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Abstract— Recent studies have been demonstrated that host immune imbalance is an important factors leading to acute respiratory
distress syndrome (ARDS) in COVID-19 patients. Therefore, discovery of potential drugs and identification of their mechanisms of action
for the prevention of immune imbalance in COVID-19 patients are urgently needed. In this study, we proposed a network representation
learning-based methodology, termed AIdrug2cov, to discover drug mechanism and anti-inflammatory response for patients with COVID-
19. In AIdrug2cov, a deep bidirectional Transformer encoder network representation approach is developed to automatically learn low-
dimensional vector of heterogeneous network. Using the representation vectors, AIdrug2cov identifies 40 potential targets and 24
high-confidence drugs that bind to tumor necrosis factor(TNF)-α or interleukin(IL)-6 to prevent excessive inflammatory responses in
COVID-19 patients. In particular, AIdrug2cov indicated that chloroquine and hydroxychloroquine are able to reduce fatality of COVID-19
patients, and that their mechanisms of action are likely mediated through their inhibition of inflammatory cytokines on top of their antiviral
ability, consistent with the findings of clinical studies. In addition, the results in 5 pharmacological application suggested that AIdrug2cov
significantly outperforms 5 other state-of-the-art network representation approaches, future demonstrating the availability of AIdrug2cov
in drug development field. In summary, AIdrug2cov is practically useful for accelerating COVID-19 therapeutic development. The source
code and data can be downloaded from https://github.com/pengsl-lab/AIdrug2cov.git.

Index Terms—heterogeneous networks, representation learning, deep bidirectional Transformer, COVID-19, drug mechanism,
anti-inflammatory response
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1 INTRODUCTION

G LOBALLY as of 15 June, 2020, there have been over
8,061,550 confirmed cases of COVID-19, including

440,290 deaths, reported to World Health Organization
(WHO), implying that the novel coronavirus (SARS-CoV-2)
has posed a global health threat(https://covid19.who.int/).
In addition, it has been well proven that host immune
responses are important factors leading to life-threatening
acute respiratory distress syndrome (ARDS) in COVID-19
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patients [1]. Although numerous of researchers are devoted
to elucidating the pathogenic mechanisms of SARS-CoV-
2, and to developing effective medications for controlling
and preventing COVID-19,Considering that the new drug
development is a complex, lengthy and expensive process,
one effective method of drug discovery is to apply a drug
repositioning [2] strategy to identify the potential drugs a-
mong existing ones. Compared to developing a drug de novo,
discovering potential drugs from existing ones may signif-
icantly reduce the cost and period of drug development.
Therefore, drug repositioning has received increased atten-
tion from pharmaceutical companies, governments agencies
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and academic researchers in recent year. Nevertheless, the
development of promising drug discovery approaches for
the effective treatment of COVID-19 is challenging, because
of insufficient knowledge regarding drug targets and the
disease pathology. Therefore, it is important to understand
how SARS-CoV-2 give elicits host immune responses, and
to apply this knowledge towards the discovery of potential
targets and drugs, and elucidation of drug mechanisms of
action against COVID-19.

Identification of the proteins involved in COVID-19 is a
primary step towards revealing the underlying molecular
mechanisms of SARS-CoV-2 infection, and can potential-
ly improve clinical therapies for COVID-19. Unfortunate-
ly, limited knowledge regarding the detailed pathogenic
mechanism of SARS-CoV-2 has prevented comprehensive
identification and evaluation of disease-causing proteins.
However, a growing body of research suggests that the
clinical manifestations of severe acute respiratory syndrome
(SARS) and COVID-19 was highly similar, and they may
have similar pathogenesis [3]. In addition, phylogenetic
analysis has revealed that the genome of SARS-CoV-2 is
similar to that of SARS-CoV, with approximately 79% se-
quence identity [4]. Above all, they have the similar host-
cell receptor usage and cell entry mechanism [5]. Given
these apparent similarities between the two viruses and the
corresponding diseases, identification of COVID-19-related
proteins based on previous SARS studies is an important
step towards understanding the nature of COVID-19 and
determining a possible cure for the disease.

Since the COVID-19 outbreak, many studies have fo-
cused on identifying proteins or drugs related to the entry,
fusion, and replication of SARS-CoV-2. For example, scien-
tists have demonstrated that SARS-CoV-2 uses angiotensin-
converting enzyme 2 (ACE2) [6], [7] and transmembrane
protease serine 2 (TMPRSS2) for entry into host cells [8].
In addition, several antiviral drugs with inhibitory effects
against SARS-CoV-2 have been selectively tested in clini-
cal trials [9], [10]. However, recent reports show that the
development of severe disease does not seem to be solely
related to viral load [11], and that the hyperinflammatory
response induced by SARS-CoV-2 is a main cause of severe
disease and death in infected patients [12]. Unfortunately,
the efficacy of existing antiviral agents, such as favipiravir,
arbidol, and darunavir, which are being tested in ongoing
clinical studies on COVID-19, might be unsatisfactory or
insufficient for patients suffering from immune imbalance,
and the mechanisms of action of these drugs in this disease
are uncertain [13]. Therefore, aside from the development of
an antiviral treatment strategy, proteins that cause excessive
inflammation, should be identified, and targeted to discover
anti-inflammatory agents, particularly for the patients with
severe disease.

Drug repositioning and discovery poses formidable chal-
lenges because the pharmacological action mechanisms and
biological process are complex and elusive. Fortunately,
with the rapid development of the systems biology and
network pharmacology fields, the drug research paradigm
has changed from the linear mode of ”one drug, one target,
one disease” to the network mode of ”multi-drugs, multi-
targets, multi diseases” [14]. Cheng et al. have suggested that
the integration of multiple perspectives network contributes

to understanding and analysis of molecular action mecha-
nisms [14]. Among the advances, network-based methods
have already offered promising insights to improve the
accuracy of in silico drug discovery, and to elucidate action
mechanisms for the effective treatment of COVID-19 [15].

In this study, we proposed a network representa-
tion learning-based drug mechanism discovery and anti-
inflammatory response, termed AIdrug2cov, to identify
potential drugs for COVID-19. In AIdrug2cov, a multi-
layer bidirectional Transformer encoder network represen-
tation approach is developed to automatically learn low-
dimensional embedding vector from a heterogeneous net-
work systematically integrating diverse drug-related in-
formation. In this study, based on the representation-
s, AIdrug2cov identified 40 potential targets related to
COVID-19, and 24 high-confidence drugs binding to TNF-α
or IL-6 for preventing excessive inflammatory response in
patients with COVID-19. Importantly, this study indicated
that chloroquine (CQ) and hydroxychloroquine (HCQ) can
reduce death risk of COVID-19 patients, and that the mech-
anism of action (MOA) of these drugs is likely mediated
through its inhibition of inflammatory cytokines on top
of their ability in inhibiting viral replication. This result
of anti-inflammatory action of CQ and HCQ have been
verified by clinical studies [16]. To evaluate and interpret the
representation performance of AIdrug2cov, we integrated 3
type of pharmacological tasks: drug-drug interaction net-
work (DDI) reconstruction, Anatomical Therapeutic Chem-
ical (ATC) classification, and bio-link prediction. The results
demonstrate that AIdrug2cov significantly outperforms 5
other state-of-the-art network representation approaches.
In summary, AIdrug2cov is a practically useful tool for
accelerating COVID-19 therapeutic development.

