ln (Nconf ). This approximation is used in some studies32,55 and is appealing due

to its simplicity. However, while this formulation may be used for very simple molecules, it

breaks down for more complex PES. Further discussion of this point is given in the Supporting

Information.

The sum in Eq. 8 is taken over all significantly populated, distinguishable structures rep-

resenting a so-called generalized Boltzmann distribution.28 The problem of this procedure

(also termed Gibbs-Shannon entropy based procedure) is that not only an almost complete

conformer ensemble has to be found but additionally, it should be ”pure”, i.e., free of so-

called rotamers. In this case for molecules with non-degenerate electronic ground states,

all gi are unity. Rotamers are structures indistinguishable by any nuclear spin-independent

quantum mechanical observable. They arise from rotation around covalent chemical bonds

(or other inversion-type processes) that interchange nuclei belonging to the same group of

nuclides, as for example the interchange of protons at a methyl group by rotation.

In this work, we propose and implement for the first time an automatic algorithm that

generates a theoretically proper ensemble of unique conformer structures required for the

accurate computation of Sconf . For the conformer search problem, we employ our recently

described CREST program56 (abbreviated from Conformer-Rotamer Ensemble Sampling

Tool), which is based on metadynamics simulations employing on-the-fly computed quantum

mechanical tight-binding PES.56,57 We assume at this point that the conformer-rotamer

ensembles (CRE) obtained from CREST are sufficiently complete and the energies Ei are

accurate. If this is really the case for very flexible molecules (e.g. long alkanes) can be tested

by comparison of computed and experimental entropies and heat capacities (see Sec. 4.2

and 4.3). Note that our approach works with any (on-the-fly computed) PES and hence, at

least in principle, the errors introduced by the underlying method for the PES and the other

approximations to the entropy problem could be decomposed.

The CREST algorithms were originally developed to generate rotamer containing ensembles

and the related nuclei-exchange information for the simulation of NMR spectra23. Hence, it
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seems straightforward not only to identify rotamers, but to extend the algorithm to automat-

ically compute the proper degeneracy number gi. However, as mentioned above, conformer

ensembles (CE) must be free from the indistinguishable rotamers to be compatible with

entropy calculations. Therefore, gi are treated as unity in the usual case.

The only exception here are symmetrical molecules that can form ”enantiomeric” (i.e., in

principle distinguishable) conformers through rotation of bonds. A typical case is the gauche

conformer of n-butane. These geometrical enantiomers are degenerate and would be falsely

classified as rotamers in our previous implementation. Effectively, this introduces a factor

of g′i = {1, 2} instead of gi in the degeneracy, depending on if the formation of a geometrical

enantiomer is possible. Our new apprach considers this problem for the first time in a correct

and automated way. Inserting this into the standard entropy expression for degenerate

states58 leads to

S ′conf = R

[
ln
∑

g′ie
−Eiβ +

∑
g′i(Eiβ)e−Eiβ∑
g′ie
−Eiβ

]
. (10)

The correct SmsRRHO entropy is a population average over the CE, analogously to other

physical observables. Unfortunately, the many costly DFT geometry optimizations and

frequency calculations will quickly become the computational bottleneck for moderately

sized systems. Therefore, as a further approximation, we compute SmsRRHO at the DFT level

for the lowest conformer and add the respective ensemble contribution as a thermostatistical

average over all populated conformers at a less computationally demanding, lower theoretical

level. The arising SmsRRHO term is given by

SmsRRHO =
(∑

piSmsRRHO,i

)
− SmsRRHO,ref , (11)

where SmsRRHO,i is the absolute msRRHO entropy of the conformer calculated at the low

force-field or SQM level to avoid very many (high level/DFT) HO calculations. SmsRRHO,i

and the free energies (Gi) are only explicitly calculated for the lowest ≥ 90% populated

(based on initial total energies Ei) conformers while for all others, the average is taken. The
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populations pi refer to Eq. 9 and are calculated using Gi from the corresponding msRRHO

calculations. For convenience, we subtract the entropy of a reference structure SmsRRHO,ref in

Eq. 11 such that SmsRRHO can be added directly taken as a further correction to the SmRRHO

result taken from any standard quantum chemistry code. SmsRRHO,ref typically refers to the

DFT reference structure, for which vibrational frequencies are calculated at the SQM or FF

level. To avoid changes to the geometry and appearance of imaginary vibrational modes, we

here additionally make use of a new procedure called Single Point Hessian (SPH), for which

some details are given in the Supporting Information, but will be published elsewhere.59

Note that if SmsRRHO is calculated at the same level as SmsRRHO, one would arrive at the

correct population average because SmsRRHO and SmsRRHO,ref exactly cancel each other.

The treatment would then be exact.

Thus, our final working equation for the molecular entropy is given by

Sconf = S ′conf + SmsRRHO . (12)

The corresponding formula for the heat capacity at constant pressure is

Cp,conf = R

(∑
i gi (Eiβ)2 e−Eiβ∑

i gie
−Eiβ

)
−R

(∑
i gi (Eiβ) e−Eiβ∑

i gie
−Eiβ

)2

, (13)

and the enthalpy is

[H(T )−H(0)]conf = RT

∑
i gi (Eiβ) e−Eiβ∑

i gie
−Eiβ

. (14)

Note that gi is used in Cp and H(T )−H(0) instead of g′i. In our opinion, basing Sconf (and

related properties) directly on a given level of theory via the Gibbs-Shannon entropy of an

ensemble (Eq. 8 and 10) provides a genuine understanding of the quantity in accordance

with chemical intuition. Furthermore, it can be very well coupled to automated conforma-

tional search tools, which are anyway necessary for accurate computation of other physical

observables.

11



3 Implementation and Computational Details

3.1 Extrapolation to ensemble completeness

For very flexible systems (e.g. long alkanes), the number of accessible conformers Ω is roughly

proportional to Ω ≈ 3R, where R is the number of freely rotatable bonds (commonly asso-

ciated with the number of sp3-sp3 carbon single bonds).55 In principle, all conformers, i.e.,

the complete ensemble and the respective energies are required for the calculation of Sconf

but even for only moderately sized systems this number is prohibitively huge.

Practically, the obtained ensemble quality depends mostly on the run time t of the (biased)

molecular dynamics (MD) in CREST. Basically, it is the number of optimized snap-shot

structures gathered over all runs and will converge to a complete CE with the length of

the conformational search. On the other hand, the conformational entropy also exhibits

predictable behavior with regard to increasing ensemble completeness. If the lowest energy

conformer is known, adding higher-lying conformers to the ensemble can only increase the

entropy. If many of the low-energy structures are already found, the entropy increase for

additional states is smooth and it seems possible to extrapolate to completeness without

explicit knowledge of all conformers. The pre-requisite for this is the generation of enough

intermediate points, i.e., consecutive conformational ensembles with systematically improved

quality. A smooth and continuous convergence of the entropy to its maximum value can only

be observed if conformers are added consistently from all regions of the PES (see Sec. 4.2

for examples).

