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ABSTRACT 

Next-generation sequencing technologies enable doubling of the genomic databases every 2.5 years. 

Collected sequences represent a rich source of novel biocatalysts. However, the rate of accumulation of 

sequence data exceeds the rate of functional studies, calling for acceleration and miniaturization of 

biochemical assays. Here, we present an integrated platform employing bioinformatics, microanalytics, 

and microfluidics and its application for exploration of unmapped sequence space, using haloalkane 

dehalogenases as model enzymes. First, we employed bioinformatic analysis for identification of 2,905 

putative dehalogenases and rational selection of 45 representative enzymes. Second, we expressed and 

experimentally characterized 24 enzymes showing sufficient solubility for microanalytical and 

microfluidic testing. Miniaturization increased the throughput to 20,000 reactions per day with 1000-

fold lower protein consumption compared to conventional assays. A single run of the platform doubled 

dehalogenation toolbox of family members characterized over three decades. Importantly, the 

dehalogenase activities of nearly one-third of these novel biocatalysts far exceed that of most published 

HLDs. Two enzymes showed unusually narrow substrate specificity, never before reported for this 

enzyme family. The strategy is generally applicable to other enzyme families, paving the way towards 

the acceleration of the process of identification of novel biocatalysts for industrial applications but also 

for the collection of homogenous data for machine learning. The automated in silico workflow has been 

released as a user-friendly web-tool EnzymeMiner: https://loschmidt.chemi.muni.cz/enzymeminer/. 

Keywords: enzyme mining; enzyme diversity; novel biocatalysts; microscale; microfluidics 
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INTRODUCTION 

Nature is an experienced “protein engineer” since it launched its bioengineering experiments billions 

of years ago.1 It has evolved a fascinating diversity of biocatalysts. This enormous natural heritage 

represents an immense treasure trove for the life sciences, which strive for biocatalysts fulfilling 

demands for new and higher quality products, and societal demands for ‘greener’ technologies. We are 

still scratching the surface of potential biocatalytic applications as the pool of available enzymes catering 

to biomedical, pharmaceutical, and industrial applications is still very limited.2 The advent of next-

generation sequencing technologies has revolutionized genomic research, filling public databases with 

DNA and protein sequences. There are currently almost 300 million non-redundant protein sequences 

in genomic databases.3 Despite the enormous promise for biological and biotechnological discovery, the 

rate of sequence data accumulation far exceeds the speed of functional studies. In theory, systematic 

functional characterization integrating in vitro biochemical with in vivo physiological approaches would 

be the preferred basis of functional annotation of novel proteins. In practice, a low ratio of explored to 

unexplored sequences reflects the poor efficiency of the low-throughput biochemical techniques, in 

contrast to high-throughput next-generation sequencing technologies.  

The magnitude of  the “big data” problem in biology is magnified by the fact that a large portion of 

functional annotations contain vague, indirect, or even incorrect descriptions.4 Extrapolation from 

sequence to protein function is not trivial and often proves to be incorrect when tested experimentally. 

Therefore, the challenge now lies in exploring this new sequence information to mine desired 

biocatalysts effectively and, concurrently, designing experimental efforts to accelerate biocatalyst 

characterization. Several strategies have been developed to exploit the large source of enzyme sequences 

contained in genome and metagenome databases and to discover novel biocatalysts.5,6 Efficient 

exploration of the millions of uncharacterized enzymes in public databases can be achieved by 

computational approaches, which offer an adequate capacity for the screening of large pools of 

sequences.7 Our sequence-based strategy identifies putative members of the known enzyme families and 

facilitates their prioritization and well-informed selection for experimental characterization.8 The main 

benefit of such a genome mining approach is effective identification of thousands of putative hits among 

millions of sequence entries and rational selection of a restricted set of attractive targets.9,10 The selected 

representative candidates need to be experimentally characterized, which is the rate-limiting process. 

Conventional techniques used for the collection of experimental biochemical data are time-demanding, 

cost-ineffective, and low-throughput. The development of miniaturized technologies and their 

implementation in high-performance experimental pipelines will accelerate the process of discovering 

new biocatalysts.11,12 
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Here, we describe an integrated workflow for the effective mining of novel family members using 

computer-assisted genome mining and high-throughput experimental characterization. It was applied to 

the haloalkane dehalogenases (HLDs, EC 3.8.1.5) as model enzymes. Initially, we applied an automated 

bioinformatics workflow for the identification of putative family members and selection of promising 

candidates. Next, we experimentally characterized selected hits from the screening. Employing 

microanalytical and microfluidic methods for experimental data acquisition increased the analytical 

throughput to >20,000 reactions per day and reduced protein consumption by three orders of magnitude 

to only hundreds of micrograms. We have almost doubled the number of experimentally characterized 

HLDs by a single run of the platform and obtained a pool of new biocatalysts with industrially attractive 

characteristics: high catalytic efficiencies, unique substrate specificities, high enantioselectivities, and 

broadened temperature tolerance. 

RESULTS 

I. In Silico Screening using an Automated Workflow 

Model Enzymes. The automated database-mining protocol was tested with the HLDs (Fig. 1). Three 

decades of intensive research on HLDs has made them the benchmark enzymes for studying the 

structure-function relationships of the >100,000 members of the α/β-hydrolase superfamily13 and the 

development of novel concepts in the field of protein engineering.14–16 Members of this enzyme family 

have been employed in several practical applications: (i) biocatalytic preparation of optically pure 

building-blocks for organic synthesis, (ii) recycling of by-products from chemical processes, (iii) 

bioremediation of toxic environmental pollutants, (iv) decontamination of chemical warfare agents, (v) 

biosensing of environmental pollutants, and (vi) protein tagging for cell imaging and protein analysis.17  

Database Mining. The genomic databases are doubling every ~2.5 years, therefore periodic mining 

of novel genes is highly advisable. We reran the in silico screening with the same input sequence as in 

the initial round8 in 2018, using the current version of NCBI nr database and recently developed tools 

for automated database mining.18 In comparison to the initial version, the in silico workflow has been 

expanded by: (i) application of EFI-EST19 and Cytoscape20 for calculation and visualization of the 

sequence similarity network, (ii) extraction of the biotic relationships and disease annotations of the 

source organisms from the BioProject database,21 and (iii) the quantitative assessment of the quality of 

all homology models by MolProbity.22 Sequence database searches using four known HLDs as query 

sequences generated 24,594 hits sharing minimal sequence similarity to at least one of the query 

sequences. The putative HLD sequences containing the target HLD domain were automatically 

recognized using global pairwise sequence identities and average-link hierarchical clustering. Artificial 
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protein sequences annotated by the terms "artificial", "synthetic construct", "vector", "vaccinia virus", 

"plasmid", "HaloTag", or "replicon", were excluded.  