2 RESULT

2.1 Overview of AIdrug2cov
An overview of the proposed AIdrug2cov, which is a net-
work representation learning-based methodology to dis-
cover drug mechanism and anti-inflammatory response for
patients with COVID-19, is shown in Fig.1. First, we con-
structed a comprehensive heterogeneous network to inte-
grate drugs, diseases, proteins, and side-effects. A network
representation approach based on semantic paths and deep
bidirectional Transformer encoder model was developed
to automatically learn a low-dimensional embedding vec-
tor by systematically integrating the semantic relation and
topological structure of a heterogeneous network. Then, the
low-dimensional vector of nodes was fed into an inductive
matrix completion (IMC) model [17] to identify the top
45 potential targets related to SARS or COVID-19. Enrichr
[18] was used to perform functional enrichment analysis,
and we conducted a mechanism of action (MOA) analysis
based on the literature search. Note that target identifica-
tion of COVID-19 is conducted with SARS data, since the
clinical manifestation and pathogeneses of these diseases
are highly similar [3]. Similarly, AIdrug2cov predicted 40
high-confidence drugs based on the predicted targets TNF-
α and IL-6. Next, we performed Connectivity Map (CMap)
[19] analysis and literature search to identify 25 agents
that bind to TNF-α or IL-6 to prevent cytokine storms and
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Fig. 1. Overview of AIdrug2cov to identify drug mechanism of action and anti-inflammatory response against COVID-19.

excessive inflammatory responses in patients with COVID-
19. Finally, we analyzed multiple mechanisms of action base
on literature reports, and explored the possible binding
modes between the new predicted drugs and TNF-/IL-6
with the docking program DOCK6.8 [20]. In addition, this
study integrated DDI network reconstruction, ATC classi-
fication, and bio-link (i.e., disease→protein→drug→side-
effect association) prediction to future evaluate and validate
the applicability, and scalability of AIdrug2cov in the drug
development process.

2.2 COVID-19 target identification
In this study, the top 40 proteins, which corresponded to
roughly 3% of the total number of the protein entity in
heterogeneous network, were regarded as potential targets
for COVID-19. In this study, Evidence from the literature
was used to determine the action mechanism between each
target and COVID-19. As shown in Table 1, most of the
proteins have been demonstrated to have interaction mech-
anism or therapeutic associations with SARS or COVID-19.
Apparently, the most popular targets seem to be mediators
of inflammation, such as TNF [1], [21], IL1B [22], IL-6 [23],
[24], CCL2 [22], [25], IFNG [24], [26], [27], and CXCL10
[1], [22]. The targets MAPK3 [28], TP53 [29], and RB1
[30], [31] affect the replication processes of SARS-CoV and
SRAS-CoV-2. CASP3 [32], [33] and CYCS [34], [35] induce
apoptosis of cells infected with SARS-CoV. AKT1 signaling
pathways also play key roles in persistent SARS-CoV infec-
tion [36]. Inhibiting EGFR and TGFB1 [37], [38] signaling
may prevent an excessive fibrotic response to SARS-CoV
and other respiratory viral infections [39]. A GSTM1 null
genotype may increase the risk of pulmonary fibrosis of
COVID-19 patients [40], and it is worth noting that there
has also been one report of a newly emerged fibrosis in a
COVID-19 patient [41]. COVID-19 was found to aggravate

already compromised NO production in a cohort with NOS3
polymorphism, and management of NOS3/iNOS ratios and
NO levels can prevent the development of severe ARDS. In
addition, certain crucial proteins are associated with SARS-
CoV or SARS-CoV-2, such as, VEGFA [42], RAC1 [38], INS
[43], ICAM1 [44], [45], and CDK2 [46], [47].

2.2.1 Inflammatory response-related targets for COVID-19

Twelve targets appear to be critical mediators of the inflam-
matory response in moribund COVID-19 patients, and this
response is closely related to the severity of the disease.
Similar to the situation in SARS-CoV, the levels of TNF [1],
[21], IL1B [22], IL-6 [23], [24], CCL2 [22], [25], IFNG [24], [26],
[27] and CXCL10 [1], [22] are significantly elevated and are
associated with adverse clinical outcomes in patients with
COVID-19. NFKB1 is a key factor in the hyperactivation of
monocyte-derived macrophages in COVID-19 [22], which
directly affects the inflammatory response. The most im-
portant signal transduction pathways activated by viruses
leading to the expression of proinflammatory cytokines are
mediated by the factors IRF-3 and IRF-7 and JUN [48].
PARP plays a critical role in cytokine release in response
to any lung injury causing viral infection, and the course
of COVID-19 may be altered by inhibiting this protein
[49]. HMOX1 has been shown to display anti-inflammatory
properties in models of acute pulmonary inflammation, and
is expressed in most cell types in organisms [50], [51]. A
large body of evidence from preclinical studies indicates
that MAPK14 paly a crucial role in inflammatory cytokine
production [33], [52], [53]. MMP2 is a marker that aggra-
vates pulmonary damage in SARS patients, and doxycy-
cline markedly suppresses the levels of proinflammatory
cytokines by inhibiting this protein [54], [55], [56]. PPAR is a
key regulators of inflammation, and its activation results in
reductions in inflammatory cytokine levels.
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TABLE 1
Candidate targets and their interaction mechanisms with COVID-19.

NO. UniProt ID:name Confidence Interaction mechanism to COVID-19 References
1 P01375:TNF-α∗ 0.5962 Cytokine in moribund COVID-19 patients [1], [21]
2 P35354:PTGS2∗ 0.5900 A key mediator of inflammation in SARS [57], [58], [59]
3 P42574:CASP3 0.5811 Critical medium inducing apoptosis of cells infected with SARS-CoV [32], [33]
4 P10415:BCL2 0.5667 Necessary for survival of persistently SARS-CoV-infected cells [60]
5 P01584:IL1B∗ 0.5635 Cytokine in moribund COVID-19 patients [22]
6 P27361:MAPK3 0.5628 Participant in SARS-CoV replication [28]
7 P04637:TP53 0.5626 Antagonist of coronavirus replication [29]
8 P05412:JUN∗ 0.5368 Induction of proinflammatory cytokines of coronavirus [48]
9 P28482:MAPK1 0.5367 NA NA

10 P99999:CYCS 0.5337 Medium inducing apoptosis related to SARS-CoV membrane protein [34], [35]
11 P37231:PPARG∗ 0.5288 Key regulators of inflammation [61]
12 P19838:NFKB1∗ 0.5282 Hyperactivation of monocytederived macrophages in COVID-19 [22], [62]
13 P09210:GSTA2 0.5204 A factor of pulmonary fibrosis in COVID-19 patients [40]
14 P05231:IL-6∗ 0.5170 Cytokine storm in moribund COVID-19 patients [23], [24]
15 Q03181:PPARD 0.5073 NA NA
16 P15692:VEGFA 0.5051 A key factor in both ICU and non-ICU COVID-19 patients [42]
17 P09874:PARP1∗ 0.5003 An pivotal role on cytokine release in COVID-19 [49]
18 P35228:NOS2 0.4991 Inhibits viral protein and RNA synthesis [63], [64]
19 P05164:MPO 0.4945 Higher levels of MPO in adult patients with COVID-19 [65]
20 P09601:HMOX1∗ 0.4920 Anti-inflammatory effects on LPS-induced pulmonary inflammation. [50], [51]
21 P17302:GJA1 0.4827 NA NA
22 P01308:INS 0.4824 Obesity-related comorbidities and mechanisms of a severe course of COVID-19 [43]
23 P01137:TGFB1 0.4800 Relation to the fibrosis and fluid homeostasis in the lungs for the severe COVID-19 [37], [38]
24 P00533:EGFR 0.4771 High rate of pulmonary fibrosis [41], [66]
25 Q16539:MAPK14∗ 0.4750 Key signaling molecules as therapeutic targets for inflammatory diseases in SARS [33], [52], [53]
26 P05067:APP 0.4746 NA NA
27 P45983:MAPK8 0.4742 NA NA
28 P13500:CCL2∗ 0.4698 Inflammatory chemokine storms in severe COVID-19 patients [22], [25]
29 P05362:ICAM1 0.4689 Key hub genes involved in COVID-19 [44], [45]
30 P63000:RAC1 0.4648 A role in SARS-PLpro-induced STAT6 nuclear translocation [38]
31 P31749:AKT1 0.4608 A key role in persistent SARS-CoV infection [36]
32 P06400:RB1 0.4607 Initiation of gene expression and viral replication [30], [31]
33 P08253:MMP2∗ 0.4601 A marker of inflammation aggravating pulmonary damage in SARS patients [54], [55], [56]
34 P08684:CYP3A4 0.4579 NA NA
35 P07101:TH 0.4565 NA NA
36 O75469:NR1I2 0.4562 NA NA
37 P09488:GSTM1 0.4560 Aggrandizement the risk of pulmonary fibrosis in COVID-19 patients [40]
38 P02778:CXCL10∗ 0.4558 Inflammatory chemokines in COVID-19 patients [1], [22]
39 P01579:IFNG∗ 0.4539 A key mediator of inflammation in COVID-19 patients [24], [26], [27]
40 P24941:CDK2 0.4538 N-protein of SARS-CoV inhibition of CDK2 activity [46], [47]

Proteins marked with ∗ may be key mediators of inflammation in COVID-19.