In the implementation of the algorithm, information from incomplete CEs of consecutive

iterations is used for an extrapolation of the entropy according to

S ′conf (x)− S ′conf (0) = p1 (1− exp (p2x
p3)) , (15)

where x is the iteration number, and S ′conf (0) refers to the result of the first initial conformer
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ensemble from the new CREST workflow (see Sec. 3.2). The parameters p1, p2 and p3 are

fitted automatically to the available data points from each entropy sampling run employing

the Levenberg-Marquadt60,61 algorithm. In summary the extrapolation can be seen as an

unsupervised learning procedure used to correct for incompleteness.

3.2 Algorithmic and technical details

The conformational entropy calculation as described above is performed with the recently

published CREST program.56 A special run type was implemented for this purpose, where

the focus is set to an extensive sampling around the global and low-lying local minima.

Ideally the calculation of Sconf should be conducted from the already known global mini-

mum conformer, e.g., obtained from another conformational search with default settings in

CREST. The enantiomer degenaracy number gi is obtained automatically as described in

detail the Supporting Information. For the msRRHO part, any quantum chemical method or

even force-fields can be applied. Here, we use the composite DFT method B97-3c62 and the

well-known B3LYP-D3 functional63–65 in a standard def2-TZVP basis.66 Molecular symme-

try numbers are automatically determined for each conformer entering SmsRRHO and should

be also included in the DFT frequency evaluation.

The few simple steps required for the calculation of the absolute entropy are

1. Run CREST in default mode on a starting structure to find the lowest conformer

2. Optimize the geometry of this conformer with DFT, compute the Hessian matrix from

the DFT structure and use the HO vibrational frequencies to calculate SmsRRHO

3. Run CREST in entropy mode on the lowest-energy conformer and employ the DFT

reference structure for SmsRRHO, resulting in Sconf

4. Compute S = SmsRRHO + Sconf

Note that for large systems step two could in principle also be conducted at a low theory

level (SQM or FF). However, because step three is usually the computational bottleneck, it
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is recommended to take SmsRRHO from a more accurate DFT treatment. In general, this par-

titioning allows systematic improvements of the scheme because the different contributions

can in principle be calculated at any level of theory.

If no low-lying conformers (relative energy <1-2 kcal/mol at ambient temperature) are found

in the first step, the entropy run is not necessary and the plain SmsRRHO value can be

taken. The default setup for the metadynamics bias potentials in the entropy mode and

further technical settings were empirically determined on a few test cases similar to the

optimization of the run parameters in a conventional conformer search run57 (see CREST

documentation and source code67). Note that the MD runs are by default initiated with

random numbers and hence the details of the obtained CE vary stochastically. For larger,

very flexible molecules with a complicated PES this can amount to stochastic variations of

2–5% for Sconf (see also Section 4.4 for discussion).

The general workflow for the computation of Sconf in CREST is outlined in Fig. 1. The

metadynamics (MTD) simulations

"static" metadynamics (sMTD) 

converged
estimates?

restart for new
lowest conformer

no yes
• calculate

SconfS'• extrapolate + SmsRRHOSconfS'

= Sconf,final

geometry optimization

sorting

conformers rotamers

estimate Sconf,est = -RΣi pi log pibiased potential energy surface
to exclude old conformers

SmsRRHO

Figure 1: Schematic representation of the workflow used for the computation of Sconf . See
text for details.
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procedure is designed to work fully automatic and to provide intermediate ensembles for

entropy extrapolation as described above. For the input structure, the run time t of the

biased MD is determined automatically from a covalent and non-covalent flexibility measure

(see Sec. 4.4 and the Supporting Information). To create an initial structural ensemble, 24

metadynamics (MTD) simulations are conducted with several different bias parameters as in

the default CREST runtype. The structural ensemble obtained from this step is later used

as the reference to calculate S ′conf (0) (see Eq. 15). Structures are sorted according to their

relative energy, structural Cartesian RMSD, and rotational constants to distinguish between

unique conformers and degenerate rotamers, as described in Ref. 56.

From the CEs two sets of structures are extracted via a combined principle component anal-

ysis (PCA)68,69 and k-Means clustering70,71 approach, using dihedral angles as geometrical

descriptors. The first set of structures, which always consists of 36 structures, is used as input

for further metadynamic simulations. The other set consists out of a number of structures

that depends on the molecular flexibility and current ensemble size. This second ensemble

is used to generate a global bias potential in the metadynamics simulations and, in contrast

to the initial MTD simulation, is not updated with new bias structures. The idea here is

to apply this new unchanged bias similar to a global potential used in classical umbrella

sampling72 or basin-hopping algorithms73,74 to efficiently block entire energy basins of the

PES and direct the conformational search to new minima. For better differentiation, this

is referred to as static metadynamics simulation (sMTD). The ensemble obtained by sMTD

is merged with the previous ensemble and a preliminary conformational entropy Sconf,est

is determined. If no change (within a 2 % threshold) in Sconf,est and the total number of

unique conformers is observed, the final conformational entropy is calculated. Otherwise, a

new iteration of 36 sMTDs is conducted using input structures and static bias structures

determined from the updated ensemble. Furthermore, with each iteration the number of

static bias structures is increased. This procedure is repeated until convergence is reached

both with regards to Sconf,est and the number of unique conformers in the ensemble. For the
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final calculation of S ′conf , an extrapolation as described in Sec. 3.1 is conducted. This new

algorithm in CREST can also be used for normal conformer search with the keyword --v4.

A problem may appear if the rather approximate PES used in CREST (here GFN2-xTB

or GFN-FF) is substantially different from the DFT PES (here B97-3c or B3LYP-D3/def2-

TZVP). This is indicated by different lowest-energy conformers and significant energetic

re-ordering of the CREST ensemble obtained with the GFN methods after refining (re-

optimizing) it with the respective DFT methods. In such cases, we suggest to use the

SmsRRHO value obtained for the lowest DFT conformer and corresponding Sconf from the

GFN ensemble. If the lowest GFN and DFT conformer structures agree qualitatively, this

approximation seems to be reasonable according to our experience.

Ideally, the PES employed for the initial conformational search and the one used for auto-

matic Sconf calculation should be the same. Here, we employ the GFN2-xTB tight-binding

method46 and the recent general force-field GFN-FF48 and compare the results. The lat-

ter speeds-up the CREST calculations by a factor of 10–30 for typical cases with 50–100

atoms. The SmsRRHO value is always computed with B97-3c and a frequency scaling factor

νscal of 0.97, or B3LYP-D3/def2-TZVP with a frequency scaling factor νscal of 0.98. Test

calculations employing GFN2-xTB in this step yield somewhat less accurate results with-

out reducing the overall computational times significantly. In all frequency calculations, a

SmsRRHO cut-off value of τ = 25 cm−1 was employed. τ and νscal (for the DFT methods)

were adjusted to perform equally well in combination with both GFN-FF and GFN2-xTB.