Clustering and Filtering. The remaining 2,905 protein sequences were clustered into four 

subfamilies: HLD-I (915), HLD-II (1058), HLD-III/IIIb (910), and HLD-IV (22), based on sequence 

identity and the composition of their catalytic pentads. Despite having identical catalytic pentads, 

HLD-III and HLD-IIIb were clustered separately based on differences in their sequence similarity. The 

incomplete and degenerated sequences were filtered out by the construction of multiple sequence 

alignments of individual subfamilies. Sequence-similarity networks were used to visualize functional 

relationships among putative HLD sequences (Fig. 2). The clearest defining features are clustering in 

the distinct HLD subfamilies, implying that the sequence-similarity networks might provide a 

framework for identifying HLDs that act on specific compound classes and for surveying regions of 

sequence space where substrate preference is unknown. To diversify HLD sequence space, redundant 

sequences with ≥ 90% sequence identity to the set of characterized dehalogenase sequences were filtered 

out.  

Annotation and Homology Modelling. The remaining 2,578 putative HLD sequences were 

subjected to an annotation step consisting of the retrieval of information from biological databases and 

structure predictions. The annotation step revealed that the identified HLDs span over a broad range of 

sequence and host diversity, including bacterial, archaeal, and eukaryotic proteins. The overall accuracy 

of annotation, judged by assignment to HLD family, was 63% but varied significantly among each of 

the HLD subfamilies. The majority of sequences in HLD-I (73%) and HLD-II (86%) subfamilies were 

annotated correctly. In contrast, the portion of correctly annotated sequences was reduced to 31% for 

HLD-III and to 56% for HLD-IIIb (Table S1). The majority of members from the putative HLD-IIIb 

subfamily were annotated as HLDs, despite their low sequence identity to experimentally characterized 

HLDs or other HLD subfamily members. The annotation revealed 4 putative dehalogenases from 

psychrophilic organisms, 35 novel proteins from moderate halophilic organisms and 4 protein templates 

with known tertiary structure. Reliable homology models could be constructed for the majority of 

members from subfamily HLD-I and HLD-II, but for only a limited number of HLD-III members and 

for no HLD-IIIb members. The predicted volumes of catalytic pockets ranged from 60 Å3 to 2170 Å3 

(Fig. S1). 

Prioritization and Selection of Targets. Rational selection of hits for experimental characterization 

was carried out to maximize functional diversity of the studied protein family (Supporting Data Set). 

The dataset of 2,578 putative HLDs was summarized in 17 datasheets focused on different annotations 

or computed properties. Hits represented by homology models with MolProbity scores >3.0 were 

removed from the datasheets summarizing the annotations based on the predicted homology structure, 
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i.e., active site volume and tunnel properties. To make the selection as diverse as possible, a few 

sequences were picked from each datasheet (Table S2). The sequences with higher predicted solubility 

and higher-quality homology models were preferred. Simultaneously, we tried to balance a reasonable 

number of sequences from each haloalkane dehalogenase subfamily (HLD-I. HLD-II and HLD-III). The 

only exception was the HLD-IIIb subfamily, which contains multi-domain protein sequences derived 

from eukaryotic organisms. We avoided sequences with additional Pfam domains, as they are usually 

poorly expressible in bacterial host systems. Altogether 45 representative sequences were selected as 

targets for experimental characterization (Table S3, Table S4).  

II. Small-Scale Protein Expression 

The representative set of 45 HLD genes was subjected to small-scale expression in Escherichia coli 

in 96-deep well square plates (Table S5) and screening of HLD activity. Overall, 40 out of 45 (89%) 

genes could be overexpressed, while 30 out of 45 (67%) genes yielded proteins in soluble form (Fig. 

S3A). The comparison of the in silico prediction of soluble expression with experiments showed a poor 

correlation (Pearson’s correlation coefficient 0.263) and 66.7% prediction accuracy. Specifically, the in 

silico solubility predictions resulted in 8 true negatives, 22 true positives, 4 false-negative and 14 false-

positives (Table S5). A further thorough analysis of solubility profiles revealed that the majority of 

proteins belonging to HLD-I (73%) and HLD-II (71%) were expressed in a soluble form, while a 

minority of HLD-III (40%) proteins were soluble. We have probed the expressibility of all 45 HLD 

genes using a reconstituted cell-free transcription and translation (PURExpress) system. Overall, 41 of 

45 (91%) genes were overexpressed and 29 (64%) proteins were obtained in soluble form (Fig. S3B). 

Application of the cell-free system did not result in a desired improvement of solubility for the difficult-

to-express HLDs. The screening of the HLD activity was performed using a newly developed 

ultrasensitive fluorescence assay 23, which strikingly confirmed the HLD activity of all soluble proteins. 

III. Characterization using Microscale and Microfluidic Techniques 

The small-scale expression screening in E. coli resulted in the selection of 24 HLDs possessing 

sufficient solubility for biochemical characterization (Fig. S4). The experimental pipeline comprised 

microanalytical technologies employing commercial instruments and in-house microfluidic devices, 

which led to 1000-fold lower consumption of protein and increased throughput to 22,000 reactions per 

day (Table S6). These methods provided experimental data on protein stability, catalytic activity, 

temperature profiles, substrate specificity, and enantioselectivity (Table 1). 

Protein Stability. The stability of the novel HLDs was analyzed by monitoring changes in extrinsic 

(SYPRO orange dye) and intrinsic (tryptophan) fluorescence during temperature scanning experiments 

in a high-throughput manner, using thermal shift assay (TSA) and differential scanning fluorimetry 
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(DSF), respectively. The midpoint of the denaturation curve (apparent melting temperature -Tm
app) was 

used for the stability evaluation. The accuracy of the fast-screening methods was benchmarked against 

conventional circular dichroism (CD) spectroscopy and showed significant correlation (Table S7, Fig. 