2.2.2 KEGG and GO enrichment analyses of targets

We use Enrichr [18] tool to perform Kyoto Encyclopedia
of Genes and Genomes (KEGG) and Gene Ontology (GO)
enrichment analyses to comprehensively evaluate the bi-
ological relevance and functional pathways of COVID-19
targets predicted by AIdrug2cov. KEGG pathway enrich-
ment analysis revealed the top 10 significant biological path-
ways (ranked with p-values according to the guidelines in
[18]), which included TNF signaling pathway, epstein-Barr
virus infection, the IL-17 signaling pathway, and the human
cytomegalovirus infection pathway, as shown in Fig.2(A).
Similarly, GO biological process enrichment analysis further
confirmed that the targets were associated with multiple
processes related to host cell lifecycle and viral replication,
including cytokine activity, MAP kinase activity, transcrip-
tion regulatory region DNA binding, protein kinase activ-

ity, RNA polymerase II (RNAPII) regulatory region DNA
binding, RNAPII transcription factor activity, and sequence-
specific transcription regulatory region DNA binding as
shown in Fig.2(B).

Based on the above results, we concluded that most
of the candidate proteins predicted by AIdrug2cov were
targeted by SARS-CoV-2 and targetable for COVID-19 treat-
ment. This motivated us to develop a drug repurposing
strategy by specifically targeting host proteins for potential
treatment of COVID-19.

2.3 Hyperinflammation in patients with COVID-19

Indeed, several recent COVID-19 clinical studies have
shown that SARS-CoV-2 induces excessive and aberrant
host immune responses that are associated with severe lung
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(A) KEGG human pathway analyses

(B) GO enrichment analyses

Fig. 2. KEGG human pathway and GO enrichment analyses for the
potential COVID-19 target proteins

pathology, leading to death [1]. Based on previous literature-
reported knowledge, we find that the production of cy-
tokines, such as IL-6, and TNF-α, is increased in patients
with severe COVID-19. This is similar to the case in patients
with SARS-CoV, indicating that SARS-CoV-2 infection is
associated with a cytokine storm and severe pulmonary
inflammation in moribund patients.

Fig. 3. Possible pathway contributing to excessive inflammatory re-
sponses in patientS with COVID-19.

A possible pathway contributing to excessive host in-
flammatory responses in COVID-19 is shown in Fig.3. First,
SARS-CoV-2 is taken up into a host-cell by binding ACE2.
Then, T lymphocytes are excessively activated and generate
large amounts cytokines such as TNF-α, IL-6, and GM-
CSF. The cytokine-rich environment induces inflammatory
monocytes with high express of cytokine, and further accel-
erates the inflammatory response. The aberrantly activated
T cells and inflammatory monocytes may enter the pul-
monary circulation leading to a cytokine storm, thus causing
ARDS or multiple organ dysfunction syndrome.

In addition, recent studies have suggested that drugs
targeting IL-6 and TNF-α are effective in blocking inflam-
matory storms, and are promising treatment agents for
severe COVID-19 patients [21], [23]. Therefore, this work
focused on drug discovery based on IL-6 and TNF-α to
identify potential anti-inflammatory agents with efficacy
against COVID-19.

2.4 Anti-inflammatory drug discovery and mechanism
of action analysis

In the drug discovery step for the COVID-19, 1% the all
drugs in the heterogeneous network were selected as can-
didate agents binding to TNF-α or IL-6, respectively. Then,
several drugs were filtered via CMap analysis model. We
identified 31 drugs that interact with TNF-α or IL-6 (17
drugs that bind to TNF-α, 14 drugs that bind to IL-6).
Finally, we use subject matter expertise based on literature-
reported knowledge to filter out 6 drugs, including arsenic
trioxide, acetaminophen, isoflurane, halothane, latanoprost,
and hydrochlorothiazide, since these drugs tend to increase
release of IL-6 or TNF-α. For example, acetaminophen sig-
nificantly increase the hepatic levels of IL-6, TNF-α, IL-10
and monocyte chemoattractant protein [67], [68]. Isoflurane
induced marked upregulation of the proinflammatory cy-
tokines TNF-α, IL1B, IL-6 and IL-8 in hippocampus tissue
[69]. The expression levels of IL-6, and TNF-α tend to
increase in the birds chronically treated with arsenic trioxide
[70]. Halothane potentiates alcohol adduct-induced TNF-α
release in heart endothelial cells [71]. Latanoprost stimulat-
ed the release of IL-6 from human tendon capsule fibroblasts
in a concentration-dependent and time-dependent manner
[72]. Hydrochlorothiazide has not had in in vitro anti-
inflammatory effects at clinical studies. Meanwhile, there
was a trend to increase the production of IL1B at the lower
concentrations of hydrochlorothiazide [73].

Based on the above procedure, we identified 25 high-
confidence drugs (13 drugs binding to TNF-α, 13 drugs
binding to IL-6) with efficacy against COVID-19 as shown in
Table 2; acarbose is treat as agent that binds to both TNF-α
and IL-6. We found that 21 drugs that have been previously
reported in the literature could reduce the expression and
release of TNF-α or IL-6 to exert anti-inflammatory effects in
silico. Although, most of these drugs are treated as potential
therapeutic agents for cytokine storm inhibition, this study
suggests their role in inflammatory response prevention in
patients with COVID-19 for the first time.

2.4.1 Seventeen anti-inflammatory drugs initially proposed
for novel use in COVID-19 patients

To the best of our knowledge, 17 of the drugs predicted
by AIdrug2cov were initially proposed as potential thera-
peutic for COVID-19. The literature evidence suggests that
these drugs inhibit cytokine release and the inflammatory
response, as listed in column 4 in Table 2. For example, dasa-
tinib, a small molecule Src/Abl tyrosine kinase inhibitor ap-
proved for the treatment of chronic myelogenous leukemi-
a, reduces TNF-α and IL-6 secretion in response to TLR
stimulation of bone marrow-derived macrophages in vitro
to modulate the host immune response [86]. Minocycline,
a second generation tetracycline antibiotic, exerts its anti-
inflammatory effect on microglia by inhibiting the expres-
sion and release of TNF-α, and IL1B [88]. Tranexamic acid
plays a key role in reducing subsequent systemic inflamma-
tory responses in a manner associated with reductions in the
circulating levels of the proinflammatory cytokines IL-6 and
IL-8 [99]. IL-6 in lung tissues in methazolamide-treated mice
were markedly decreased. Methazolamide treatment has
been found to markedly decrease IL-6 levels in mouse lung
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TABLE 2
Candidate drugs and their interaction mechanisms with COVID-19.