CREST is essentially a driver for the xtb program75 which is used for all GFN calculations.

For the DFT calculations, TURBOMOLE 7.476,77 is used throughout.

3.3 Benchmark sets

For the initial tests and determination of the empirical parameters τ (msRRHO cut-off) and

νscal (DFT frequency scaling factor) we employ the benchmark set of Li, Bell and Head-

Gordon (LBH).6 This LBH set consists of 39 organic molecules ranging from ethane (small-
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est) to n-octane (largest) and is shown in the supporting information. For cross-validation

we extended this set by 23 similar, but mostly larger molecules ranging from cyclohexane

(smallest) to n-dodecane (largest). This set is termed AS23 (Absolute Entropy) from now

on and is described also in the Supporting Information. The corresponding experimental

gas phase reference entropies and Cp(T ) values are taken from Refs. 78,79. Studies are

available in the literature presenting much larger collections of experimental reference data,

e.g., in Ref. 55. However, these databases contain mostly small, rather rigid systems (e.g.,

substituted aromatic compounds) which are not in the focus of our study. Nonetheless, the

combined LBH and AS23 sets should sufficiently representative for benchmarking absolute

entropies. To show possible limitations of our approach a set of maximally flexible linear

alkanes (up to C18H38) is investigated separately.

For the heat capacities, we additionally test the temperature dependence in a typical range of

200–1500 K, while for entropies only the value at 298 K is considered. For this a subset of the

LBH molecule set is used, as described in Ref.6. Note that the numerical values and errors

for entropy and Cp are similar and thus, the conclusions for the temperature dependence of

the latter should also apply for the entropy.

Furthermore, in Sec. 4.4 we present a case study for 25 pharmaceutical (Clinical Drug)

molecules, denoted CD25. There are no experimental entropy values available for this set,

but differences between the ensembles (e.g., gas phase versus implicit solvation) and different

PES employed to calculate the entropy can be studied theoretically. We suggest this set also

as a challenging test for other approaches.

4 Results

4.1 General considerations

The absolute entropy is a complicated property which includes various terms of different

magnitude that can be qualitatively interpreted.29,33 As an example the suggested parti-
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tioning of the absolute entropy for two molecules is shown in Tab. 1. The largest portion

Table 1: Contributions to the total molecular entropy for n-decane and tamiflu. RRHO
and msRRHO values correspond to the B97-3c level of theory, S ′conf and SmsRRHO were
calculated at the GFN2-xTB level. Relative contributions are given in percent next to the
respective contribution.

S cal mol−1 K−1

n-decane tamiflu

RRHO 116.4 169.0
msRRHO 117.3 (89.9%) 173.4 (91.6%)

vib. 47.2 95.4
rot. 29.4 34.9
trans. 40.8 43.1

anharm. (msRRHO-RRHO) 0.9 4.4
S ′conf 12.5 (9.6%) 13.7 (7.2%)

SmsRRHO 0.7 (0.5%) 2.3 (1.2%)

sum 130.5 (100.0%) 189.4 (100.0%)
exptl. 130.4 —

of the entropy results from the vibrational, rotational, and translational degrees of freedom

(DOF), as commonly obtained by standard quantum mechanical frequency calculations em-

ploying the RRHO approximation. Contributions from translational and rotational DOF

have the same order of magnitude (about 30-40 cal mol−1 K−1 in Tab. 1) for all chemical sys-

tems of about this size (mass). In contrast, vibrational contributions quickly exceed several

hundred cal mol−1 K−1 for molecules >100 atoms. In the important drug-size regime, the

vibrational entropy is clearly the largest contribution and hence its accuracy depends also on

how good anharmonicities are described. As defined in Sec. 2, the effect of anharmonicities

can be estimated from the difference between the entropy calculated by the new msRRHO

and standard RRHO scheme (i.e., without modifying τ and frequency scaling). Looking at

the two example molecules, decane shows only a relatively small RRHO-msRRHO differ-

ence of 0.9 cal mol−1 K−1 while tamiflu exhibits a much higher anharmonic contribution of

4.4 cal mol−1 K−1. This is in line with chemical intuition, as one would expect many more an-

harmonic ro-vibrational modes for a complicated drug molecule like tamiflu than for a rather
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simple linear structure composed of only CH and CC bonds. In any case, the anharmonicity

is non-negligible and must be accounted for by either τ and νscal or some more elaborate,

explicit scheme. With increasing flexibility of the molecule the configurational contribution

increases drastically and in fact, Sconf can be taken as a molecular flexibility measure (see

Sec. 4.4).

For decane and tamiflu the conformational entropy S ′conf accounts for 12.5 and 13.7 cal mol−1 K−1,

respectively. Though decane (32 atoms) is smaller than the drug molecule tamiflu (50 atoms),

their conformational entropy values are rather similar. The simple explanation for this is

the higher flexiblity of decane, which is typically indicated by a larger relative contribution

of S ′conf to the absolute entropy for similar sized structures. In general S ′conf will be close

to zero for the most rigid molecules or molecules with only a few distinct conformers, but

adds a significant portion (ten or more percent) to the absolute entropy for highly flexible

molecules.

The last contributrion to Sconf is the population average SmsRRHO. This term may provide

insight about the variation of SmsRRHO within the ensemble. It will be small if all con-

tributing conformers have a similar ro-vibrational entropy as the reference structure (e.g. for

decane with 0.7 cal mol−1 K−1), or yields a large contribution in the opposite case (tamiflu,

2.3 cal mol−1 K−1). For the latter, computed msRRHO entropies can vary by several entropy

units for different conformations rather independently of the chosen τ or νscal values. An

example is provided in Fig. 2, where SmsRRHO was calculated for 299 (random) conform-

ers of tamiflu at two different theoretical levels (GFN-FF and B97-3c). Here, entropies at

the GFN-FF level are overestimated by 4 cal mol−1 K−1 on average compared to the more

accurate B97-3c level. Both methods show a similar spread of the SmsRRHO values, which

range approximately 6 cal mol−1 K−1 from lowest to highest value thus reassureing the use

of SmsRRHO. Hence, the validity of an approximate SmsRRHO obtained at SQM or FF level

depends on the performance for relative msRRHO entropies and may be used if a shifted

(cf. Eq. 11) population average similar to the higher reference DFT level is expected.
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Figure 2: Spread of entropies calculated in the msRRHO approximation at the GFN-FF
(red) and B97-3c (blue) level. On the right side box plots for the two methods are given for
an easier visualization of the metric averages and shifts.