S5). In comparison to conventional CD spectroscopy, the fluorescence methods benefit from reduced 

sample consumption and increased analytical throughput. Concerning the sufficient accuracy, any of the 

tested microanalytical methods can be used alone. The values of apparent melting temperatures (Tm) 

obtained reflect the mostly mesophilic origins of the novel HLDs (40-55 °C). DsmA and DppsA 

exhibited Tm
app values correlating with their psychrophilic origin (35.7 and 38.1 °C, respectively). The 

most stable variant identified was DspoA with Tm
app value close to 60°C. 

Temperature Profiling. Temperature profiling was performed using a capillary-based droplet 

microfluidic system.
24

 All novel HLDs showed activity over a wide range of temperatures. DmaA 

showed activity even at 5 °C and DspoA temperature optimum close to 60 °C (Fig. S6). Interestingly, 

DmaA retained more than 60% dehalogenase activity even at 5 °C. A positive correlation was observed 

between the temperature of the highest observed activity (Tmax) and the temperature at which protein 

denaturation starts (Tonset) obtained from temperature scanning experiments (Table S8). The temperature 

profiles were used to set the suitable temperatures (5-10 °C bellow Tmax value) for high-throughput 

substrate specificity analysis, providing a suitable balance between activity and stability. 

Substrate Specificity Profiling. The substrate specificity profiling towards a set of 27 representative 

substrates was also conducted using a capillary-based droplet microfluidic system (Table S9). This set 

reflects the established application of HLDs in environmental technologies and includes compounds that 

are environmentally important (Table S10). The raw data of specific activities and the log-transformed 

data are summarized in Table S11 and Table S12, respectively. The HLDs preferred halogenated 

substrates in the following order: brominated > iodinated ≫ chlorinated. The optimal substrates of the 

novel HLDs are linear alkyl-chains of 2-4 carbon atoms (Fig. 3A). Substrates that can be converted by 

the majority of the enzymes are simultaneously the ones converted with the highest efficiency (Fig. 3B). 

Based on this observation, we suggest a set of “universal” substrates: 1-bromobutane (#18), 1-

iodopropane (#28), 1-iodobutane (#29), and 1,2-dibromoethane (#47). The substrate specificity profiling 

also identified several “recalcitrant” substrates: 1,2-dichloroethane (#37), 1,2-dichloropropane (#67), 

1,2,3-trichloropropane (#80), bis(2-chloroethyl)ether (#111), and chlorocyclohexane (#115), which is in 

good agreement with previous studies.25 Half of the novel enzymes possess broad substrate specificity 

and convert >22 of 27 tested substrates (Fig. S7). Interestingly, two novel enzymes, DstA and DthA, 

showed unusually narrow substrate specificity. DstA effectively converted a single substrate, 1-

bromohexane (#20), with five-fold higher activity compared to all other substrates. Similarly, DthA 

exhibits considerable activity for only two substrates, 1,2-dibromoethane (#47) and 1-bromo-2-

chloroethane (#137).  
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Principal Component Analysis (PCA). The first PCA was carried out using the untransformed 

specificity data of 8 benchmark and 24 newly identified HLDs. This analysis aimed to compare the 

enzymes according to their score along with the first principal component (t1), quantifying the overall 

activity (Fig. 4). Surprisingly, 11 of the 24 newly characterized HLDs showed elevated overall activity 

compared to the benchmark HLDs (Fig. S8). The second PCA was performed with log-transformed and 

weighted substrate specificity data (Fig. S9). The benchmark HLDs (DbjA, LinB, DmbA, DhlA and 

DhaA), in line with the previously reported clustering of HLDs into substrate-specificity groups,25 

remained in proximity. Two of the novel variants, DstA and DthA, are far away from the other enzymes 

due to their extremely narrow substrate specificity profiles. 

Hierarchical Clustering. The log-transformed specificity data were subjected to hierarchical 

clustering to identify patterns for enzymes (Fig. 5A) and substrates (Fig. 5B). The data were also plotted 

as a heatmap with hierarchical clustering dendrograms (Fig. 5C). The analysis clustered the substrates 

into two main groups. The first group (gold in Fig 5B) is comprised of frequently converted substrates, 

mostly iodinated compounds with a chain length of 3-4 carbon atoms. The second group (blue in Fig 5B) 

includes moderately and poorly convertible (mostly chlorinated) substrates. The clustering of enzymes 

divided HLDs into two major groups. The first group (green in Fig 5A) consists of highly active and 

broad-specificity enzymes, including the benchmark enzymes DhlA, DhaA, DbjA, LinB, and DmbA, 

capable of converting the majority of the substrates. The second group of enzymes (red in Fig 5A) is 

almost entirely composed of newly identified enzymes (except DatA) with more complex specificity 

profiles and varied activities. The enzymes forming the second group are barely active with 1,2-

dibromopropane (#72), 4-bromobutyronitrile (#141), and 1,2,3-tribromopropane (#154), unlike 

enzymes from the first group. 

Enantioselectivity. Enantioselectivity was assessed by determining the kinetic resolution of 

representatives of two distinct groups of racemic substrates: β-brominated alkanes (2-bromopentane) 

and β-brominated esters (ethyl 2-bromopropionate). Individual HLDs show variable enantioselectivity 

in the reaction with racemic 2-bromopentane. High enantioselectivity was identified for DeaA and 

DthA, exhibiting E-values of >200 and 156, respectively (Fig. S10). Most of the novel HLDs exhibited 

a preference for the (R)- over the (S)-enantiomer of 2-bromopentane. Interestingly, the enzymes 

DmmarA, DspoA, DphxA and DhxA showed the opposite enantiopreference. To date, only two HLD 

family enzymes (DsvA and eHLD-B) have been reported to possess such unique enantiopreference.26,27 

High enantioselectivity (E-value > 200) towards ethyl 2-bromopropionate was observed in case of 

DprxA, DthA, and DhxA (Fig. S11). 

Secondary and Quaternary Structure. Finally, we analyzed the secondary and quaternary structure 

using far-UV CD spectroscopy and size-exclusion chromatography, respectively, as a validation and 
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quality control of the protein material. All HLDs exhibited CD spectra with one positive peak at 195 nm 

and two negative minima at 208 and 222 nm, characteristic for proteins with an α/β-hydrolase fold 

(Fig. S12). Newly identified HLDs were mostly monomeric, similar to the previously characterized 

HLD members. Several variants can form dimers apart from the monomers (Table S13). The exceptions 

are DmmarA, which exists as a dimer, and DprxA, which exists as a mixture of monomer, dimer, and 

higher oligomeric states, respectively (Fig. S13). DstA forms dimers under oxidative conditions and its 

oligomeric state thus depends on the oxidation/reduction potential of the environment. 