Target ID: name Drugbank ID: name Confidence Mechanism of action to COVID-19 References

P01375:TNF

DB01041:Thalidomide∗ 0.8719 Decreasing stability of mRNA [74], [75], [76], [77]
DB00608:Chloroquine∗ 0.8336 Playing multiple roles (see details in Section 2.5) [78], [79], [80]
DB01427:Amrinone 0.7627 Concentration dependent manner [81]
DB01611:Hydroxychloroquine∗ 0.7069 Playing multiple roles (see details in Section 2.5) [82], [83], [84], [85]
DB01254:Dasatinib 0.7034 Unclear [86]
DB00284:Acarbose 0.6698 Decreasing the expression of miRNAs [87]
DB01017:Minocycline 0.6458 Unclear [88]
DB00619:Imatinib 0.6444 Reducing DNA binding of NF-κB [89]
DB00228:Enflurane 0.6282 Unclear NA
DB00975:Dipyridamole∗ 0.6255 Unclear [90], [91]
DB01115:Nifedipine 0.6162 Unclear [92], [93]
DB00724:Imiquimod 0.6145 Unclear [94]
DB00768:Olopatadine 0.6116 Unclear [95], [96]

P05231:IL-6

DB00198:Oseltamivir∗ 0.3241 Reducing the mRNA levels [97], [98]
DB00284:Acarbose 0.3030 Reducing the mRNA levels [87]
DB00302:Tranexamic acid 0.3004 Concentration dependent manner [99]
DB01258:Aliskiren 0.2984 Reducing the mRNA levels [100], [101]
DB00819:Acetazolamide 0.2979 Reducing the mRNA levels [102]
DB00869:Dorzolamide 0.2976 Unclear NA
DB00851:Dacarbazine 0.2917 Unclear NA
DB00703:Methazolamide 0.2884 Unclear [103]
DB00207:Azithromycin∗ 0.2850 Unclear [104], [105], [106]
DB06228:Rivaroxaban 0.2745 Reducing the mRNA levels [107], [108], [109]
DB00811:Ribavirin∗ 0.2741 Reducing the mRNA levels [110], [111], [112], [113]
DB00594:Amiloride 0.2676 Unclear [114]
DB01143:Amifostine 0.2633 Inducing activation of redox sensitive signaling [115]

a. Drugs marked with ∗ have been used in clinical trials. The others are here proposed for the first time as anti-inflammatory agents for
COVID-19 treatment.
b. NA represents that there have been no studies proving that the drug can inhibit the release of TNF or IL-6.

tissues, and lung inflammatory parameters and pathologi-
cal changes are attenuated in methazolamide-treated mice
compared with control mice [103]. Amiloride inhibits IL-6
release, and is treated as a therapeutic agent in respiratory
syncytial virus infections [114]. Thus, these results from
literature suggest that the proposed AIdrug2cov is able to
predict drug candidates that ameliorate the cytokine storm
and inflammatory response in patients with COVID-19.

2.4.2 Anti-inflammatory effects of 7 agents in current ongo-
ing clinical studies on COVID-19
In this study, 7 of the predicted drugs have been deter-
mined in clinical studies to have antiviral activity against
SARS-CoV-2, that is, thalidomide, chloroquine, hydroxy-
chloroquine, dipyridamole, oseltamivir, azithromycin, and
ribavirin. Unfortunately, only thalidomide has been used
as an immunomodulator to treat patients with COVID-19
infection. Most of current studies have used other drugs
to block fusion or replication of SARS-CoV-2. For example,
Liu et al. found that dipyridamole suppresses SARS-CoV-2
replication at a half-maximal effective concentration (EC50)
of 100 µM in vitro [90]. Touret et al. found that azithromycine
with EC50>2µM and EC50<12µM inhibits SARS-CoV-2
replication in vitro [104]. However, these drugs play an
important role in anti-inflammatory effect at clinical. For ex-
ample, dipyridamole performs the anti-inflammatory roles
by reducing the levels of TNF in a rat model of arthritis,
and prophylactic treatment reduces the arthritis-associated

pathology [91]. Azithromycin significantly inhibits IL-6 and
IL-8 secretion by the TNF-α-stimulated cystic fibrosis ep-
ithelial bronchial epithelial cells to decrease the inflamma-
tory response [105], [106]. The levels of IL-6 and TNF-α are
reduced in mice treated with the combination of oseltamivir
and favipiravir [97]. In infected young adults, oral os-
eltamivir reduces nasal levels of proinflammatory cytokine,
including IL-6 and TNF-α [98]. Apparently, these results
indicate that these broad spectrum antiviral agents play
important roles in the anti-inflammatory process. Therefore,
ongoing clinical studies on COVID-19 should investigate the
anti-inflammatory effects of these 7 agents.

2.4.3 Anti-inflammatory actions through multiple pathways
Among these, literature search revealed that 21 drugs are
able to inhibit TNF-α, and IL-6 release, and reduce inflam-
matory responses. Strikingly, 6 drugs, including thalido-
mide [76], [77], chloroquine [78], [79], aliskiren [100], [101],
acetazolamide [102], rivaroxaban [107], [108], [109], and
ribavirin [110], exert their inhibitory action on TNF-α, and
IL-6 by decreasing mRNA stability or enhancing mRNA
degradation. In addition, we found that administration of
acarbose to diabetic rats significantly reduces the expression
of miRNAs to inhibit the release of TNF-α, and IL-6 in in-
flammatory pathways [87]. Furthermore, amrinone reduces
the release of TNF-α in a concentration dependent manner
[81]. Imatinib inhibits TNF-α release by reducing the DNA
binding of NFKB [89]. Amifostine is considered a thera-
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peutic agent of lung inflammation that acts by suppressing
IL-6 induced activation of redox sensitive signaling [115].
Ribavirin inhibits the expression of TNF-α, IL-6, and IL-10
in blood lymphocytes by reduced their mRNA levels [110],
[111]. Notably, a study by Wang et al. has suggested that
peaks in the levels of inflammatory cytokines (IL-6 and IL-
8) levels coincide with or occur after the peaks in SARS-CoV
loads, and indicated that viral replication leads to the activa-
tion of proinflammatory cytokines, contributing to disease
progression [112], [113]. These clinical findings imply that
ribavirin is able to reduce the release of IL-6 and IL-8 by
inhibiting viral replication to ameliorate lung lesions. The
above studies illustrated that these drugs can ameliorate the
TNF-α and IL-6 release to reduced inflammatory responses
via multiple pathways.

(A) Acarbose-TNF-α (B) Chloroquine-TNF-α

(C) Acarbose-IL-6 (D) Amiloride-IL-6

Fig. 4. Molecular docking results for drugs binding to TNF-α or IL-6. The
blue, green, and gray dotted line represent hydrogen bond, π-π stacking,
and hydrophobic interaction between drugs and targets, respectively.

2.4.4 Molecular docking analysis
In this section, we used the molecular docking program
DOCK6.8 [20] to explore the possible modes of binding of
new the predicted drugs with TNF-α or IL-6. The three-
dimensional (3D) structures of TNF-α and IL-6 used in
the docking studies were downloaded from the Research
Collaboratory for Structural Bioinformatics (RCSB) Protein
Data Bank (PDB IDs 2AZ5 and 4CNI, respectively). The
3D structures of the drugs were obtained from the ZINC
database. Here, four representative docking structures are
shown in Fig. 4

For the docking model of TNF-α, the molecular docking
result in Fig.4(A) shows that acarbose mainly binds to Ser60,
Lys98, Glu116, Tyr119, and Tyr151 through five hydrogen
bonds, and there is one hydrophobic interaction between
acarbose and Tyr59. Fig.4(B) shows that CQ binds to TNF-α
via two hydrogen bonds with Leu120 and Lys98, and one
hydrophobic interaction with Leu120. The results indicate
that there are some differences in the binding modes of the
different drugs and that acarbose has a stronger ability to
mainly bind TNF-α than CQ in terms of the hydrogen bond
formation. In the docking model for IL-6, seven hydrogen
bonds were predicted to form between acarbose and Tyr32,

Asn53, Arg100, Tyr103, and Tyr109 of IL-6. The result in
Fig.4(D) show that Tyr56, Phe33, Glu101, and Tyr103 of
IL-6 respectively combined with amiloride through five
hydrogen bonds, and formed an π-π stacking. The results
suggest that acarbose has a stronger ability to bind IL-6
than amiloride in terms of the hydrogen bond formation. In
addition, analysis of the key binding sites between acarbose
and TNF-α/IL-6 revealed that acarbose binds strongly and
stably with these molecules through different binding sites.
Based on the above results, we conclude that there are the
some differences in the binding modes for the different
drugs and targets.