Another novelty of our approach is the extrapolation of S ′conf to the ensemble completeness as

discussed in section 3.1. The corresponding procedure requires systematically and smoothly

improving CE quality in each iteration. In practice, the required number of iterations is very

molecule specific but convergence is typically achieved within 5–15 iterations (see Fig. 3 for

some examples). The entropy difference between the last iteration and the extrapolated value

Figure 3: Examples for the extrapolation of conformational entropy at the GFN-FF level of
theory. The iteration number x refers to the sMTD iteriation cycle depicted in Fig. 1.
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is often relatively small but very significant for very flexible systems with huge ensembles. For

example the CE of n-octadecane contains over half a million conformers within 6 kcal mol−1

at the last iteration. In a more typical case the entropy gain due to the extrapolation is

smaller than one entropy unit (1 cal mol−1 K−1). Apixaban and Tamiflu depicted in Fig. 3 are

such examples, but nonetheless exhibit different convergence behavior. For small molecules

the extrapolation is mostly not necessary because the entire ensemble will be found during the

initial sampling procedure. From another viewpoint, the extrapolation scheme might rather

be seen as a technical supplement for reduction of stochastical noise between the iterations

and consquently, an improved prediction the final Sconf value. Note, that 3 cal mol−1 K−1

”entropy units” refer to the usual 1 kcal mol−1 chemical accuracy at room temperature.

Thus, with an accuracy for S better than about 1-2 cal mol−1 K−1, the electronic energies of

the molecules from DFT or wave function theory (WFT) become the accuracy bottleneck in

typical thermochemical calculations.

4.2 Benchmarking absolute entropy

Recently, Head-Gordon et al. published the LBH set containing 39 organic molecules and

their experimental gas-phase entropies, which provides an excellent reference for the evalu-

ation of absolute entropies.6 For a more thorough evaluation the set was extended by the

AS23 molecules. Entropy values for the two sets were calculated for four combinations of

theory levels. These are SmsRRHO contributions obtained with either B97-3c or B3LYP-

D3/def2-TZVP and the conformational entropies calculated at GFN-FF or GFN2-xTB level

and with τ and νscal values as described above. Parity plots for the different levels of theory

with reference to the experimental data are given in Fig. 4 and the corresponding statistical

data are provided in Tab. 2.

The excellent performance of our approach is obvious from both Tab. 2 and the parity

plots (Fig. 4). To the best of our knowledge, the RMSD of 0.79 cal mol−1 K−1 calculated

at the B97-3c+Sconf (GFN-FF) level refers to the best performance of a theoretical method
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Figure 4: Parity plots for calculated and experimental entropies for all molecules of the
LBH and AS23 set. The combinations of B97-3c and B3LYP-D3/def2-TZVP SmsRRHO val-
ues with GFN2-xTB and GFN-FF Sconf values, respectively are shown. For reference also
the plain SmsRRHO entropies are plotted. The solid line corresponds to perfect correlation
between theory and experiment. Error bars of 3 cal mol−1 K−1 are given as dashed lines and
correspond to chemical accuracy at T = 298 K.

for this benchmark set ever reported in the literature. For comparison, the best perform-

ing method discussed in Ref. 6, (UM-VT, a DFT based MF approach) has a RMSD of

1.24 cal mol−1 K−1. For the combined LBH+AS23 set the errors are slightly larger (RMSD

of 1.1–1.3 cal mol−1 K−1). Yet, all of the four tested method combinations are well below

the targeted chemical accuracy of 3 cal mol−1 K−1. A similar performance on a set of 128

experimental absolute entropies was reported by Guthrie32 using B3LYP/6-31G**, with an

RMSD of 1.29 cal mol−1 K−1. Larger, flexible molecules in this set are identical with the ones

in the LBH+AS23 set. However, Guthries benchmark set is mainly composed from rather

rigid structures for which the SRRHO entropy is already quite accurate.

For both B97-3c and B3LYP, deviations between the calculated SmsRRHO (or SRRHO values,

data not shown) and the experimental value increase with the size and flexibility of the

molecule. Only by including the conformational contributions it is possible to reach chem-

ical accuracy. Overall, the different method combinations show fairly similar performance,
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Table 2: Mean deviation (MD), mean average deviation (MAD), root-mean-square deviation
(RMSD), and standard deviation (SD) for absolute entropies obtained at different theoretical
levels in comparison to experimental data. All values correspond to standard entropies at
298.15 K in cal mol−1 K−1. Three outliers have been removed for the final GFN-FF results
(see text).

SRRHO B97-3c B3LYP-D3/TZ
UM-VTa

Sconf GFN-FF GFN2-xTB GFN-FF GFN2-xTB

LBH set

MD 0.32 0.23 0.23 0.09 -0.52
MAD 0.59 0.65 0.60 0.65 0.86
RMSD 0.84 0.91 0.85 0.93 1.24
SD 0.79 0.89 0.83 0.93 1.14

full set

MD 0.21 0.15 0.24 0.07 —
MAD 0.73 0.83 0.73 0.92 —
RMSD 1.09 1.19 1.16 1.29 —
SD 1.08 1.19 1.15 1.30 —

a Values taken from Ref. 6.

although some trends can be recognized. A good performance of B3LYP is unsurprising

as it is well known to be among the best performing DFT functionals for the calculation

of vibrational properties7,8 and was basically constructed for this purpose.63 Although the

(computationally cheaper) B97-3c method performs slightly better than B3LYP-D3/def2-

TZVP, this is sensitive to the choice of τ and νscal and furthermore depends on the technical

settings of the DFT calculations, like the choice of the grid or SCF convergence thresholds.80

Therefore, a clear preference for one out of the two tested methods is difficult to draw.

The same is true when comparing the two assessed methods for calculating Sconf . Sconf

strongly depends on the shape of the PES which can be rather different between a force field

and a quantum chemical method. Since GFN2-xTB has the more physically reasonable PES

of the two methods, usually a better performance should be expected. However, GFN-FF

seemingly outperforms GFN2-xTB in combination with both B97-3c and B3LYP but this

is mainly due to the removal of three strong outliers (3,3-dimethylpentane, 3,3-diethyl-2-

methylpentane and perfluorheptane) that were discarded from the GFN-FF error statistics.

For all three molecules GFN-FF produces some artificially low-lying conformers resulting
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in an overestimation of the conformational entropy (7 %, 5 % and 3 % respectively). Only

one additional outlier, triethylamine (TEA), is observed for the combined LBH+AS23 set,

but since it is present for all four method combinations, it may not be attributed to a

wrong conformational energy landscape. The origin of the error for TEA (overestimation

by approximately 5 %) remains unknown, but it has not been removed from the statistics

presented in Tab. 2. Without TEA the statistics would improve even further to low MADs

and RMSDs of 0.77 and 1.04 cal mol−1 K−1 for B97-3c and 0.87 and 1.18 cal mol−1 K−1 for

B3LYP in combination with Sconf (GFN2-xTB), respecitvely. The best overall result for the

LBH+AS23 set after removing all outliers is obtained with B97-3c+Sconf (GFN-FF).