DISCUSSION 

The field of biotechnology employing enzymes represents a billion-dollar industry, putting constant 

pressure on speeding up the process of identification, acquisition, and characterization of novel 

biocatalysts. The avalanche of newly available sequences from next-generation sequencing represents 

enormous potential, but also a significant challenge for the practical discovery of novel enzymes. The 

application of rational genome mining can facilitate effective management of the large quantity of 

complex sequence data 28. It is currently not feasible to characterize all sequences being deposited in 

sequence databases. In silico screening and prioritization, followed by miniaturized high-throughput 

characterization, appears to be an attractive approach. In this study, we have integrated computational 

genome mining with high-throughput microanalytical and microfluidic techniques. Only 63% of the 

identified putative HLDs were labelled correctly as dehalogenating enzymes in genomic databases. 

While missannotations were rare, many proteins annotated as “α/β-hydrolase” or “hypothetical protein” 

would have been missed by a simple text-based search. Proteins from the α/β-hydrolase superfamily are 

well-known for their catalytic promiscuity and tendency to catalyze diverse reactions using the same 

catalytic machinery.29 Substrates are not known for 35% of enzymes annotated as α/β-hydrolases and 

thus their functions remain unclear.30 The current mining identified more than 2,578 putative HLDs, that 

is nearly five times more hits than in the previous in silico screening conducted in 2013 (530 putative 

HLDs). Current screening missed only 97 sequences out of the original set and identified 2,145 new 

sequences.  

Although in silico screening strategies for identifying novel enzymes are being used profitably,31–33 

automation of the selection of a limited number of promising hits for characterization is challenging. 

Several sequence-based analysis tools have been developed for the prediction of key protein 

characteristics, e.g., thermostability,34 optimum pH31 or protein solubility.35–38 Other computational tools 

help to analyze, filter and visualize the large sets of identified hits.19,20 Automated in silico workflow 

optimized within this study has been released as the user-friendly web tool EnzymeMiner 

(https://loschmidt.chemi.muni.cz/enzymeminer/), making analysis described in this article accessible to 

the scientific and industrial communities.18 Prediction of protein solubility proved to be one of the 

https://loschmidt.chemi.muni.cz/enzymeminer/
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limitations. Despite the application of a solubility prediction tool,35 our comprehensive expression 

analysis of the whole set of 45 selected putative HLDs revealed only 67 % success rate in terms of 

soluble proteins. A similar result was achieved by the previous screening of novel HLDs where only 

60% of the constructed variants could be expressed in soluble form. Protein production in E. coli can be 

improved by optimizing genetic constructs and medium engineering, but combinatorial variation is 

impractical for such a large set of proteins. Therefore, the production of soluble proteins remains a hit-

or-miss affair and currently represents the biggest bottleneck in the functional and structural 

characterization of novel proteins. Improvement of the in silico solubility prediction is paramount for 

the increased success rate of protein characterization pipelines.14,39 

An important component of the experimental workflow is the application of time- and material-

efficient microscale methods. These techniques can be miniaturized and parallelized, allowing high 

throughput with low demands on the amount of biological material.40 The comparison of conventional 

methods with applied microscale and droplet-based microfluidic techniques presented here demonstrate 

high accuracy and reliability of the miniaturized assays. The gradual replacement of the conventional 

methods by their miniaturized versions is inevitable. Our study also enriched the toolbox of HLDs 

available for biotechnological applications.17 Homology modelling followed by calculation of the active 

site volumes is a powerful approach for identification of enzymes with high catalytic activities: 11 of 24 

characterized HLDs showed activities higher than most previously published enzymes.25 The small, 

occluded and desolvated active site is favorable for dehalogenation reactions catalyzed by SN2 reaction 

mechanism.41 Moreover, HLDs selective towards one or two substrates (DstA and DthA) were described 

for the first time. Several novel enzymes showed high enantioselectivity towards representative β-

brominated alkane and β-brominated ester substrates. The enzymes DmmarA, DspoA, DphxA and 

DhxA showed a rare (S)-enantiopreference with 2-bromopentane. Temperature profiling identified 

DmaA, which retained >60% of residual activity at 5°C, which is an attractive property for application 

of HLDs as environmental biosensors.42 DspoA is an example of a biocatalyst possessing an attractive 

combination of industrially relevant properties such as high activity, stability and selectivity. 
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CONCLUSIONS 

We describe an integrated workflow for the identification of novel family members using computer-

assisted genome mining and high-throughput experimental characterization. The proposed in silico 

pipeline employs sequence similarity searches accompanied by annotation and structural bioinformatics 

analyses. The experimental characterization was accelerated and scaled-down by applying high-

throughput microanalytical and microfluidic methods. These miniaturized techniques are suitable for 

characterization of smaller to medium sets of novel enzymes (tens to hundreds). The integration of the 

high-throughput techniques for small-scale protein production and microscale characterization of 

enzymes resulted in a robust workflow. An interesting perspective appears to be the application of cell-

free methods for protein production and its integration into microfluidic systems, which will lead to a 

simplification of the workflow and a further increase in its throughput. Cell-free protein production did 

not improve the acquisition of soluble variants in our case. Therefore, the development of more reliable 

prediction tools to enrich proteins with good solubility remains an important challenge. In this study, 

we illustrated that repetitive database mining provides a variety of novel enzymes with valuable 

industrial properties, while it also enables collection of consistent experimental data. High-quality 

datasets are attractive for statistical and machine learning methods which may in the future provide an 

understanding of sequence-function relationships and contribute to the development of a new generation 

of tools in protein engineering.  