2.5 Mechanisms of anti-inflammatory effects of chloro-
quine and hydroxychloroquine in COVID-19 patients

In this study, chloroquine (CQ) and hydroxychloroquine
(HCQ), which had high confidence scores, were re-
garded as agents targeting TNF-α and IL-6. In par-
ticularly, CQ has been added to the list of trial
drugs in the Guidelines for the Diagnosis and Treat-
ment of COVID-19 (seventh edition) published by the
National Health Commission of the People’s Republic
of China (http://www.nhc.gov.cn/yzygj/s7653p/202003/
46c9294a7dfe4cef80dc7f5912eb1989.shtml). CQ and HCQ
are FDA-approved drugs for malaria treatment and are
viral mRNA and protein synthesis inhibitors, respective-
ly. Here, we summarize the potential anti-inflammatory
mechanisms of action of CQ and HCQ based on literature-
reported knowledge to accelerate therapeutic development
for COVID-19.

CQ and HCQ share similar chemical structures and
mechanisms of action, and demonstrate strong im-
munomodulatory capacity, preventing inflammation and or-
gan damage as shown in Fig.5. Several in vitro studies have
shown that CQ inhibits the production of TNF-α and IL-6 vi-
a different mechanisms in human monocytes/macrophages.
CQ inhibits the release of IL-6 by decreasing the stability of
IL-6 mRNA [78]. In contrast, CQ has been shown to inhibit
TNF-α synthesis mainly by blocking conversion of cell-
associated 26-kDa TNF-α precursor into the soluble 17-kDa
mature form, rather than by reducing the stability of TNF-α
mRNA [78], [79], [80]. Meanwhile, one anti-inflammatory
mechanism of CQ might involve impairment of antigen
presentation [116]. CQ increases the intracellular pH and
inhibits lysosomal activity in antigen-presenting cells (APC-
s) including monocytes, macrophages and B cells, thus
preventing antigen processing and major histocompatibility
complex (MHC) class II-mediated autoantigen presentation
to T cells [117]. This process reduces T cell activation,
thus reducing the production of cytokines including IL-6
and TNF-α [118]. HCQ is able to decrease the release of
cytokines including IL-6 and TNF, via blocking proliferative
responses to T-cell mitogens [82], [83]. In addition to a
role in immune modulation, HCQ and CQ inhibit receptor
binding and membrane fusion, which are required for cell
entry by coronaviruses. These drugs can interfere with the
glycosylation of ACE2 of SARS-CoV to impede the binding
of the virus to receptors on cells [84]. CQ increases the
endosomal pH and inhibits protease activity such that the
virus/cell fusion process is blocked [85].
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Fig. 5. Possible pathway of CQ and HCQ contributing to excessive inflammatory responses and antiviral effect in patients with COVID-19.

Based on the above findings, CQ and HCQ, which were
identified as candidates by AIdrug2cov, can inhibit expres-
sion and release of cytokines including TNF-α and IL-6 via
multiple mechanisms of action to block the inflammatory
response. Compared to exhibiting antiviral ability, HCQ
and CQ antagonize the inflammatory response through
more pathways, indicating that mechanisms of action of
these drugs are likely mediated through their inhibition of
inflammatory cytokines on top of their antiviral ability for
COVID-19 patients.

2.6 Performance evaluation of AIdrug2cov for pharma-
cological applications
To evaluate the network representation performance of
AIdrug2cov, the pharmacological interpretation results were
based on comprehensively compared with those obtained
from LINE [119], GraRep [120], struc2vec [121], and NeoDTI
[122] models. The first three of these models have shown re-
markable performance in the link prediction and node clas-
sification for 7 biomedical network datasets [123]. NeoDTI is
specially designed to predict drug-target interactions, which
also integrate IMC model.

• LINE: This model captures local and global network
structures by approximating the 1st-order proximity
and 2nd order proximity of nodes.

• GraRep: This model considers high-order proximi-
ty to preserve the network structure, and employs
different loss functions to capture local relational
information from the different k-step.

• struc2vec: This model uses a hierarchy to measure
node similarity at different scales, and constructs a
multilayer network to encode structural similarities.
Then, deepwalk [124] is performed on the multilayer
network to learn the low-dimensional vector of each
node.

• NeoDTI: This model integrates neighborhood infor-
mation of a heterogeneous network constructed from
diverse data sources via a number of information
passing and aggregation operations.

2.6.1 Experiment settings and evaluation metrics
The AIdrug2cov model parameters followed those BERT
[125] which is L=12, H=768, and A=12, where L, H, and
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Fig. 6. Precision@k from DDI network reconstruction.

A are the number of Transformer blocks, the hidden size,
and the number of self-attention heads, respectively. The hy-
perparameters of the LINE, GraRep, and struc2vec models
were selected according to the guidelines in [123], because
Yue et al. carefully optimized them by grid search. The
hyperparameter for the NeoDTI model was set to the default
value in [122]. In this study, the embedding dimension(d)
was set to 768 for all model.

To evaluate the performance of the embedding methods
on DDI network reconstruction, we adopted Precision@k
[126] as the evaluation metric. The one error, coverage, rank-
ing loss, and average precision were used to evaluate the
overall performance of all representation methods in ATC
classification. These metrics are defined in detail in [127],
and are frequently used for evaluating the performance
of ATC classifiers. The area under precision recall (AUPR)
curve and the area under receiver operating characteris-
tic(AUROC) curve were employed to evaluate the perfor-
mance of all representation methods in bio-link prediction.

2.6.2 DDI network reconstruction
For DDI network reconstruction, the Precision@k was cal-
culated for different k values of 2,000, 4,000, 6,000, 8,000,
and 10,000, which corresponded to roughly 20%, 40%, 60%,
80%, 100% of the total number of the DDI edges (10,036),
respectively. Fig. 6 illustrates the Precision@k values for the
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different k values. AIdrug2cov significantly outperformed
the baseline methods. In addition, AIdrug2cov showed
the best precision while baseline methods, when the was
k=6,000, while the baseline methods exhibited the best re-
construction precision when k was 2,000. This finding indi-
cates indicates that AIdrug2cov may reconstruct more edges
than the baseline methods. This may be attributable to the
capability of AIdrug2cov to learn semantic features among
nodes through a deep bidirectional Transformer encoder.

2.6.3 ATC classification
For ATC classification, we performed 10-fold cross-
validation, in which a subset of 10% of the drug entities
were randomly selected as the test set, and the remaining
90% of drugs were treated as the training set. To reduce the
data bias of cross-validation, it was repeated 10 times and
the average performance was computed.

Table 3 shows the results of ATC classification gener-
ated by the AIdrug2cov and baseline methods, and the
best results are marked in boldface. The results clearly
demonstrated that AIdrug2cov was able to achieve better
results for ATC classification than the baseline methods.
In particular, AIdrug2cov achieved an approximately 50%
improvement in terms of one error value. A major reason for
this superiority is that AIdrug2cov takes into consideration
the various types of semantic information that indicate the
anatomical therapeutic chemical of drugs to a certain extent.
This result indicates that AIdrug2cov is a powerful network
representation method for predicting the ATC classification
of given drugs.

TABLE 3
Results of ATC classification generated by AIdrug2cov and baseline

methods.

Method One error Coverage Ra-Loss Avg-pre
AIdrug2cov 0.4209 2.6583 0.1642 0.6795

NeoTDI 0.7797 4.2910 0.2904 0.4211
GraRep 0.7628 4.2976 0.2905 0.4237

LINE 0.7685 4.2335 0.2845 0.4307
struc2vec 0.7981 4.3794 0.2966 0.4050

a. Ra-Loss and Avg-pre stand for ranking-loss and average preci-
sion, respectively.
b. Among the mentioned evaluation metrics, smaller values show
better performance except in the case of average precision.