Interestingly, our SmsRRHO + Sconf values tend to slightly overestimate compared to the

experimental data, while the opposite holds for approaches that go beyond the harmonic ap-

proximation, such as UM-VT.6 This is indicated by the mean deviation, which for the LBH

benchmark set is always positive for our approach and always negative for different version of

the methods presented in Ref. 6. Tentatively, this may be attributed to some missing (con-

figurational) contributions in UM-VT and/or to our strict separation of harmonic vibrational

terms and conformational terms. The latter mainly concerns low frequency modes that are

correlated to conformational transitions and which were a key motivation for the mRRHO

method with the rotor cut-off τ as an adjustable variable. In other schemes, for example the

one introduced by Zheng and Truhlar,22 attempts have been made to tackle this problem by

explicitly combining the rotational, vibrational, and confromational partition function.

Linear alkanes

Computational and accuracy limits of the presented approach are explored for the example of

n-alkanes of increasing size, up to C18H38 (see Fig. 5). Such extremely large flexible systems

have not been considered before quantitatively.

The experimental entropy values78,79 show a strict linear increase with the number of car-

bon atoms and the reproduction of this relation represents a challenging task for theoretical
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Figure 5: Parity plot for calculated and experimental entropies for n-alkanes from ethane to
octadecane. All values correspond to B97-3c SmsRRHO, either combined with GFN2-xTB or
GFN-FF Sconf , or without the conformational contribution. Also shown are the folded and
linear minimum energy conformers for hexadecane.

methods. Both the RRHO as well as the msRRHO models increasingly underestimate the

entropy with growing system size leading to a strongly non-linear behavior and errors of

more than 20% for the largest alkanes considered. The major part of this difference can

be accounted for by Sconf . In fact, up to tetradecane (C14H30), the computed values are

all still within chemical accuracy of 3 cal mol−1 K−1 upon adding the conformational term.

However, other effects start to come into play at this system size. The global minimum of

C14H30 and of smaller n-alkanes in the gas-phase always correspond to a linear (unfolded)

structure. As intramolecular interactions, in particular London dispersion, become stronger

with increasing system size, other conformers will be favored eventually. For C14H30 up to

C18H38, a competing folded conformer (in which dispersion interactions are maximized) is

observed.81,82 The folded conformers are energetically similar to the respective linear struc-

ture but differ strongly in their msRRHO entropy. Depending on the applied theoretical
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level, either conformation could be the global gas-phase minimum, which makes the choice

of Sref in Eq. 11 ambiguous and could introduce errors. In the ideal case, the variations be-

tween different reference conformers in SmsRRHO and SmsRRHO would cancel and lead to the

same conformational entropy regardless of the chosen global minimum. This is observed for

C18H38 and Sconf calculated at the GFN-FF level and would always be the case if SmsRRHO

(see Eq. 11) is calculated at the same level as SmsRRHO. For C16H34 variations between the

different theory levels are larger and only the GFN2 conformational entropy for the folded

conformer as reference is still within chemical accuracy. Nevertheless, accurate entropies of

extremely flexible large alkanes have been consistenly obtained for the first time and this

can be considered as a major achievement even though some issues for C18H38 remain. The

detailed reasons for the deviations for the ”worst cases” C16H34 and particularly C18H38 are

not fully clear at this point but originate tentatively from the Sconf part.

Technical size limitations of our approach should also be noted. The computational cost

increases strongly with molecule size at high flexibility and can make the conformational

entropy calculation unfeasible for larger molecules. At the GFN2 level, the Sconf calculation

for C16H34 already takes a few hundred hours of computation time, and hence, we did not

attempt to calculate C18H38 at this level of theory. With the much cheaper GFN-FF method,

on the other hand, the entropy for both C16H34 and C18H38 can still be computed roughly

”over night” on a standard CPU node with 14 cores. Somewhat larger (up to 100-200 atoms)

but less flexible molecules (e.g., typical drugs, see Sec. 4.4) are also feasible at the GFN-FF

level due to the shorter MD run times required. Neither of these system sizes can routinely

be treated by DFT based MF approaches.

In summary, the combination of SmsRRHO calculations with the specialized conformational

sampling procedure for Sconf , and the SmsRRHO averaging performs excellently and is on

par with or even better than complicated and computationally demanding mode based ap-

proaches. Improvements of our approach may be necessary for molecules with a very large

number of internal rotors at least if absolute values are considered and hence, a beneficial
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error compensation is not given.

4.3 Benchmarking heat capacity

Heat capacities and enthalpies (see Eqs. 13,14) depend less strongly on the ensemble partition

function than the entropy. Hence, it is sufficient to calculate Cp and enthalpies [H(T )−H(0)]

only for a single converged ensemble without extrapolation. The performance of our approach

was evaluated on a subset of the LBH benchmark with 44 experimental heat capacities for

linear and branched alkanes at different temperatures between 300 and 500 K. For reference,

we again compare with the UM-VT results provided in Ref. 6. Parity plots for the comparison

with experimental data are shown in Fig. 6 and the corresponding statistical data are given

in Tab. 3.

Figure 6: Parity plots for calculated and experimental heat capacities for a subset of the
LBH set. Method combinations of B97-3c and B3LYP-D3/def2-TZVP Cp,msRRHO values
with GFN2-xTB and GFN-FF Cp,conf values are shown. UM-VT values were taken from
Ref. 6.
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Table 3: Mean deviation (MD), mean average deviation (MAD), root-mean-square deviation
(RMSD) and standard deviation (SD) for heat capacities obtained at different theoretical
levels in comparison to experimental data. All values are given in cal mol−1 K−1.

Cp,RRHO B97-3c B3LYP-D3/TZ
UM-VTa

Cp,conf GFN-FF GFN2-xTB GFN-FF GFN2-xTB

MD 0.05 0.17 -0.39 -0.11 -0.05
MAD 0.47 0.57 0.47 0.25 0.68
RMSD 0.58 0.69 0.54 0.32 0.78
SD 0.58 0.68 0.38 0.31 0.79

aValues taken from Ref. 6.

Excellent performance is achieved for all assessed methods with RMSDs and SDs (much)

smaller than 0.7 cal mol−1 K−1. In Fig. 6, virtually all data points are within an error range of

1 cal mol−1 K−1. The choice of the theoretical level used for the msRRHO calculations seems

to be less important as both B97-3c and B3LYP perform well. Looking at the corresponding

mean deviations B97-3c tends to slightly overestimate Cp while B3LYP shows the opposite

trend. This is attributed to the choice of the frequency scaling factor and the cut-off value

τ , which were adjusted for the computation of entropies. Accordingly, the results could be

seen as further evidence for the conceptional validity of this treatment.