EXPERIMENTAL SECTION 

In Silico Screening. A previously developed in silico pipeline for identification and characterization 

of putative HLDs was employed.8 To automate and improve the in silico protocol, several innovations 

were introduced to the original pipeline. Briefly, the sequences of three experimentally characterized 

HLDs [LinB (accession number to NCBI BAA03443), DhlA (P22643) and DrbA (NP_869327)] and a 

putative HLD from Aspergillus niger (EHA28085, residues 90-432) were used as queries for two 

iterations of PSI-BLAST43 v2.6.0 searches against the NCBI nr database (version 2017/02) with E-value 

thresholds of 10−20. A multiple sequence alignment of all putative full-length HLD sequences was 

constructed by Clustal Omega v1.2.0.44 Sequence similarity networks of putative HLDs were calculated 

and visualized by EFI-EST19 and Cytoscape v3.6.1,20 respectively. The obtained SSN was subjected to 

the Enzyme Function Initiative Genome Neighborhood Tool analysis to obtain genome neighborhood 

diagrams. Information about the source organisms of all putative HLDs was collected from the NCBI 

Taxonomy and BioProject databases (version 2017/02).21 The homology modelling was performed 

using MODELLER v9.18.45 The quality of generated homology models was assessed by MolProbity 

v4.3.1.22 Pockets in each homology model were calculated and measured using the CASTp program46 

with a probe radius of 1.4 Å. The CAVER v3.02 program47 was then used to calculate tunnels in the 
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ensemble of all homology models. The probability of soluble expression in E. coli of each protein was 

predicted based on the revised Wilkinson-Harrison solubility model.48 

Gene Synthesis and DNA Manipulation. The codon-optimized genes encoding 45 HLDs were 

designed and commercially synthesized (BaseClear B.V., The Netherlands). The synthetic genes were 

subcloned individually into the expression vector pET24a(+) between NdeI/XhoI restriction sites. 

Competent E. coli DH5α cells were transformed with individual constructs for plasmid propagation 

using a heat-shock method. The correct insertions of target HLD genes into recombinant plasmids were 

verified by restriction analysis of the re-isolated plasmids (Fig. S2) and DNA sequencing. 

Small-Scale Protein Expression and Purification. Competent E. coli BL21(DE3) cells were 

transformed with pET24a(+)::HLDx (x = 45 different HLDs candidates) plasmid DNA using a heat 

shock method, plated on 2x lysogeny broth agar plates with kanamycin (50 µg.ml-1) and grown overnight 

at 37 °C. The next day, single kanamycin-resistant colonies were transferred into wells of a 2 ml 96-

deep well square plate containing 500 µl of 2xLB medium with 50 µg.ml-1 kanamycin and cells were 

grown at 37 °C for 5-6 hours with shaking at 300 rpm. For all HLD gene candidates, plates were 

inoculated in duplicate. Next, using 96-deep well plates, 40 µl of the culture was inoculated in 450 µl 

of 2xLB medium supplemented with 50 µg.ml-1 kanamycin. The cultures were cultivated at 37 °C for 

1.5-2 hours with shaking at 300 rpm until O.D600 reached 0.4 – 0.6. Expression was induced by addition 

of IPTG to a final concentration of 0.5 mM and cultivation was continued at 22 °C for 24 h. The cells 

were harvested by centrifugation (3,500 rpm, 10,000 g, 20 min at 4 oC). The cells were washed three 

times with 200 µl PB buffer (40mM K2HPO4, 10mM KH2PO4, pH 7.5). Cells were disrupted by three 

cycles of ultrasonication (3 min with 50% frequency and 50% amplitude) using an Elma Ultrasonic 

Cleaner S100H (Elma Schmidbauer GmbH, Germany). Lysate was clarified by centrifugation at 10,000 

g at 4°C for 1 h. Protein expression was analyzed by SDS-PAGE using 12.5% polyacrylamide gels. 

Proteins were visualized using a Coomassie Brilliant Blue staining solution (1% w/v α-cyclodextrin, 

4.25% w/v phosphoric acid, and 0.5x Roti® -Nanoquant). The rest of the sample was subjected to high-

throughput affinity purification using the MagneHis Protein Purification System (Promega, USA) 

according to the manufacturer's manual, with minor modifications. The washing and elution buffers 

were supplemented with 500 mM NaCl. The elution was performed by 100 µl of an elution buffer 

containing 250 mM imidazole. Finally, a desalting plate (Merck KGaA, Germany) was used (3x times 

at 3,700 rpm, 10,000 g, for 10 min) to exchange from the elution buffer to the storage buffer PB. 100 µl 

of PB was added to each well between centrifugation steps. The enzymes were dissolved in 100 µl of 

PB. The presence of HLDs was proven by SDS-PAGE using 15% polyacrylamide gels stained by 

Coomassie Brilliant Blue R-250 dye (Fluka, Switzerland). 
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Dehalogenase Activity Screening. The reactions were 200 µL in volume and contained 50 mM PBO 

buffer (40mM K2HPO4, 10mM KH2PO4, pH 7.5 with 1 mM orthovanadate), 10 mM H2O2, 5 U.ml-1 

Curvularia inaequalis chloroperoxidase, 4 µg purified protein, 12.5 µM APF and 1 mM of substrate. 

The reactions in HOX assay23 were started by addition of purified protein and measured in a plate reader 

at 525 nm (488 nm excitation) and 30 °C overnight. 

Cell-Free Protein Synthesis. The Cell-free protein synthesis (CFPS) of 45 selected HLDs was 

performed using the PURExpress kit (NEB, USA) according to the manufacturer’s instructions.49 The 

recommended 250 ng of DNA template per reaction was used. The CFPS reactions were incubated at 

37 °C for 2.5 h. To maintain precise reaction conditions, a thermocycler was used for temperature 

control. The total fractions of HLDs were detected by SDS-PAGE stained by Coomassie Brilliant Blue 

R-250 and by silver staining (SilverQuest, Fermentas, USA). Subsequently, the total fractions of HLDs 

were centrifuged at 10,000 g at 4 °C for 1 h. The rest of the sample was dialyzed using Slide-A-Lyzer 

MINI Dialysis Devices (ThermoFisher Scientific, Germany) into the PB buffer used for the screening 

of HLD activity using the HOX assay. 23 

Large-Scale Protein Expression and Purification. Selected mutant enzymes were overproduced 

in E. coli BL21(DE3). A single colony was used to inoculate 10 ml of LB medium with kanamycin (to 

a final concentration of 50 μg.ml-1) and cells were grown at 37 °C for 4.5-5 hours. The preculture was 

used to inoculate 1 L of LB medium with kanamycin (50 µg.ml-1). Cells were cultivated at 37 °C for 