2.6.4 Bio-link prediction
For bio-link prediction, we performed a 10-fold cross-
validation test on all positive pairs and a matching number
of randomly sampled negative pairs. Similar to prediction
of ATC classification, the ratio between the test and training
set was 1:9, and each method was repeated 10 times and the
average performance was computed. Table 4 summarizes
the overall performance of different methods for the bio-
link prediction, that is, disease-target association (DisTA),
target-drug interaction (TDI), and drug-side-effect associa-
tion (DSA).

In this DisTA, and DSA prediction tasks, AIdrug2cov
outperformed the baseline methods. In particular,
AIdrug2cov was significantly superior to struc2vec,
improving the AUROC and AUPR by over 10%. For

TABLE 4
Results of bio-link prediction generated by AIdrug2cov and baseline

methods.

Method
DisTA DTI DSA

AUROC AUPR AUROC AUPR AUROC AUPR
AIdrug2cov 0.9613 0.9555 0.9973 0.9968 0.9391 0.9361

NeoTDI 0.9209 0.9044 0.8782 0.8806 0.9271 0.9183
GraRep 0.9179 0.8976 0.8050 0.7975 0.8902 0.8786

LINE 0.9020 0.8846 0.8403 0.8352 0.8788 0.8684
struc2vec 0.8336 0.7942 0.7514 0.7426 0.8384 0.8279

DTI prediction, the baseline methods achieved poor
results below 0.9 in terms of AUROC and AUPR, while the
AIdrug2cov method showed the excellent performance with
results close to 1. These findings suggest that AIdrug2cov
can still obtain good results when other methods fail to
accurately predict the DTI. In addition, we observe that
AIdrug2cov greatly outperform other baseline methods,
with significant improvement (13% in terms of AUPR and
AUROC) over the second best method.

Interestingly, GraRep and LINE had improved the link
prediction performance compared with struc2vec, whereas
their result is lower than NeoDTI of ones. For example,
compared with struc2vec, LINE achieved 4.8-11.2% im-
provement in terms of AUROC value on the 3 bio-link
prediction tasks. NeoTDI achieved 5.2% increment with
regard to average AUPR in the 3 bio-link prediction tasks,
when compared with GraRep. This may be because NeoDTI
use a neighborhood information-preserving learning pro-
cedure to enforce the extracted feature representations of
nodes to match the observed networks. There may be a lack
of structural identity in the heterogeneous network, thus
leading to the poor performance of struc2vec.

The proposed AIdrug2cov method clearly achieved very
promising results in various prediction tasks. Three key
factors were responsible. First, AIdrug2cov uses 23 types
of meta-paths to integrate the structure and semantic fea-
ture among diverse vertices in the heterogeneous network.
Second, although AIdrug2cov considers only the first-order
proximity of nodes in the construction process of seman-
tic paths, it can capture long-range dependencies without
regard to their distance in the input or output sequences
by relying entirely on an attention mechanism. Moreover,
AIdrug2cov uses masked language models to enable train
deep bidirectional representation.

2.6.5 Effect of dimension
The embedding dimension (d) is a common hyperparameter
among AIdrug2cov, LINE, GraRep, struc2vec, and NeoDTI.
In this study, each method was run 8 times with a different
embedding dimensions (i.e. d=48, 96, 192, 384, 768, 1,536,
2,304, and 3,072) to evaluate the impact of dimensionality
on the prediction performance and time efficiency. Fig.7
illustrates the effects of dimension on DDI network recon-
struction (k=10,000), ATC classification, and bio-link predic-
tion. Generally, the prediction performance improved with
increasing embedding dimensionality. The same conclusion
is described in [123]. This is intuitive since higher number
of dimensions can encode more useful information.
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Fig. 7. Results of DDI network reconstruction; ATC classification; DisTI, TDI, and DSeI with different embedding dimensions.

However, the performance tends to saturate or decre-
ment when the dimension reaches to a threshold (e.g. 768).
In this study, the time cost first increased gradually when
the dimension was below 768 but tends to increase sharply
(note that the y-axis is log-based) when the dimensionality
continued to increase, as shown in Fig. 8. There, we suggest
that the dimensionality should be set to approximately 768
to optimize performance and time efficiency.
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Fig. 8. Influence of dimensionality on the training time of the different
embedding methods.

3 DISCUSSION

In this study, we proposed AIdrug2cov, which is a network
representation learning-based drug mechanism discovery
and anti-inflammatory response to develop an effective
therapeutic approach for COVID-19 patients. AIdrug2cov
identified 40 potential targets related to COVID-19 and 25
high-confidence drugs that bind to cytokines to prevent
excessive inflammatory responses in patients with COVID-
19. Importantly, AIdrug2cov indicated that CQ and HCQ
are able to reduce fatality of COVID-19 patients, and sug-
gested that mechanisms of action of these drugs are likely
mediated through its inhibition of inflammatory cytokines
on top of its antiviral ability. In addition, the results of D-
DI network reconstruction, ATC classification, and bio-link

prediction demonstrate that AIdrug2cov significantly out-
performs than other state-of-the-art network representation
approaches. In summary, AIdrug2cov is a practically useful
tool for accelerating COVID-19 therapeutic development.

Previous evidence reported in the literature suggests
that the most popular targets predicted by AIdrug2cov
are mediators of inflammation; these findings indicate that
SARS-CoV-2 infection is associated with a cytokine storm
and severe pulmonary inflammation in patients, consistent
with the findings of several previous studies [1]. Similar to
the case in patients with SARS-CoV infection, the levels of
TNF-α [1], [21], IL1B [22], IL-6 [23], [24], CCL2 [22], [25],
IFNG [27], and CXCL10 [1], [22] are significantly elevated
and are associated with adverse clinical outcomes in pa-
tients with COVID-19. Therefore, this work proposed that
using TNF and IL-6 target discovers high-confidence drugs
for preventing cytokine storm and excessive inflammatory
responses in patients with COVID-19. Recent studies have
similarly suggested that drugs targeting IL-6 and TNF-
α are effective in blocking inflammatory storms, and are
promising treatments for severe COVID-19 patients [1], [21],
[23], [24]. The data presented in this study and the previous
reports in the literature indicate that it is important to iden-
tify proteins related to COVID-19, especially those related
to inflammatory response, and to apply this knowledge
towards discovering candidate drugs to reduces fatality of
patients with COVID-19.

In this study, we found that 7 drugs currently under-
going clinical trials for COVID-19 are able to inhibit the
levels of TNF and IL-6 to reduce inflammatory response in
patients with COVID-19. However, previous reports mainly
focus on the antiviral effects of these drugs. In particular, we
observed that CQ and HCQ affect more anti-inflammatory
response pathways than antiviral pathways, indicating that
CQ and HCQ for COVID-19 patients works more likely
as anti-inflammatory agents than as direct antiviral agents.
Interestingly, a clinical study including 550 critically ill
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COVID-19 patients has demonstrated that low dose HCQ
significantly reduces fatality of critically ill COVID-19 pa-
tients, and their mechanism of action is likely mediated
through its inhibition of inflammatory cytokines on top of
its ability in inhibiting viral replication [16]. Meanwhile,
we noticed that high concentrations of HCQ or CQ have
in vitro antiviral effect on several viruses, including SARS-
CoV and SARS-CoV-2 [128], [129], which may contribute
directly to the therapeutic effects of these drugs in COVID-
19 patients. Notably, we also noticed a few negative reports
about CQ and HCQ [130], [131]. However, the negative
results of these studies were very likely due to the use of
high doses of HCQ that reduced cardiotoxicity. These studie
might also have used high-dose HCQ as an antiviral agent
rather than as an anti-inflammatory agent. In contrast, the
dose of HCQ in [16] was much lower than that in [130],
[131] but is the same as treating inflammatory diseases.
Therefore, the mechanisms of action of CQ and HCQ in
COVID-19 patients are likely mediated through inhibition
of inflammatory cytokines on top of their antiviral effects.