At ambient temperature absolute values of heat capacities are smaller than absolute values

for entropies. The corresponding conformational contributions are mostly not the accuracy

bottleneck for the heat capacities but can be significant at lower temperatures. For example

in the LBH subset, the largest Cp,conf values are obtained only for the most flexible systems

(n-heptane, n-octane) and even then it accounts only to about 2–3 cal mol−1 K−1. However,

it should be noted that the errors in the standard RRHO treatment will quickly exceed the

desired 3 cal mol−1 K−1 range.

Temperature dependence of the heat capacity

As Cp,conf converges to zero with increasing temperature (all conformers are equally popu-

lated for T →∞), the accuracy of the calculated heat capacity for large T depends mostly
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on the underlying frequency calculation. n-Octane is shown as an example in Fig. 7a, in

comparison with experimentally derived83 heat capacities for in the temperature range from

300 to 1500 K.

Figure 7: (a) Heat capacities calculated for n-octane in the temperature range 300 to 1500 K
and (b) temperature dependence of the conformational heat capacity shown for octane and
other example molecules from the AS23 and CD25 sets. (ms)RRHO values correspond to
the B97-3c level and CE were obtained at the GFN2-xTB level.

For temperatures below 500 K, the RRHO approach systematically underestimates the Cp

values, which is improved by the msRRHO treatment. To reach chemical accuary for this

temperature regime, adding the conformational contribution is mandatory. With increas-

ing temperature the unmodified RRHO value starts to overestimate the experimental Cp.

Because the msRRHO treatment always increases the heat capacity in comparison to the

RRHO value, no improvement is obtained with our approach for very high temperatures.

For n-octane at 1500 K this leads to an overestimation of 17 cal mol−1 K−1 in comparison

to experiment. However, it should be noted that the high temperature reference values in

Fig. 7 are derived indirectly from low temperature experimental data83 and hence these data

points may have a larger uncertainties than the low temperature ones.

In the chemically important temperature regime of up to 500 K, where our approach is very

accurate, a significant conformational contribution to the total Cp value is obtained (for a
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few examples see Fig. 7b). The temperature dependence of Cp,conf (T ) is very characteristic

for each molecular structure and may contain maxima/minima in the curves. Extrema of

Cp,conf (T ) can be associated with large changes of the indvidual conformer populations and

may be interpreted as conformational phase transitions. For a more general review of inter-

pretations of PES related heat capacity features see the work of Wales (Ref. 25). The linear

chain-like molecules in Fig. 7b (decane, octane and hexanethiol) only have a single maximum

in the range 100–200 K. Around 200 K, many folded, higher energetic conformations start

to be populated, while at lower temperatures only very linear structures are obtained. The

global maximum of Cp,conf depends on the molecule specific energetic distribution of the

conformers within a given energy window. For example, the CE of hexanethiol and octane

consist of about the same number of conformers (150 and 152 structures respectively within

6 kcal mol−1), but differ with regard to their relative conformational energies. Molecular

characteristics become even more pronounced for complicated molecules, e.g., tamiflu and

penicilin , where often multiple extrema are obtained for Cp,conf (T ) (see Fig. 7b).

4.4 Case studies

Drug molecules

After demonstrating the excellent performance of the presented approach to calculate ab-

solute entropies in section 4.2, we now turn our attention to biochemically more important

systems. The CD25 set is introduced, containing 25 commercial drug molecules with 28 to 98

atoms. For these molecules no experimental entropy and Cp values are available to compare

with. Nonetheless also a purely theoretical investigation of the CE and respective entropies

may yield important insights. Note that a comprehensive evaluation of the entropy for such

important molecules with a highly accurate method is missing in the chemical literature.

Due to their similar size and elemental composition, similar Sconf values may be expected

for typical drugs. This is not the case as can be seen from the entropies calculated for the

CD25 set, shown for the GFN2-xTB and GFN-FF levels in Fig. 8.
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Figure 8: Calculated Sconf values for a set of 25 clinical drug molecules at the GFN2-xTB
and GFN-FF levels of theory sorted according to increasing value. Averaged values (shown
as horizontal bars) and their standard deviations (shown as errors) have been determined
by multiple executions of the above described algorithm, as described in the text below.
On the right side Lewis structures of some of the molecules are shown (see the Supporting
Information for all molecules).

Conformational entropies in the CD25 set range from close-to-zero to over 20 cal mol−1 K−1.

The reason for this is rooted in the very diverse and complicated PES of the molecules.

Compared to the smaller and chemically rather similar molecules in the LBH and AS23

set, the molecules in the CD25 set show a variety of functional groups and intramolecular

non-covalent binding motifs. This leads to a fine balance of covalent and non-covalent forces

which characterristically shape the overall PES. Certain energy basins (a collection of related

minima), for example, could be strongly favored because of intramolecular hydrogen bonding
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and thus reduce the overall number of energetically accessible minima. In such cases, an

accurate description of the respective potentials is required and the computed Sconf value is

strongly dependent on the underlying theoretical method.

With a few notable exceptions, the conformational entropies calculated with GFN2-xTB and

GFN-FF only differ by 1 to 2 cal mol−1 K−1 and therefore provide the same semi-quantitative

description of the PES. The exceptions are cases in which GFN2 produces much larger CE

(chloroquine, lisdexamfetamin, pregabalin, rosuvastatin, sofosbuvir) than GFN-FF, or vice

versa (rivaroxaban, tenofovir). For the most rigid molecule (oxycodone), only a single con-

former is significantly populated (pi = 0.98 at 298 K) at the GFN2 level, while three con-

formers are populated at the GFN-FF level, resulting in a larger entropy. For the other

cases with larger differences between both methods, the interpretation is difficult because of

a large number of significantly populated structures (about hundreds) in the CE. A better

understanding would be provided by an improved theoretical description, i.e., the ensemble

calculated by DFT or WFT but this is unfeasible due to the extremely high computational

effort. Instead, one could refer to other qualitative descriptors when interpreting conforma-

tional entropies at a low theoretical level. Because the entropy is correlated with molecular

structural features, one such descriptor could be the flexibility measure ξf , which is used for

determining the simulation length settings in CREST.56 This comparison of ξf and the Sconf

is shown in Fig. 9 and in the supporting information. Note that conformational entropies

must be normalized to system size (number of atoms Nat) in order to be comparable in

between molecules.

Both methods show a relatively high correlation with the empirical flexiblility ξf in (Fig. 9a).