1.5-2 hours until O.D600 reached 0.4 – 0.6. The expression was induced with IPTG to a final 

concentration of 0.5 mM. Cells were then cultivated at 20 °C overnight. At the end of cultivation, 

biomass was harvested by centrifugation (20 min; 3,500 g, 4 °C) and immediately resuspended in the 

purification buffer A (20 mM K2HPO4/ KH2PO4, pH 7.5, 500 mM NaCl, 10 mM imidazole). DNaseI 

was added to the final concentration of 1.25 µg.ml-1 of cell suspension. Cells in suspension were 

disrupted by ultrasonication using a Hielscher UP200S ultrasonic processor (Teltow, Germany) with 

0.3 s pulses and 70 % amplitude. The cell lysates were centrifuged for 1 h at 21,000 g at 4 °C. The crude 

extracts were decanted and total protein concentration was determined using Bradford solution (Sigma-

Aldrich, USA). 

Overexpressed HLDs were purified using single-step nickel affinity chromatography. The cell-free 

extract was applied to a 5 ml Ni-nitrilotriacetic acid (Ni-NTA) Superflow column charged with Ni2+ 

ions (Qiagen, Germany) in the equilibrating buffer (purification buffer A). Target proteins were eluted 

with an increasing two-step gradient. First, unbound and weakly bound proteins were washed out with 

a 10% gradient of purification buffer B (20 mM potassium phosphate, pH 7.5, 500 mM NaCl, 300 mM 

imidazole). Subsequently, the target proteins were eluted with a 60% gradient of purification buffer B. 

Enzymes eluted by 300 mM imidazole (60% gradient) by metal-affinity chromatography were loaded 
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on an ÄKTA FPLC system (GE Healthcare) equipped with a UV280 detector and a HiLoad 16/600 

Superdex 200 prep grade column (GE Healthcare, Uppsala, Sweden) equilibrated in 50 mM potassium 

phosphate (pH 7.5). Elution was done using the same purification buffer at a constant flow rate of 

1 ml.min-1. The protein purity was checked by SDS-PAGE using 15% polyacrylamide gels stained with 

Coomassie Brilliant Blue R-250 (Fluka, Switzerland). The molecular weights were estimated using the 

Unstained Protein Molecular Weight Marker (Thermo Scientific, USA). The total enzyme concentration 

was determined by measuring absorbance at 280 nm using a NanoDrop (ThermoFischer Scientific, 

USA). 

Thermostability. Thermal unfolding was analyzed by four independent methods: (i) circular 

dichroism spectroscopy, (ii) DSF (thermal shift assay), (iii) nano DSF (UNcle), (iv) nano DSF 

(Prometheus). Circular dichroism spectroscopy (CD) was employed as a well-established technique. 

The unfolding of an enzyme (0.2 mg.ml−1 in 50 mM phosphate buffer, pH 7.5) was monitored by the 

change in the ellipticity at a wavelength with the highest difference in ellipticity over the temperature 

range from 15 to 90 °C at a 1 °C.min-1 scan rate. The thermal denaturation curves recorded were fitted 

to sigmoidal curves using Origin8 software (OriginLab, USA). Melting temperatures (Tm) were 

evaluated from the collected data as the midpoints of the normalized thermal transitions. Thermal shift 

assay was conducted in MicroAmp Fast Optical 96-well Reaction Plates (Thermo Fisher Scientific). 

Each reaction mixture of the final volume of 25 µl was composed of 2 µl of SYPRO Orange Protein Gel 

Stain (Thermo Fisher Scientific), enzyme (1 mg.ml−1 dialyzed in 50 mM potassium phosphate buffer, 

pH 7.5) and 50 mM potassium phosphate buffer of pH 7.5. The assay was performed using a 

StepOnePlus Real-Time PCR System (Thermo Fisher Scientific) from 20 to 90 °C at 1 °C.min-1 scan 

rate. The Tm values were determined from obtained data using Protein Thermal Shift software (Thermo 

Fisher Scientific). Two nano differential scanning fluorimetry (nanoDSF) techniques based on 

tryptophan or tyrosine fluorescence were employed. Nano DSF (UNcle, Unchained labs) measured the 

temperature-induced denaturation of enzymes (1 mg.ml−1 in 50 mM phosphate buffer of pH 7.5) by 

monitoring changes in fluorescence spectra (excitation at 266 nm) from 15 to 90 °C at 1 °C.min-1 scan 

rate. Thermostability was determined from the midpoint of the barycentric mean fluorescence (BCM) 

curve. A Prometheus NT.48 scanning fluorometer (NanoTemper Technologies, GmbH) measured 

temperature-induced denaturation of enzymes (1 mg.ml−1 in 50 mM potassium phosphate buffer, pH 

7.5) by monitoring changes in fluorescence signal at 335 and 350 nm from 15 to 90 °C at 1 °C.min-1 

scan rate. The ratio of fluorescence intensities at both excitation wavelengths (corresponding to the 

“redshift” of the tryptophan fluorescence upon protein unfolding) was plotted as a function of 

temperature and the point of inflexion of the resulting curve was used as a thermostability parameter. 

Secondary Structure. Circular dichroism (CD) spectra were recorded at room temperature using a 

Chirascan CD Spectrometer (Applied Photophysics, UK) equipped with a Peltier thermostat (Applied 
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Photophysics, UK). Data were collected from 185 to 260 nm, at 100 nm.min-1, with 1-s response time 

and 1-nm bandwidth, using a 0.1-cm quartz cuvette containing the enzymes. Each spectrum shown is 

the average of five individual scans and has been corrected for the buffer´s absorbance. Collected CD 

data were expressed in terms of the mean residue ellipticity (ΘMRE). Secondary structure determination 

and analysis were carried out on measured ellipticity from 190 to 250 nm using the BeStSel online tool 

with default settings.50 

Quaternary Structure. The protein quaternary structures were investigated using analytical gel 

filtration chromatography using a Superdex 200 10/300 GL column (GE Healthcare Life Sciences). The 

ÄKTA FPLC system (GE Healthcare Life Sciences) was initially equilibrated with a mobile phase 

composed of 50 mM potassium phosphate buffer and 150 mM NaCl (pH 7.5). The protein sample (100 

μl at 1 mg.ml-1) was injected onto the column and separated at a constant flow rate of 0.5 ml.min-1 using 

the mobile phase described above. The void volume was determined by loading blue dextran (100 μl at 

1 mg.ml-1). Two gel filtration calibration mixtures were applied for molecular weight determination (GE 

Healthcare Life Sciences). The mixture A of standard proteins contained aldolase (158,000 Da), 

ovalbumin (44,000 Da), ribonuclease A (13,700 Da), and aprotinin (6,500 Da). The mixture B of 

standard proteins contained ferritin (440,000 Da), conalbumin (75,000 Da), carbonic anhydrase 

(29,000 Da), and ribonuclease A (13,700 Da). 