On three types of pharmacological tasks, DDI network
reconstruction, ATC classification, and bio-link prediction,
AIdrug2cov significantly outperformed other state-of-the-
art network representation approaches. A major reason for
the success of AIdrug2cov is that it takes into consider-
ation types of various semantic information that indicate
the anatomical therapeutic chemical of drugs to a certain
extent. Recent studies have shown that the semantics of
nodes are critical for knowledge discovery in real world
biomedical problems [132]. Compared to previous path-
based approaches, AIdrug2cov can capture long-range de-
pendencies without regard to their distances in the input
or output sequences by relying entirely on an attention
mechanism to improve representation performance.

However, we acknowledge several limitations in our
current study. The top-k targets and agents in this study
were regarded as candidate entities related to COVID-19
according to a confidence score. The operation is simple
and is popularly applied to the recommended systems, but
the results neglect statistical significance to a certain extent.
How to select associated candidate entities is also an impor-
tant question for drug repositioning. The selection strategy
of candidates must be improved in order to promote the
precision of drug repositioning. For example, the confidence
score could be converted to a z-score based on permutation
tests, and the corresponding p-value could be calculated. For
each virus, those predictions with a p-value < 0.05 could be
treated as candidates [133].

Owing to the lack of wet-lab validation, the mechanisms
of action of the COVID-19 targets and drugs could not be
verified in this study. Although previous literatures provide
certain evidence proving that the majority of proteins and
drugs predicted by AIdrug2cov are able to target COVID-
19 through multiple pathways, the previous studies used
different experimental platforms and viruses. However,
there are some differences in mechanisms of action between
different drugs and different types of cells. Therefore, stan-
dard assays must be carried out to measure the effects of
these targets and drugs on the cytotoxicity, virus yield and
infection rate of SARS-CoV-2, and all predicted targets and
drugs must be validated in preclinical models experiments

and randomized clinical trials before being used in patients.
In conclusion, this study offers a powerful network

representation approach for drug mechanism discovery and
anti-inflammatory response mechanism analysis that can be
used to identify effective therapeutic strategies for patients
with COVID-19. Our approach can increase clinical testing
accuracy, which is a critical for the rapid development of ef-
ficient treatment strategies for the emerging disease COVID-
19. Meanwhile, the proposed AIdrug2cov method could
also be applied to develop effective treatment strategies for
other types of viral infections and human diseases.

4 METHOD

4.1 Construction of a heterogeneous network

A heterogeneous information network is defined as G =
(V,E) where V represents the set of vertices, and E is the
set of edges. In a heterogeneous network, each vertex v and
each edge e are associated with an object type mapping
function, φ(v) : V → A, and a link type mapping function,
ψ(e) : E → R, respectively. A and R denote the sets of
object and link types, where |A|+ |R| > 2.

In this study, we assembled four types of nodes (i.e.,
drug, target, side-effect, and disease), and six types of
links(i.e., drug-disease association (DDA), drug-drug inter-
action (DDI), drug-target interaction (DTI), drug-side-effect
association (DSA), protein-protein interaction, and disease-
target association (DisTA)) form the public databases, as
shown in Fig.1(A). The drug-drug and drug-target inter-
actions were extracted from DrugBank and ChEMBL. The
human protein-protein interactions were extracted from the
Human Protein Reference Database (HPRD), the Human
Reference Interactome (HuRI) database and the Biological
General Repository for Interaction Datasets (BioGRID). The
protein-disease and drug-disease network were collected
from the Toxicogenomics Database and repoDB. We also
extracted the drug-side-effect associations from the Com-
parative Toxicogenomics Database (CTD) and the Side Effect
Resource (SIDER). In addition, a protein sequence similarity
network was obtained by calculating the Smith-Waterman
similarities [134] of the amino acid sequence derived from
UniProt. Furthermore, the drug similarity network was ob-
tained by calculating the Tanimoto coefficient [135] from the
Morgan fingerprint with a radius of 2 using the RDKit [136].
In the heterogeneous network, there were 13,619 nodes and
1,895,445 edges; all edges were unweighted, nonnegative
and undirected.

4.2 Semantic-path and deep bidirectional Transformer
encoder-based network representation

We developed a promising heterogeneous network repre-
sentation approach, AIdrug2cov, by integrating semantic
paths and a multi-layer bidirectional Transformer encoder
model, as shown in Fig.1(B). In this work, network vertices
were regarded as the vocabulary, and a set of semantic
paths was treated as a corpus that is fed into a deep
bidirectional Transformer encoder model to learn the low-
dimensional representation of the network vertices, which
existed in a continuous vector space. The proposed network
representation was able to capture structural and semantical
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correlations between diverse vertices in the heterogeneous
network, thus encoding latent forms of nodes.

4.2.1 Semantic path
A meta-path is a composite relation denoting a sequence
of adjacent links between any two nodes in a hetero-
geneous network. The different adjacent links indicate
distinct semantics. For example, meta-path(A):drug treats−−−→
disease

treated by−−−−−→ drug represents that a disease can be treated
by two drugs. Meta-path(B): drug binds to−−−−→ protein causes−−−−→
disease indicates that a drug binds to a protein that causes
a disease. Therefore, we generated a total of 23 different
meta-paths, for which detailed types of semantic path are
provided in Table 5. It is noteworthy that all the semantic
links in the work are reversible, and the semantic paths
with lengths no longer than four. Because previous studies
have indicated that meta paths with lengths greater than
four may be too long to contribute to prediction [137]. In
addition, Sun et al. have suggested that short meta paths are
good enough, and that long meta paths may even reduce the
quality of the results [138]. AIdrug2cov constructs a corpus
composed of 3 billion semantic-paths that reflect the unique
interaction mechanisms and topological structures among
vertices in heterogeneous networks.

4.2.2 Deep Bidirectional Transformers Encoder
The network embedding model in AIdrug2cov is a deep
bidirectional Transformer encoder based on the original
implementation described in [139], and the implementation
is almost identical to the original. The encoder is composed
of a stack of identical layers, and every layer includes two
sub-layers as shown in Fig.9. The first is a multi-head self-
attention mechanism, and the second is a simple, position
wise fully connected feed-forward network. In the encoder
model, a residual connection [140] is employed to connect
each of two sub-layers, and layer normalization is then
performed.

Fig. 9. Learning architecture of the deep bidirectional Transformers
encoder model

4.2.3 Training regime
The network embedding model uses masked language
learning to enable trained deep bidirectional representation

TABLE 5
The semantic path types and statistics

NO. Semantic path Count

1 drug binds to−−−−→ protein 1,923

2 drug binds to−−−−→ protein binds to−−−−→ drug 153,186

3 drug binds to−−−−→ protein interacts with−−−−−−−→ protein 8,728

4 drug binds to−−−−→ protein causes−−−→ disease 2,209,742

5 drug binds to−−−−→ protein interacts with−−−−−−−→ protein binds to−−−−→ drug 12,734

6 drug binds to−−−−→ protein interacts with−−−−−−−→ protein causes−−−→ disease 11,603,240

7 drug binds to−−−−→ protein binds to−−−−→ drug binds to−−−−→ protein 221,020

8 drug binds to−−−−→ protein binds to−−−−→ drug treats−−−→ disease 8,243,362

9 drug binds to−−−−→ protein binds to−−−−→ drug causes−−−→ side-effect 4,482,541

10 drug binds to−−−−→ protein causes−−−→ disease
caused by−−−−−→ protein 2,020,665,247

11 drug binds to−−−−→ protein causes−−−→ disease
treated by
−−−−−→ drug 231,785,524

12 protein binds to−−−−→ drug interacts with−−−−−−−→ drug 34,260

13 protein binds to−−−−→ drug binds to−−−−→ protein 6,344

14 protein binds to−−−−→ drug treat−−→ disease 636,903

15 protein binds to−−−−→ drug causes−−−→ side-effect 270,234

16 protein binds to−−−−→ drug interacts with−−−−−−−→ drug binds to−−−−→ protein 60,096