The only outlier here is tetradecane, denoted as ”C14” in the figure, which is chemically

different from the drug molecules and was added only as an upper bound reference for the

flexibility. When quantified via the well-known Pearson correlation coefficient ρ, it can be

seen that GFN2-xTB (ρ = 0.81) corresponds slightly better with ξf than GFN-FF (ρ =

0.79). This indicates a better description of the few critical cases mentioned above at the
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Figure 9: Correlation plots for the molecules of the CD25 set. The correlation between
Sconf/Nat and the empirical flexibility measure ξf is given in (a). Figure (b) shows the
correlation of the Sconf/Nat values at GFN-FF and GFN2-xTB level. The respective Pearson
correlation coefficients ρ are shown in the legends.

tight-binding level. The correlation of Sconf/Nat between the two methods (Fig. 9b, ρ =

0.71) again shows the intrinsic theory level dependence of the configurational entropy but is

devoid from any deeper interpretation. Nonetheless, these examples demonstrate that the

conformational entropy can be nicely correlated with purely structure based features of an

ensemble or even empirical descriptors, which is why schemes such as the MIE37 and MIST39

have been proven to work comparatively well.

Finally, the CD25 set was employed to evaluate the robustness and reproducability of the

presented approach. As discussed above the stochastical nature of the MD runs leads to

slightly varying results for different runs started on the same input structure. Hence, all

of the 25 molecules were run several times in repetition and averaged to obtain Sconf and

its standard deviation (SD) shown in Fig. 8. On average over the 25 systems, GFN2-xTB

and GFN-FF yield SD values of 0.25 cal mol−1 K−1 and 0.35 cal mol−1 K−1 respectively. The

only significantly larger SD of 1.6 cal mol−1 K−1 is obtained for the lisdexamfetamin molecule

at GFN2-xTB level, which results from a large and complicated CE leading to convergence
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problems in S ′conf . In general GFN2-xTB has the more accurate PES of the two methods and

produces more consistent results. Both GFN2-xTB and GFN-FF show reproducability errors

much below chemical accuracy and hence are appropriate for routine computations of Sconf .

The much shorter computation times of GFN-FF might favor its default application for

large systems and also enables the averaging over multiple entropy calculations to eradicate

statistical differences (which would be rather costly at the GFN2-xTB level).

Chemical applications

In this last section we give a few chemical examples, where absolute entropies are used to

compute reaction entropies and Gibbs free energies.

Adsorption processes are important for a variety of applications, such as heterogenous cataly-

sis84 where the entropy change can be measured via calorimetric experiments. Here, a rather

well studied class of reactions is the adsorption of n-alkanes onto zeolites.85 As an example

the adsorption entropy of n-butane, n-pentane, and n-hexane (Fig. 10) in a H-ZSM-5 zeolit

cut-out was calculated with GFN-FF.

Figure 10: The n-hexane molecule adsorbed by a H-ZSM-5 zeolit. Hydrogen atoms used for
the saturation of the zeolit have been omitted for better visibility.

For a given zeolit structure cut-out (e.g., obtained from a crystal structure and saturated with

hydrogen atoms) thermodynamic properties can be obtained with the (ms)RRHO approach.

Sampling of the configurations in CREST then simply requires some additional geometrical

constraints, as was discussed in previous work.56,86 This is necessary because the zeolit
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chunk shall mimic a solid and its structure would be strongly deformed or even broken by

the metadynamic simulations and geometry optimizations at GFN level. The confgurational

problem is of course complicated by the combinatorical nature of different conformers at

different adsorption sites, but in the present case the total system size is small enough to not

pose major problems. Adsorption entropies are directly calculated from absolute entropies

by ∆S = Salkane/zeolit−Salkane−Szeolit (see Tab. 4) and assessed with respect to experimental

values.

Table 4: Adsortption entropies (in cal mol−1 K−1) for small linear alkanes on H-ZSM-5 zeolith
cut-outs, calculated fully at the GFN-FF level of theory. Experimental adsorption entropies
were obtained from Ref. 85.

adsorbed molecule ∆SmsRRHO ∆Sconf ∆Sads,calc. ∆Sads,exp.

n-butane -34.1 3.1 -31.0 -24.9
n-pentane -36.5 4.1 -32.4 -28.2
n-hexane -38.1 2.8 -35.3 -28.9

The final calculated ∆Sads,calc. shows deviations of only 4.2 to 6.4 cal mol−1 K−1 compared to

experiment and show the same qualitative trend of adsorption strength (butane < pentane <

hexane). While this trend is also reproduced already by SmsRRHO, it is important to notice

that the configurational contribution accounts for roughly 10 % of the overall adsorption

entropy and furthermore shifts ∆SmsRRHO in the direction of the experimental value. Because

the zeolit is identical for all structures and configurations, all msRRHO entropies are similar

and the term SmsRRHO consequently is�1 cal mol−1 K−1. Therefore the main part of ∆Sconf

can be attributed to S ′conf and qualitatively interpreted. Here, n-butane has the smallest

amount of conformers but many configurations (adsoption orientations) in the zeolit while

it is vice versa for n-hexane, leading to a similar contribution of ∆Sconf ≈ 3 cal mol−1 K−1 in

both cases. For n-pentane on the other hand, both the conformational and configurational

space are large and hence it shows the largest ∆Sconf value of the three systems. The

calculated ∆Sads,calc. are in very good agreement with experiment, considering that all results

were obtained at a cost efficient force-field level and none of the values exceed a deviation of
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2 kcal mol−1 at 298 K. Note that the full calculation for each of the final ∆Sads values only

took about 1.5–2 h on a standard desktop computer (4 cores on a Intel i7-7700K 4.2 GHz

CPU).

A more common usage for Sconf is to improve the calculation of reaction free energies. The

conformational entropies and enthalpies are converted to ensemble free energies Gconf via

the usual relation G = H − TS and can be added directly to the GmsRRHO values of all

reactands and products of the reaction. In general, a significant change of the DOF in the

course of the reaction can cause significant entropic effects and a non-negigible effect on the

reaction free energy.

Three examples (A, B, and C) are shown in Fig. 11 and the corresponding reaction energy

differences are shown in Tab. 5. Reaction A is the cyclization of a 1,5-diene into the perfume

Figure 11: Example reactions with large entropic contributions. A) cyclization of a 1,5-diene
to the β-georgywood compound, B) simplified catalytic reaction of a ring-opening metathesis
polymerization (ROMP), C) complexation of butylammonium in cucurbit[6]uril.

molecule β-georgywood.87 Ring-closure reactions are often associated with a decrease of

DOF, and hence an entropic destabilization is expected. This view is supported by the

computed free energies, where the addition of ∆Gconf decreases the reaction free energy

from -10.3 kcal mol−1 to -8.7 kcal mol−1. For the typical ”chemical accuracy” of 1 kcal mol−1,
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Table 5: Energy differences for the reactions shown in Fig. 11. All values are given in
kcal mol−1 and were obtained at the B97-3c level with conformational contributions calcu-
lated at GFN2-xTB level. Free energies correspond to 298.15 K.

reaction energies
reaction ∆E ∆G ∆G+ ∆Gconf

A -15.0 -10.3 -8.7
B -8.1 4.6 2.8
C -82.0 -64.8 -64.3

adding the conformational term would therefore be necessary. Note, that ring-closures are

common in many syntheses and biochemical processes (e.g. terpene chemistry,88 or, as an

example from a previous section, the synthesis of oxycodone89) and therefore will profit from

a better description by our method.