Enantioselectivity. Kinetic resolution experiments were performed at 20 °C. The reaction mixtures 

consisted of 1 ml glycine buffer (100 mM, pH 8.6) and 1 μl of a racemic mixture of 2-bromopentane or 

ethyl 2-bromopropionate. The detailed description is provided in Vanacek and co-workers8. The kinetic 

resolution data were fitted globally using KinTek Explorer software (KinTek Corporation, USA). The 

competitive steady-state model (Scheme 1) was used to obtain estimates of specificity constants kcat/Km
51 

for both R and S enantiomers during the conversion of the racemic mixture, where E is an enzyme, Si 

and Pi are substrate and product, respectively. The index i depicts the (S)-enantiomer or (R)-enantiomer, 

respectively. The estimate for enantioselectivity of the enzymatic reaction, defined as the ratio of 

specificity constants for the conversion of S and R enantiomers (E-value, Equation 1), was obtained 

during the fitting procedure by fixing the ratio between individual values of kcat/Km for R and S 

enantiomers. 

𝐸 + 𝑆𝑅

(
𝑘𝑐𝑎𝑡
𝐾𝑚

)
𝑅

→     𝐸𝑆𝑅
(𝑘𝑐𝑎𝑡)𝑅
→    𝐸 + 𝑃𝑆 

𝐸 + 𝑆𝑆

(
𝑘𝑐𝑎𝑡
𝐾𝑚

)
𝑆

→     𝐸𝑆𝑆
(𝑘𝑐𝑎𝑡)𝑆
→    𝐸 + 𝑃𝑅 

Scheme 1 
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𝐸 − 𝑣𝑎𝑙𝑢𝑒 =

(
𝑘𝑐𝑎𝑡
𝐾𝑚
)
𝑅

(
𝑘𝑐𝑎𝑡
𝐾𝑚
)
𝑆

 

Equation 1 

The spontaneous conversion of the substrate (reaction without enzyme) was included in the model 

and analyzed globally to obtain a specific effect of enzyme selectivity. Numerical integration of rate 

equations searching a set of kinetic parameters that produce a minimum χ2 value was performed using 

the Bulirsch–Stoer algorithm with adaptive step size, and nonlinear regression to fit data was based on 

the Levenberg–Marquardt method. To account for fluctuations in experimental data, enzyme or substrate 

concentrations were slightly adjusted at a boundary ± 5 % to derive best fits. Residuals were normalized 

by sigma value for each data point. The standard error (S.E.) was calculated from the covariance matrix 

during nonlinear regression.52 

Substrate Specificity Profiles and Temperature Profiles. Both substrate specificity and 

temperature profiles were measured on the capillary-based droplet microfluidic platform, enabling the 

characterization of specific enzyme activity within droplets for typically 6-10 variants in one run. The 

temperature profiles were measured towards either 1,2-dibromoethane or 1-bromohexane in 5-degree 

increments in the range of 5 °C to 55 °C. The temperatures for individual enzymes were chosen based 

on their Tm and Tonset values (determined by Prometheus) so that the activities at 7-9 temperatures were 

measured for each enzyme. The substrate specificity of individual enzyme variants was measured 

towards 27 representative halogenated substrates, which were previously chosen for validation of the 

microfluidic platform. Each enzyme was assayed at the temperature closest to its Tmax value or where it 

retains > 90% of activity at that temperature. A detailed description of the microfluidic method was 

provided previously.53 Briefly, the droplets were generated using Mitos Dropix (Dolomite, UK). A 

custom sequence of droplets (150 nL aqueous phase, 300 nL oil spacing) was generated using negative 

pressure (microfluidic pump) and the droplets were guided through a polythene tubing to the incubation 

chamber. Within the incubation chamber, the halogenated substrate was delivered to the droplets via a 

combination of microdialysis and partitioning between the oil (FC-40) and the aqueous phase. The 

reaction solution consisted of a weak buffer (1 mM HEPES, 20 mM Na2SO4, pH 8.2) and a 

complementary fluorescent indicator 8-hydroxypyrene-1,3,6-trisulfonic acid (50 μM HPTS). The buffer 

exchange of enzyme samples was carried out using the standard spin protocol of PD Minitrap™ G-25 

(GE Healthcare, USA), where 2 centrifugation steps were applied, each at 1,000 g for 2 min. The 

fluorescence signal was obtained by using an optical setup with excitation laser (450 nm), a dichroic 

mirror with a cut-off at 490 nm filtering the excitation light and a Si-detector (GE Healthcare, USA). 

By employing a pH-based fluorescence assay, small changes in the pH were observed, enabling 

monitoring of the enzymatic activity. Reaction progress was analyzed as an end-point measurement 
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recorded after passing of 10 droplets/sample through the incubation chamber. The reaction time was 4 

min. The raw signal was processed by a droplet detection script written in MATLAB 2017b 

(MathWorks, USA) to obtain the specific activities. The raw signal of every single measurement was at 

first processed by a LabView-based code (National Instruments, USA) developed in-house. Using this 

software, the peaks were assigned to the particular sample and the mean signal was calculated for them. 