17 protein binds to−−−−→ drug interacts to−−−−−→ drug treats−−−→ disease 11,188,449

18 protein binds to−−−−→ drug interacts with−−−−−−−→ drug causes−−−→ side-effect 5,315,270

19 protein binds to−−−−→ drug binds to−−−−→ protein interacts with−−−−−−−→ protein 19,371

20 protein binds to−−−−→ drug binds to−−−−→ protein causes−−−→ disease 13,232,097

21 protein binds to−−−−→ drug treats−−−→ disease
caused by
−−−−−→ protein 558,541,026

22 protein binds to−−−−→ drug treats−−−→ disease
treated by−−−−−→ drug 115,924,998

23 protein binds to−−−−→ drug causes−−−→ side-effect
caused by
−−−−−→ drug 38,577,295

Total number 3,023,193,590

inspired by the Cloze task. In masked language learning,
the input corpus is randomly masked by some token, and
the objective is to predict the masked word based only on
its context. AIdrug2cov follows the method used in BERT
[125] to mask an input corpus. First, 15% of tokens were
randomly selected for masking. For every selected token, it
has 80% time to be replaced by 〈MASK〉 token. With 10%
and 10% time, it will be randomly replaced by any other
token in the dictionary or kept unchanged correspondingly.
The advantage of this procedure is that the randomness can
increase the generalization ability of the model, and prevent
it over-fitting. In addition, because random replacement oc-
curs is only 1.5% (i.e., 15%*10%) of the time for all tokens, it
does not seem to harm the model’s language understanding
capability.

4.3 Identification of potential targets and drugs for the
COVID-19
Based on over representations, the IMC model and CMap
were used for target identification and drug repurposing
for COVID-19 to facilitate therapeutic efficiency.

4.3.1 COVID-19 target identification
In this study, COVID-19 target identification of COVID-19
was conducted with SARS data caused by the virus SARS-
CoV since SARS-CoV and SARS-CoV-2 are highly similar
and closely related coronaviruses. Phylogenetic analysis has
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revealed that the genome of SARS-CoV-2 is similar to that of
SARS-CoV, with approximately 79% sequence identity [4].
Further sequence alignment has revealed that the similarity
of the sequence of the main protease between SARS-CoV-2
and SARS-CoV, which is essential for the life cycle of the
virus, is up to 96.1%. In addition, the pathogenic mecha-
nisms of SARS-CoV-2 and SARS-CoV are highly similar [3].
Therefore, predicted targets related to SARS can reasonably
be treated as potential targets of COVID-19.

As shown in Fig.1(E), in the process of COVID-19 target
identification, the low-dimensional vector of nodes was feed
into the IMC model to predict the confidence scores of
SARS-protein interactions. Then, the proteins were ranked
according to confidence scores, and the top-k proteins were
regard as potential targets of COVID-19. Finally, Enrichr
[18], a comprehensive gene set enrichment analysis tool, was
used to perform functional enrichment analyse, including
GO and KEGG enrichment analyses to evaluate the func-
tional pathways and biological relevance of the potential
targets of COVID-19.

4.3.2 Anti-inflammatory drug discovery for COVID-19
Studies have shown that SARS-CoV-2 induces excessive
and aberrant non-effective host immune responses that are
associated with severe lung pathology and lead to death
[1]. Similar to SARS-CoV infection, SARS-CoV-2 infection is
also associated with a cytokine storm and severe pulmonary
inflammation in moribund patients, and is characterized
mainly by elevated plasma concentrations of IL-6, TNF-
α. In particular, researchers have proposed that IL-6, and
TNF-α might be promising therapeutic targets. Therefore,
this study predicted drugs related to IL-6 or TNF-α to
facilitate the therapies efficacy. Similar to the methods for
target identification, IMC model are integrated to predict
confidence scores for interaction between drugs and IL-
6 or TNF-α and drugs, and the top-k candidate drugs
according to confidence scores were selected for IL-6 or
TNF-α, respectively. In addition, we performed the CMap
[19] analysis to further screen candidate drugs for COVID-
19. Due to the lack of gene expression data from the SARS-
CoV-2 infected patients, we used the gene expression pro-
files of peripheral blood mononuclear cells (PBMCs) from
ten SARS-CoV infected patients (GEO:GSE1739) [141] to
identify potential COVID-19 therapeutic drugs. The detailed
connectivity analysis steps are listed as follows.

Step 1: Student’s t test was performed to identify genes
that were differentially expressed in samples from SARS
patients compared with normal samples. For each gene,
the statistical significance was assessed by computing the
p value. The log2(FC) value was calculated as the fold
change (FC) between the average signal intensity of 10 SARS
patients and that of 4 normal human subjects was calculated
for each gene. Any gene meeting the criteria of a p <0.01 and
an absolute log2(FC) > 1 was considered to be the up- and
down-regulated genes.

Step 2: The CMap scores were computed based on the
sets of up- and down-regulated genes in SARS-CoV infected
patients by using a web server (https://clue.io/query).

Step 3: In AIdrug2cov, under the hypothesis that if a drug
has a gene expression signature that is opposite to a disease
signature, that drug could potentially be used as a treatment

for that disease [142]. Therefore, drugs with the CMap scores
< 0 were treated as COVID-19 therapeutic drug candidates.

Finally, we used literature-reported knowledge to filter
drugs that tended to increase the release of IL-6 or TNF-α.

4.4 Pharmacological application of AIdrug2cov
To evaluate and interpret the node representation perfor-
mance of AIdrug2cov, we performed various pharmacolog-
ical tests, including DDI network reconstruction, ATC clas-
sification, and bio-link (i.e., DisTA, TDI, DSA) prediction.

4.4.1 DDI network reconstruction
As network representations, embedding vectors are expect-
ed to reconstruct the original networks well [126]. Here, we
reconstructed the DDI network edges based on the prox-
imity nodes to evaluate the representation performance of
AIdrug2cov. First, the proximity matrix was attained by di-
rectly calculating the cosine similarity between embedding
vectors. Then, the pairs of nodes were ranked according to
their proximity. Finally, the ratio of real links in the top k
pairs of vertices was treated as the reconstruction precision.
A more reconstruction precision indicated a more higher
embedding quality.

4.4.2 ATC classification
In drug development, identification of the ATC class of an
uncharacterized compound is a challenging and important
task, since such a prediction system could be used to de-
duce not only a compound’s possible active ingredients but
also its chemical, therapeutic, pharmacological, and other
properties.In addition, node classification, which aims to
predict the classes of unlabeled nodes for a partially labeled
network, is one of the most important tasks in network
analysis. Therefore, the AIdrug2cov low-dimensional em-
bedding vectors were treated as feature of nodes, and fed
into the Multi-label K-Nearest Neighbor (ML-KNN) [143]
model which is frequently used to predict the ATC classes of
drug. Generally, good network embedding should capture
the network structure and hence be useful for ATC classifi-
cation.

4.4.3 Bio-link prediction
Another important task of network embedding is predicting
unobserved links in a network, which refers to predicting
either missing interactions that may appear in the future.
Link prediction is pervasive in biological network analy-
sis, but verifying the existence of links between nodes is
time-consuming and cost-expensive [144]. Therefore, a great
number of efforts have been devoted to predicting potential
interactions based on network embedding approaches, such
as deeper [145], and NeoDTI [122].

To further demonstrate the effectiveness of the proposed
embedding methods, the IMC model was also employed to
predict DisTA, TDI, and DSA, that is, disease → protein
→ drug → side-effect associations. The IMC model has
been widely used for biomedical link prediction, such as
drug-target interaction prediction [146], and gene-disease
interaction prediction [147]. The previous findings suggest
that a good network representation model can significantly
improve prediction accuracy, and should be able to capture
the inherent structure of a network well enough to predict
likely but unobserved links.
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AVAILABILITY AND IMPLEMENTATION

The source code and data of AIdrug2cov can be downloaded
from https://github.com/pengsl-lab/AIdrug2cov.git.
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