Reaction B is a simplified catalytic reaction of a ring-opening metathesis polymerization

(ROMP).90 ROMP was pioneered by the groups of Chauvin, Grubbs and Schrock and are

among the most important catalytic reactions in industrial chemistry.91,92 The reaction free

energy balance of B is positiv as a result of the sterically undemanding PMe3 ligand, but

nonetheless the influence of Gconf is nicely demonstrated. Here, due to a loss of DOFs (two

reactants form one product molecule), ∆G becomes initially positive, which is counteracted

by a DOF gain in Gconf of the product. The effect of the ensemble treatment has the same

origin as in the ring-opening reaction A, but in this case favors the formation of the product

by about 1.8 kcal mol−1. This example furthermore shows the capability of GFN2-xTB (and

GFN-FF), which can be routinely be applied to transition-metal containing systems.

The influence of configurational entropy can also be studied for non-covalent associations.

Reaction C shows the binding of butylammonium in cucurbit[6]uril.93,94 Binding affinities for

small cations in cucurbiturils are well studied,95 but for more flexible guest molecules such

as butylammonium, entropic effects may become important. The association free energy

changes from -64.8 kcal mol−1 to -64.3 kcal mol−1 upon addition of ∆Gconf in the gas phase.

On first sight, the increase of about 0.5 kcal mol−1 seems negligible compared to the large

37



overall value of about -64 kcal mol−1. However, the latter value is quenched in solution93,94

to about -6.9 kcal mol−1 indicating that under more realistic conditions ∆Gconf is indeed

relevant.

All the examples discussed in this subsection have been modelled in the gas-phase, but

the extension to solutions is easily possible by using implicit solvation models. Inclusion

of solvation effects will modify the PES and therefore produce different ensembles (and

conformational entropies) than in the gas-phase. A direct impact of this would be noticeable,

e.g., for phase-partition coefficients like logKow, which strongly depend on the respective

ensemble.96 Technically, such calculations are straightforward and are investigated currently

in our laboratory.

5 Conclusions

An automated workflow for the calculation of absolute molecular entropies is presented.

The molecular entropy is a fundamental thermodynamic quantity necessary for a complete

understanding of molecular interactions. The main component of the absolute entropy is usu-

ally obtained from vibrational frequency calculations in the RRHO approximation, which

for medium sized molecules (50–100 atoms) often underestimates anharmonicities for low-

frequency modes and is missing configurational contributions arising from many accessible

low-energy conformations. In the presented approach both sources of error are treated by

a separation of the molecular entropy into a configurational (conformational) part and the

entropy arising from translational, rotational, and vibrational degrees of freedom. For the

latter, vibrational freuqncies were obtained at the B97-3c and B3LYP-D3/def2-TZVP DFT

level, employing a modified and scaled RRHO approximation (termed msRRHO) with two

adjustable parameters τ and νscal. The conformational entropy is calculated from an en-

semble of conformers using the well known Gibbs-Shannon entropy formula (S ′conf ) and an

population average over indidual msRRHO contributions of the conformers (SmsRRHO). We
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here make use of the fast and accurate GFN-FF and GFN2-xTB methods for the generation

and energetic ranking of structures, driven by the recently introduced CREST program. The

entire procedure is designed to work with only a few simple steps and minimal user input,

which makes it routinely applicable to a broad range of systems.

The presented workflow was tested on a set of 62 experimental molecular gas phase en-

tropies. An excellent performance (better than the chemical accuracy of 3 cal mol−1 K−1)

was observed with MADs ranging from 0.73 to 0.92 cal mol−1 K−1 and SDs from 1.08 to 1.30

cal mol−1 K−1 respectively, depending on the combination of the DFT method with either

GFN2-xTB or GFN-FF. Heat capacities were assessed on a set of linear and branches alkanes

at different temperatures. The MAD and SD values are with 0.5 cal mol−1 K−1 even smaller

than for absolute entropies but increase at very high temperatures > 800 K. The presented

method performs better than related yet computationally sigificantly more costly appoaches

and to our knowledge provides the smallest errors for molecular entropies ever reported in

the literature. This includes large, extremely flexible n-alkanes up to octadacene for which

an unprecedented accuracy for the absolute entropy in comparison to experiment of about

5% was obatained.

Biochemically important systems and chemical applications were discussed on the basis of

set of 25 drug molecules and four reaction examples, including the calculation of adsorption

entropies, two reaction free energies and a non-covalent association free energy calculation.

For the drug molecules, a correlation of molecular flexibility and the entropy was observed.

The examples revealed a significant contribution of the configurational terms to the overall

free energy, often exceeding the magnitude of chemical accuracy. In the future, a more

thorough study of these effects across a wide range of chemical reactions is desirable.

In general, GFN2-xTB was found to provide (as expected) a more consistent description

of the PES and hence the conformational entropy than GFN-FF. However, as calculations

of Sconf tend to get very expensive for larger systems at GFN2-xTB or higher theoretical

levels, GFN-FF is strongly recommended as the standard approach in routine treatments on
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common desktop computers. In theory, the basic components of the proposed scheme are

systematically improvable by a better description of the PES. The modular partition of the

absolute value into ro-vibrational and configurational parts enables a convenient replacement

of the different methods, which provides a starting point for future studies. This also includes

the extension to implicit solvation models that will allow to investigate molecular entropy

differences between the gas-phase and solution or between different solvents.
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(76) Ahlrichs, R.; Bär, M.; Häser, M.; Horn, H.; Kölmel, C. Electronic Structure Calculations

on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989,

162, 165–169.

(77) Furche, F.; Ahlrichs, R.; Hättig, C.; Klopper, W.; Sierka, M.; Weigend, F. Turbomole.

WIREs Comput. Mol. Sci. 2014, 4, 91–100.

(78) Linstrom, E. P.; Mallard, W. NIST Chemistry WebBook, NIST Standard Reference

Database Number 69. https://webbook.nist.gov/chemistry/, accessed December

18, 2020.

(79) Frenkel, M. Thermodynamics of Organic Compounds in the Gas State. TRC Data

Series; Thermodynamics Research Center, 1994; p. 395, p. 460.

(80) Bootsma, S., Andrea N.; Wheeler Popular Integration Grids Can Re-

sult in Large Errors in DFT-Computed Free Energies. 2019; Preprint.

https://doi.org/10.26434/chemrxiv.8864204.v5.
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