The output XLS file gathering mean signal values for every sample type (calibration, enzyme activity, 

buffer, blank buffer and blank enzyme) for a particular dataset (e.g., 6 enzymes measured in one 

temperature with all 27 substrates) served as an input for the MATLAB script (MathWorks, USA) 

calculating the specific activities using the same principle described previously.24,53 

Principal Component Analysis and Hierarchical Clustering. The matrix containing the activity 

data of 24 novel HLDs and 8 previously characterized HLDs towards 27 halogenated substrates was 

analyzed by Principal Component Analysis (PCA) to uncover the relationships among individual HLDs 

(objects) based on their activities towards the set of halogenated substrates (variables). Two PCA models 

were constructed to visualize systematic trends in the dataset. The first one was done on the raw data, 

which as a result ordered the enzymes according to their total activity. The second PCA was carried out 

on the log-transformed data. Each specific activity needed to be incremented by 1 to avoid the logarithm 

of zero values. The resulting values were then divided by the sum of the values for a particular enzyme, 

and weighted values were estimated. These transformed data were used to calculate principal 

components, and the components explaining the highest variability in the data were then plotted for 

identification of substrate specificity groups. Additionally, the hierarchical clustering analysis was 

performed on the log-transformed data using MATLAB (MathWorks, USA).  
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Table 1. Summary of biochemical properties of HLDs.  

 

Enzyme 

Yield 

(mg. L-

1) 

Specific 

activity* 

(μmol.s-1.mg-1) 

Tonset  

(°C) 

Tm  

(°C) 

Tmax 

(°C) 

E value 

2-bromopentane 
ethyl 2-

bromopropionate 

DstA 70 0.0030±0.0001 30.9±0.2 43.4±0.1 30 1.27±0.01 2.59±0.04 

DfxA 10 0.0030±0.0002 30.5±0.6 40.6±0.5 35 n.a. n.a. 

DlaA 40 0.0040±0.0001 35.6±1.2 48.1±0.6 30 n.a. n.a. 

DaxA 120 0.0010±0.0002 42.9±0.2 48.7±0.1 35 16.4±0.3 n.a. 

DsmA 120 0.086±0.001 27.6±0.1 35.7±0.1 25 1.60±0.01 81±1 

DmmarA 20 0.0060±0.0001 32.3±0.1 42.1±0.2 30 6.33±0.04 1.22±0.01 

DathA 60 0.0060±0.0001 38.1±0.6 46.4±0.1 35 27.3±0.4 45 ± 1 

DmaA 30 0.211±0.005 32.5±0.1 40.2±0.3 35 2.13±0.01 49.8±0.4 

DspoA 80 0.86±0.02 50.8±0.2 58.7±0.6 50 9.755±0.083 128±1 

DexA 120 0.57±0.01 43.4±1.1 47.5±0.4 45 5.46±0.04 152±2 

DppsA 100 0.029±0.001 24.7±0.2 38.1±0.2 35 3.32±0.03 84±1 

DeaA 70 0.41±0.01 45.3±0.1 52.2±0.2 45  >200 113 ± 2 

DmgaA 100 0.006±0.001 38.2±1.6 44.7±0.9 40 n.a. n.a. 

DprxA 150 0.63±0.01 44.3±1.7 51.8±0.3 45 3.23±0.02 >200 

DrgA 20 0.0020±0.0002 36.8±0.4 44.2±0.4 35 n.a. n.a. 

DmbaA 10 0.132±0.002 36.8±0.3 46.6±0.2 45  5.54±0.04 22.2±0.2 

DthA 90 0.031±0.001 40.4±0.3 49.9±0.9 35 155.9±0.7 >200 

DphxA 30 0.596±0.007 47.0±0.6 55.4±0.2 35 1.82±0.01 26.0±0.2 

DthB 20 0.122±0.004 44.8±0.6 53.4±0.4 45 2.98±0.02 15.9±0.1 

DnbA 90 0.006±0.002 37.3±0.1 47.8±0.4 40 14.1±0.3 n.a. 

DhxA 120 0.611±0.001 44.1±0.4 53.1±0.3 35 1.574±0.011 >200 

DspxA 30 0.082±0.001 44.2±0.3 53.3±0.2 35 42.1±0.5 156±3 

DchA 20 0.143±0.005 47.0±0.1 55.2±0.8 40 2.52±0.02 27.7±0.3 

Dcta 10 0.0050±0.0002 31.6±0.1 39.8±0.6 35 n.a. 187±2 

 
*Specific activity towards 1,3-dibromopropane was determined in 1 mM HEPES buffer at pH 8.2 and temperature 

close to the optimal temperature (Table S8); Tonset – unfolding onset temperature; Tm – melting temperature by 

nanoDSF; Tmax – maximum HLD activity; n.a. – no activity
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Figure 1. Integrated theoretical-experimental strategy for high-throughput exploration of 

unmapped sequence space. (A) In silico screening and (B) structural and functional characterization 

applying microscale and microfluidics techniques.  
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Figure 2. Sequence similarity network for HLD family. The putative HLDs are clustered into four 

subfamilies: HLD-I (yellow), HLD-II (violet), HLD-III/IIIb (green) and HLD-IV (pink). The sequences 

were first clustered at 50% identity to reduce the number of nodes and edges. Sequences with greater 

identity are consolidated into a single node. Edge lengths indicate sequence similarity between 

representative sequences of the connected nodes. Black nodes contain at least one selected target. 
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Figure 3. Substrate preference of HLDs. (A) Dependence of total activity (sum of specific activities 

of 24 newly characterized and 8 benchmark HLDs) on the chain length of the halogenated substrate. 

The individual colors of the data points stand for the type of substrate: chlorinated (red), brominated 

(blue), brominated & chlorinated (black) and iodinated (orange). (B) Convertibility of the substrate 

quantifies the fraction of HLDs which convert a particular substrate. 
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Figure 4. Multivariate analysis of catalytic activity. The score-contribution plot t1 compares the 

enzymes in terms of their overall activity with 27 substrates and explains 85.1 % of the variance in the 

untransformed data set. Known HLDs are depicted by blue color and newly identified HLDs by black 

color. Inset: the sequence similarity network of putative HLDs clustered into four subfamilies: HLD-I 

in yellow, HLD-II in violet, HLD-III/IIIb in green and HLD-IV in pink. The highlighted nodes in black 

represent 11 novel enzymes with elevated activity. 
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Figure 5. Multivariate analysis of substrate specificity. A heat map with hierarchical clustering 

dendrograms for the similarity of enzyme activity (A) and halogenated substrate conversion (B). 

Substrate functional groups and halide detected in the reaction are color-coded with bars at the tips of 

the dendrograms. Only reactions with >8% conversion were shown to remove false positives. (C) 

Detailed hierarchical clustering of enzymes and halogenated substrates shown in a double-dendrogram. 

Major groups are highlighted with the same color. The colormap displays the log-transformed data. 


